--- language: - id license: apache-2.0 tags: - whisper-event - generated_from_trainer model-index: - name: Whisper Medium ID - FLEURS-CV results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: google/fleurs type: google/fleurs config: id_id split: test metrics: - type: wer value: 7.8 name: WER - type: cer value: 2.43 name: CER - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: mozilla-foundation/common_voice_11_0 type: mozilla-foundation/common_voice_11_0 config: id split: test metrics: - type: wer value: 8.67 name: WER - type: cer value: 2.71 name: CER --- # Whisper Medium ID - FLEURS-CV This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the None dataset. It achieves the following results on the evaluation set: - eval_loss: 0.2563 - eval_wer: 8.4690 - eval_runtime: 2961.9108 - eval_samples_per_second: 1.453 - eval_steps_per_second: 0.091 - epoch: 14.29 - step: 5000 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2