SaraPiscitelli commited on
Commit
f96c13d
1 Parent(s): 27088e5

Initial commit

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: SpaceInvadersNoFrameskip-v4
17
  metrics:
18
  - type: mean_reward
19
- value: 476.00 +/- 251.81
20
  name: mean_reward
21
  verified: false
22
  ---
@@ -62,7 +62,7 @@ python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f lo
62
 
63
  ## Hyperparameters
64
  ```python
65
- OrderedDict([('batch_size', 64),
66
  ('buffer_size', 100000),
67
  ('env_wrapper',
68
  ['stable_baselines3.common.atari_wrappers.AtariWrapper']),
@@ -72,7 +72,7 @@ OrderedDict([('batch_size', 64),
72
  ('gradient_steps', 1),
73
  ('learning_rate', 0.0001),
74
  ('learning_starts', 100000),
75
- ('n_timesteps', 1000000),
76
  ('optimize_memory_usage', False),
77
  ('policy', 'CnnPolicy'),
78
  ('target_update_interval', 1000),
 
16
  type: SpaceInvadersNoFrameskip-v4
17
  metrics:
18
  - type: mean_reward
19
+ value: 554.00 +/- 186.01
20
  name: mean_reward
21
  verified: false
22
  ---
 
62
 
63
  ## Hyperparameters
64
  ```python
65
+ OrderedDict([('batch_size', 128),
66
  ('buffer_size', 100000),
67
  ('env_wrapper',
68
  ['stable_baselines3.common.atari_wrappers.AtariWrapper']),
 
72
  ('gradient_steps', 1),
73
  ('learning_rate', 0.0001),
74
  ('learning_starts', 100000),
75
+ ('n_timesteps', 1000000.0),
76
  ('optimize_memory_usage', False),
77
  ('policy', 'CnnPolicy'),
78
  ('target_update_interval', 1000),
dqn-SpaceInvadersNoFrameskip-v4.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:daae59443fe08fd1e328a3e535425763f23755b7acd88197e732f227bf454a70
3
  size 27220348
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:494d288623459e06bc3a0714a0fa239b111589b02d2dd229afd407f4856bebe5
3
  size 27220348
dqn-SpaceInvadersNoFrameskip-v4/data CHANGED
@@ -4,9 +4,9 @@
4
  ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCUNublBvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.dqn.policies",
6
  "__doc__": "\n Policy class for DQN when using images as input.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function CnnPolicy.__init__ at 0x7fb8d3440ca0>",
8
  "__abstractmethods__": "frozenset()",
9
- "_abc_impl": "<_abc._abc_data object at 0x7fb8d3436240>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {},
@@ -84,13 +84,13 @@
84
  "__module__": "stable_baselines3.common.buffers",
85
  "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}",
86
  "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
87
- "__init__": "<function ReplayBuffer.__init__ at 0x7fb8d3596b90>",
88
- "add": "<function ReplayBuffer.add at 0x7fb8d3596c20>",
89
- "sample": "<function ReplayBuffer.sample at 0x7fb8d3596cb0>",
90
- "_get_samples": "<function ReplayBuffer._get_samples at 0x7fb8d3596d40>",
91
- "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7fb8d3596dd0>)>",
92
  "__abstractmethods__": "frozenset()",
93
- "_abc_impl": "<_abc._abc_data object at 0x7fb8d378fa40>"
94
  },
95
  "replay_buffer_kwargs": {},
96
  "train_freq": {
 
4
  ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCUNublBvbGljeZSTlC4=",
5
  "__module__": "stable_baselines3.dqn.policies",
6
  "__doc__": "\n Policy class for DQN when using images as input.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function CnnPolicy.__init__ at 0x7fde4dda8d30>",
8
  "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7fde4dd9eac0>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {},
 
84
  "__module__": "stable_baselines3.common.buffers",
85
  "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}",
86
  "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
87
+ "__init__": "<function ReplayBuffer.__init__ at 0x7fde4e102c20>",
88
+ "add": "<function ReplayBuffer.add at 0x7fde4e102cb0>",
89
+ "sample": "<function ReplayBuffer.sample at 0x7fde4e102d40>",
90
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7fde4e102dd0>",
91
+ "_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7fde4e102e60>)>",
92
  "__abstractmethods__": "frozenset()",
93
+ "_abc_impl": "<_abc._abc_data object at 0x7fde4e114580>"
94
  },
95
  "replay_buffer_kwargs": {},
96
  "train_freq": {
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:385ed5f705cfa1be5244b250e52e4e30215765643b4b6423b771adadb0eb9158
3
- size 199145
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:40aa9e213900b18593718f9898e2fed809a68f37849a1c1e2ade76f31bf9f1b9
3
+ size 202996
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 554.0, "std_reward": 186.00806434130752, "is_deterministic": false, "n_eval_episodes": 10, "eval_datetime": "2023-12-03T18:30:09.731453"}
 
1
+ {"mean_reward": 554.0, "std_reward": 186.00806434130752, "is_deterministic": false, "n_eval_episodes": 10, "eval_datetime": "2023-12-03T18:35:51.785686"}