GGUF
Inference Endpoints
conversational
nxphi47 commited on
Commit
cf552f3
1 Parent(s): 6554950

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +246 -0
README.md CHANGED
@@ -3,3 +3,249 @@ license: other
3
  license_name: seallms
4
  license_link: https://huggingface.co/SeaLLMs/SeaLLM-13B-Chat/blob/main/LICENSE
5
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  license_name: seallms
4
  license_link: https://huggingface.co/SeaLLMs/SeaLLM-13B-Chat/blob/main/LICENSE
5
  ---
6
+ # *SeaLLM-7B-v2* - Large Language Models for Southeast Asia
7
+
8
+ <p align="center">
9
+ <a href="https://huggingface.co/SeaLLMs/SeaLLM-7B-v2" target="_blank" rel="noopener"> 🤗 Tech Memo</a>
10
+ &nbsp;&nbsp;
11
+ <a href="https://huggingface.co/spaces/SeaLLMs/SeaLLM-7B" target="_blank" rel="noopener"> 🤗 DEMO</a>
12
+ &nbsp;&nbsp;
13
+ <a href="https://github.com/DAMO-NLP-SG/SeaLLMs" target="_blank" rel="noopener">Github</a>
14
+ &nbsp;&nbsp;
15
+ <a href="https://arxiv.org/pdf/2312.00738.pdf" target="_blank" rel="noopener">Technical Report</a>
16
+ </p>
17
+
18
+ We introduce [SeaLLM-7B-v2](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2), the state-of-the-art multilingual LLM for Southeast Asian (SEA) languages 🇬🇧 🇨🇳 🇻🇳 🇮🇩 🇹🇭 🇲🇾 🇰🇭 🇱🇦 🇲🇲 🇵🇭. It is the most significant upgrade since [SeaLLM-13B](https://huggingface.co/SeaLLMs/SeaLLM-13B-Chat), with half the size, outperforming performance across diverse multilingual tasks, from world knowledge, math reasoning, instruction following, etc.
19
+
20
+ ### Highlights
21
+ * [SeaLLM-7B-v2](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2) achieves the **7B-SOTA** on the **Zero-shot CoT GSM8K** task with **78.2** score and outperforms GPT-3.5 in many GSM8K-translated tasks in SEA languages (🇨🇳 🇻🇳 🇮🇩 🇹🇭) as well as MGSM (🇨🇳 🇹🇭). It also surpasses GPT-3.5 in MATH CoT for Thai 🇹🇭.
22
+ * It scores competitively against GPT-3.5 in many zero-shot CoT commonsense benchmark, with **82.5, 68.3, 80.9** scores on Arc-C, Winogrande, and Hellaswag.
23
+ * It achieves **7.54** score on the 🇬🇧 **MT-bench**, it ranks 3rd place on the leaderboard for 7B category and is the most outperforming multilingual model.
24
+ * It scores **45.74** on the VMLU benchmark for Vietnamese 🇻🇳, and is the only open-source multilingual model that can be competitive to monolingual models ([Vistral-7B](https://huggingface.co/Viet-Mistral/Vistral-7B-Chat)) of similar sizes.
25
+
26
+
27
+ ### Release and DEMO
28
+
29
+ - DEMO: [SeaLLMs/SeaLLM-7B](https://huggingface.co/spaces/SeaLLMs/SeaLLM-7B).
30
+ - Technical report: [Arxiv: SeaLLMs - Large Language Models for Southeast Asia](https://arxiv.org/pdf/2312.00738.pdf).
31
+ - Model weights:
32
+ - [SeaLLM-7B-v2](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2).
33
+ - [SeaLLM-7B-v2-gguf](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2-gguf).
34
+ - [SeaLLM-7B-v2-GGUF (by Lonestriker)](https://huggingface.co/LoneStriker/SeaLLM-7B-v2-GGUF).
35
+
36
+
37
+ <blockquote style="color:red">
38
+ <p><strong style="color: red">Terms of Use and License</strong>:
39
+ By using our released weights, codes, and demos, you agree to and comply with the terms and conditions specified in our <a href="https://huggingface.co/SeaLLMs/SeaLLM-Chat-13b/edit/main/LICENSE" target="_blank" rel="noopener">SeaLLMs Terms Of Use</a>.
40
+ </blockquote>
41
+
42
+ > **Disclaimer**:
43
+ > We must note that even though the weights, codes, and demos are released in an open manner, similar to other pre-trained language models, and despite our best efforts in red teaming and safety fine-tuning and enforcement, our models come with potential risks, including but not limited to inaccurate, misleading or potentially harmful generation.
