---
library_name: transformers
license: apache-2.0
basemodel: meta-llama/Meta-Llama-3-8B-Instruct
datasets:
- Saxo/total_ko_train_set_1_with_wiki_with_orca
language:
- ko
- en
pipeline_tag: text-generation
---
# Model Card for Model ID
AI 와 빅데이터 분석 전문 기업인 Linkbricks의 데이터사이언티스트인 지윤성 박사(Saxo)가 meta-llama/Meta-Llama-3-8B를 베이스모델로 GCP상의 H100-60G 8개를 통해 SFT-DPO 훈련을 한(8000 Tokens) 모델.
Accelerate, Deepspeed Zero-3 라이브러리를 사용했으며 Flash Attention 은 Disable 로 설정
Dr. Yunsung Ji (Saxo), a data scientist at Linkbricks, a company specializing in AI and big data analytics, trained the meta-llama/Meta-Llama-3-8B base model on 8 H100-60Gs on GCP for 4 hours of instructional training (8000 Tokens).
Accelerate, Deepspeed Zero-3 libraries were used.
www.linkbricks.com, www.linkbricks.vc
## Configuration including BitsandBytes
---
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=False,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch_dtype
)
args = TrainingArguments(
output_dir=project_name,
run_name=run_name_str,
overwrite_output_dir=True,
num_train_epochs=20,
per_device_train_batch_size=1,
gradient_accumulation_steps=4, #1
gradient_checkpointing=True,
optim="paged_adamw_32bit",
#optim="adamw_8bit",
logging_steps=10,
save_steps=100,
save_strategy="epoch",
learning_rate=2e-4, #2e-4
weight_decay=0.01,
max_grad_norm=1, #0.3
max_steps=-1,
warmup_ratio=0.1,
group_by_length=False,
fp16 = not torch.cuda.is_bf16_supported(),
bf16 = torch.cuda.is_bf16_supported(),
#fp16 = True,
lr_scheduler_type="cosine", #"constant",
disable_tqdm=False,
report_to='wandb',
push_to_hub=False
)