SaraPiscitelli
commited on
Commit
•
f96c13d
1
Parent(s):
27088e5
Initial commit
Browse files- README.md +3 -3
- dqn-SpaceInvadersNoFrameskip-v4.zip +1 -1
- dqn-SpaceInvadersNoFrameskip-v4/data +8 -8
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: SpaceInvadersNoFrameskip-v4
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
@@ -62,7 +62,7 @@ python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f lo
|
|
62 |
|
63 |
## Hyperparameters
|
64 |
```python
|
65 |
-
OrderedDict([('batch_size',
|
66 |
('buffer_size', 100000),
|
67 |
('env_wrapper',
|
68 |
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
|
@@ -72,7 +72,7 @@ OrderedDict([('batch_size', 64),
|
|
72 |
('gradient_steps', 1),
|
73 |
('learning_rate', 0.0001),
|
74 |
('learning_starts', 100000),
|
75 |
-
('n_timesteps', 1000000),
|
76 |
('optimize_memory_usage', False),
|
77 |
('policy', 'CnnPolicy'),
|
78 |
('target_update_interval', 1000),
|
|
|
16 |
type: SpaceInvadersNoFrameskip-v4
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 554.00 +/- 186.01
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
62 |
|
63 |
## Hyperparameters
|
64 |
```python
|
65 |
+
OrderedDict([('batch_size', 128),
|
66 |
('buffer_size', 100000),
|
67 |
('env_wrapper',
|
68 |
['stable_baselines3.common.atari_wrappers.AtariWrapper']),
|
|
|
72 |
('gradient_steps', 1),
|
73 |
('learning_rate', 0.0001),
|
74 |
('learning_starts', 100000),
|
75 |
+
('n_timesteps', 1000000.0),
|
76 |
('optimize_memory_usage', False),
|
77 |
('policy', 'CnnPolicy'),
|
78 |
('target_update_interval', 1000),
|
dqn-SpaceInvadersNoFrameskip-v4.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 27220348
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:494d288623459e06bc3a0714a0fa239b111589b02d2dd229afd407f4856bebe5
|
3 |
size 27220348
|
dqn-SpaceInvadersNoFrameskip-v4/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCUNublBvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.dqn.policies",
|
6 |
"__doc__": "\n Policy class for DQN when using images as input.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function CnnPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {},
|
@@ -84,13 +84,13 @@
|
|
84 |
"__module__": "stable_baselines3.common.buffers",
|
85 |
"__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}",
|
86 |
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
87 |
-
"__init__": "<function ReplayBuffer.__init__ at
|
88 |
-
"add": "<function ReplayBuffer.add at
|
89 |
-
"sample": "<function ReplayBuffer.sample at
|
90 |
-
"_get_samples": "<function ReplayBuffer._get_samples at
|
91 |
-
"_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at
|
92 |
"__abstractmethods__": "frozenset()",
|
93 |
-
"_abc_impl": "<_abc._abc_data object at
|
94 |
},
|
95 |
"replay_buffer_kwargs": {},
|
96 |
"train_freq": {
|
|
|
4 |
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCUNublBvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.dqn.policies",
|
6 |
"__doc__": "\n Policy class for DQN when using images as input.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function CnnPolicy.__init__ at 0x7fde4dda8d30>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fde4dd9eac0>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {},
|
|
|
84 |
"__module__": "stable_baselines3.common.buffers",
|
85 |
"__annotations__": "{'observations': <class 'numpy.ndarray'>, 'next_observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'dones': <class 'numpy.ndarray'>, 'timeouts': <class 'numpy.ndarray'>}",
|
86 |
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
87 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7fde4e102c20>",
|
88 |
+
"add": "<function ReplayBuffer.add at 0x7fde4e102cb0>",
|
89 |
+
"sample": "<function ReplayBuffer.sample at 0x7fde4e102d40>",
|
90 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7fde4e102dd0>",
|
91 |
+
"_maybe_cast_dtype": "<staticmethod(<function ReplayBuffer._maybe_cast_dtype at 0x7fde4e102e60>)>",
|
92 |
"__abstractmethods__": "frozenset()",
|
93 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fde4e114580>"
|
94 |
},
|
95 |
"replay_buffer_kwargs": {},
|
96 |
"train_freq": {
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:40aa9e213900b18593718f9898e2fed809a68f37849a1c1e2ade76f31bf9f1b9
|
3 |
+
size 202996
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": 554.0, "std_reward": 186.00806434130752, "is_deterministic": false, "n_eval_episodes": 10, "eval_datetime": "2023-12-03T18:
|
|
|
1 |
+
{"mean_reward": 554.0, "std_reward": 186.00806434130752, "is_deterministic": false, "n_eval_episodes": 10, "eval_datetime": "2023-12-03T18:35:51.785686"}
|