44
+ > Developers and stakeholders should perform their own red teaming and provide related security measures before deployment, and they must abide by and comply with local governance and regulations.
45
+ > In no event shall the authors be held liable for any claim, damages, or other liability arising from the use of the released weights, codes, or demos.
46
+
47
+ > The logo was generated by DALL-E 3.
48
+
49
+
50
+ ### What's new since SeaLLM-13B-v1 and SeaLLM-7B-v1?
51
+
52
+ * SeaLLM-7B-v2 is continue-pretrained from [Mistral-7B](https://huggingface.co/mistralai/Mistral-7B-v0.1) and underwent carefully designed tuning with focus in reasoning.
53
+
54
+
55
+ ## Evaluation
56
+
57
+
58
+ ### Zero-shot CoT Multilingual Math Reasoning
59
+
60
+ [SeaLLM-7B-v2](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2) achieves with **78.2** score on the GSM8K with zero-shot CoT reasoning, making it the **state of the art** in the realm of 7B models. It also outperforms GPT-3.5 in the same GSM8K benchmark as translated into SEA languages (🇨🇳 🇻🇳 🇮🇩 🇹🇭). [SeaLLM-7B-v2](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2) also surpasses GPT-3.5 on the Thai-translated MATH benchmark, with **22.4** vs 18.1 scores.
61
+
62
+ ![fig_sea_math_side_by_side.png](fig_sea_math_side_by_side.png)
63
+
64
+
65
+ <details>
66
+ <summary>See details on English and translated GSM8K and MATH with zero-shot reasoning</summary>
67
+ <br>
68
+
69
+ | Model | GSM8K<br>en | MATH<br>en | GSM8K<br>zh | MATH<br>zh | GSM8K<br>vi | MATH<br>vi | GSM8K<br>id | MATH<br>id | GSM8K<br>th | MATH<br>th
70
+ | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
71
+ | GPT-3.5 | 80.8 | 34.1 | 48.2 | 21.5 | 55 | 26.5 | 64.3 | 26.4 | 35.8 | 18.1
72
+ | Qwen-14B-chat | 61.4 | 18.4 | 41.6 | 11.8 | 33.6 | 3.6 | 44.7 | 8.6 | 22 | 6
73
+ | Vistral-7b-chat | 48.2 | 12.5 | | | 48.7 | 3.1 | | | |
74
+ | SeaLLM-7B-v2 | 78.2 | 27.5 | 53.7 | 17.6 | 69.9 | 23.8 | 71.5 | 24.4 | 59.6 | 22.4
75
+
76
+ </details>
77
+
78
+ #### Zero-shot MGSM
79
+
80
+ [SeaLLM-7B-v2](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2) also outperforms GPT-3.5 and Qwen-14B on the multilingual MGSM for Zh and Th.
81
+
82
+ | Model | MGSM-Zh | MGSM-Th
83
+ |-----| ----- | ---
84
+ | ChatGPT (reported) | 61.2* | 47.2*
85
+ | Qwen-14B-chat | 59.6 | 28
86
+ | SeaLLM-7B-v2 | **64.8** | **62.4**
87
+
88
+
89
+ ### Zero-shot Commonsense Reasoning
90
+
91
+ We compare [SeaLLM-7B-v2](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2) with ChatGPT and Mistral-7B-instruct on various zero-shot commonsense benchmarks (Arc-Challenge, Winogrande and Hellaswag). We use the 2-stage technique in [(Kojima et al., 2023)](https://arxiv.org/pdf/2205.11916.pdf) to grab the answer. Note that we **DID NOT** use "Let's think step-by-step" to invoke explicit CoT.
92
+
93
+ | Model | Arc-Challenge | Winogrande | Hellaswag
94
+ |-----| ----- | --- | -- |
95
+ | ChatGPT (reported) | 84.6* | 66.8* | 72.0*
96
+ | ChatGPT (reproduced) | 84.1 | 63.1 | 79.5
97
+ | Mistral-7B-Instruct | 68.1 | 56.4 | 45.6
98
+ | SeaLLM-7B-v2 | 82.5 | 68.3 | 80.9
99
+
100
+
101
+ ### Multilingual World Knowledge
102
+
103
+
104
+ We evaluate models on 3 benchmarks following the recommended default setups: 5-shot MMLU for En, 3-shot [M3Exam](https://arxiv.org/pdf/2306.05179.pdf) (M3e) for En, Zh, Vi, Id, Th, and zero-shot [VMLU](https://vmlu.ai/) for Vi.
