--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: [] --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.7031 - Accuracy: 0.82 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2612 | 1.0 | 57 | 2.2511 | 0.26 | | 2.1275 | 2.0 | 114 | 2.0384 | 0.36 | | 1.8071 | 3.0 | 171 | 1.7399 | 0.52 | | 1.6381 | 4.0 | 228 | 1.5693 | 0.61 | | 1.4188 | 5.0 | 285 | 1.3573 | 0.61 | | 1.2974 | 6.0 | 342 | 1.2103 | 0.72 | | 1.2146 | 7.0 | 399 | 1.1800 | 0.69 | | 1.0725 | 8.0 | 456 | 1.0126 | 0.77 | | 1.0492 | 9.0 | 513 | 0.9821 | 0.74 | | 1.0529 | 10.0 | 570 | 0.9347 | 0.77 | | 0.895 | 11.0 | 627 | 0.8520 | 0.79 | | 0.7692 | 12.0 | 684 | 0.8451 | 0.8 | | 0.6566 | 13.0 | 741 | 0.7763 | 0.82 | | 0.5885 | 14.0 | 798 | 0.7852 | 0.8 | | 0.619 | 15.0 | 855 | 0.7443 | 0.8 | | 0.5572 | 16.0 | 912 | 0.7444 | 0.79 | | 0.6493 | 17.0 | 969 | 0.7024 | 0.83 | | 0.5499 | 18.0 | 1026 | 0.7137 | 0.81 | | 0.5923 | 19.0 | 1083 | 0.7059 | 0.81 | | 0.5556 | 20.0 | 1140 | 0.7031 | 0.82 | ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.13.1 - Tokenizers 0.13.3