--- base_model: microsoft/codebert-base tags: - Text Generation - generated_from_trainer model-index: - name: codeBert-finetuned-cXg-nl-to-code results: [] --- # codeBert-finetuned-cXg-nl-to-code This model is a fine-tuned version of [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) on an unknown dataset. It achieves the following results on the evaluation set: - eval_loss: 17.9546 - eval_rouge1: 0.0741 - eval_rouge2: 0.0047 - eval_rougeL: 0.0528 - eval_bleu: 1.0975 - eval_meteor: 0.0974 - eval_codebleu: {'codebleu': 0.2174788437391285, 'ngram_match_score': 0.0007172304133318851, 'weighted_ngram_match_score': 0.0015773932015006452, 'syntax_match_score': 0.07692307692307693, 'dataflow_match_score': 0.7906976744186046} - eval_runtime: 40.1888 - eval_samples_per_second: 0.249 - eval_steps_per_second: 0.025 - step: 0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1