zhiqings commited on
Commit
d05a119
1 Parent(s): 72b5e99

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +54 -0
README.md ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Usage:
2
+
3
+ ```python
4
+ import torch
5
+ from transformers import AutoTokenizer, AutoModelForCausalLM
6
+
7
+ question_template = "# Question\n\n{question}\n\n# Solution\n\n"
8
+
9
+ model_name = "ScalableMath/llemma-7b-sft-prm800k-level-1to3-hf"
10
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
11
+
12
+ tokenizer = AutoTokenizer.from_pretrained("EleutherAI/llemma_7b")
13
+
14
+ question = "Convert the point $(0,3)$ in rectangular coordinates to polar coordinates. Enter your answer in the form $
15
+ (r,\\theta),$ where $r > 0$ and $0 \\le \\theta < 2 \\pi.$"
16
+ question = question_template.format(question=question)
17
+
18
+ input_tensor = torch.tensor([tokenizer.encode(question)])
19
+ outputs = model.generate(input_tensor.to(model.device), max_new_tokens=500)
20
+
21
+ result = tokenizer.decode(outputs[0], skip_special_tokens=True)
22
+ print(result)
23
+ ```
24
+
25
+ Example Results:
26
+ ```
27
+ # Question
28
+
29
+ Convert the point $(0,3)$ in rectangular coordinates to polar coordinates. Enter your answer in the form $(r,\theta),$ where $r > 0$ and $0 \le \theta < 2 \pi.$
30
+
31
+ # Solution
32
+
33
+ To convert from rectangular to polar coordinates, I need to use the formulas $r = \sqrt{x^2 + y^2}$ and $\theta = \tan^{-1}(y/x).$
34
+
35
+ In this case, $x = 0$ and $y = 3,$ so I can plug them into the formulas.
36
+
37
+ For $r,$ I get $r = \sqrt{0^2 + 3^2} = \sqrt{9} = 3.$
38
+
39
+ For $\theta,$ I get $\theta = \tan^{-1}(3/0).$
40
+
41
+ This is undefined, since the tangent function is not defined at $0.$
42
+
43
+ However, I can use the fact that the point $(0,3)$ lies on the positive $y$-axis, which has an angle of $\pi/2$ radians or $90^\circ.$
44
+
45
+ Therefore, I can choose any angle in the range $(0,\pi/2)$ as the value of $\theta.$
46
+
47
+ I will choose $\theta = \pi/2,$ since it is the simplest and most natural choice.
48
+
49
+ Therefore, the polar coordinates of the point $(0,3)$ are $(3,\pi/2).$
50
+
51
+ # Answer
52
+
53
+ (3,\pi/2)
54
+ ```