105
+
106
+ | Model | Langs | En<br>MMLU | En<br>M3e | Zh<br>M3e | Vi<br>M3e | Vi<br>VMLU | Id<br>M3e | Th<br>M3e
107
+ |-----| ----- | --- | -- | ----- | ---- | --- | --- | --- |
108
+ | GPT-3.5 | Multi | 68.90 | 75.46 | 60.20 | 58.64 | 46.32 | 49.27 | 37.41
109
+ | SeaLLM-13B | Multi | 52.78 | 62.69 | 44.50 | 46.45 | | 39.28 | 36.39
110
+ | Vistral-7B-chat | Mono | 56.86 | 67.00 | 44.56 | 54.33 | 50.03 | 36.49 | 25.27
111
+ | Qwen1.5-7B-chat | Multi | 61.00 | 52.07 | 81.96 | 43.38 | 45.02 | 24.29 | 20.25
112
+ | SeaLLM-7B-v2 | Multi | 61.89 | 70.91 | 55.43 | 51.15 | 45.74 | 42.25 | 35.52
113
+
114
+ VMLU reproduce script [here](https://github.com/DAMO-NLP-SG/SeaLLMs/blob/main/evaluation/vmlu/vmlu_run.py). Lm-eval was used to evaluate MMLU.
115
+
116
+
117
+ ### MT-Bench
118
+
119
+ On the English [MT-bench](https://arxiv.org/abs/2306.05685) metric, SeaLLM-7B-v2 achieves **7.54** score on the MT-bench (3rd place on the leaderboard for 7B category), outperforms many 70B models and is arguably the only one that handles 10 SEA languages.
120
+
121
+ Refer to [mt_bench/seallm_7b_v2.jsonl](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2/blob/main/evaluation/mt_bench/seallm_7b_v2.jsonl) for the MT-bench predictions of SeaLLM-7B-v2, and [here](https://github.com/lm-sys/FastChat/issues/3013#issue-2118685341) to reproduce it.
122
+
123
+ | Model | Access | Langs | MT-Bench
124
+ | --- | --- | --- | --- |
125
+ | GPT-4-turbo | closed | multi | 9.32
126
+ | GPT-4-0613 | closed | multi | 9.18
127
+ | Mixtral-8x7b (46B) | open | multi | 8.3
128
+ | Starling-LM-7B-alpha | open | mono (en) | 8.0
129
+ | OpenChat-3.5-7B | open | mono (en) | 7.81
130
+ | **SeaLLM-7B-v2** | **open** | **multi (10+)** | **7.54**
131
+ | [Qwen-14B](https://huggingface.co/Qwen/Qwen-14B-Chat) | open | multi | 6.96
132
+ | [Llama-2-70B](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) | open | mono (en) | 6.86
133
+ | Mistral-7B-instuct | open | mono (en) | 6.84
134
+
135
+
136
+ ### Sea-Bench
137
+
138
+ Similar to MT-Bench, [Sea-bench](https://huggingface.co/datasets/SeaLLMs/Sea-bench) is a set of categorized instruction test sets to measure models' ability as an assistant that is specifically focused on 9 SEA languages, including non-Latin low-resource languages.
139
+
140
+ As shown, the huge improvements come from math-reasoning, reaching GPT-3.5 level of performance.
141
+
142
+ ![fig_sea_bench_side_by_side.png](fig_sea_bench_side_by_side.png)
143
+
144
+ Refer to [sea_bench/seallm_7b_v2.jsonl](https://huggingface.co/SeaLLMs/SeaLLM-7B-v2/blob/main/evaluation/sea_bench/seallm_7b_v2.jsonl) for the Sea-bench predictions of SeaLLM-7B-v2.
145
+
146
+
147
+
148
+ ### Usage
149
+
150
+ #### Instruction format
151
+
152
+ ```python
153
+ prompt = """<|im_start|>system
154
+ You are a helpful assistant.</s><|im_start|>user
155
+ Hello world</s><|im_start|>assistant
156
+ Hi there, how can I help?</s>"""
157
+
158
+ # NOTE previous commit has \n between </s> and <|im_start|>, that was incorrect!
159
+
160
+ # ! ENSURE 1 and only 1 bos `<s>` at the beginning of sequence
161
+ print(tokenizer.convert_ids_to_tokens(tokenizer.encode(prompt)))
162
+
163
+ '<s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'system', '<0x0A>', 'You', '▁are', '▁a', '▁helpful', '▁assistant', '.', '</s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'user', '<0x0A>', 'Hello', '▁world', '</s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'ass', 'istant', '<0x0A>', 'Hi', '▁there', ',', '▁how', '▁can', '▁I', '▁help', '?', '</s>']
164
+ """
165
+ ```
166
+
167
+ #### Using transformers's chat_template
168
+ ```python
169
+
170
+ from transformers import AutoModelForCausalLM, AutoTokenizer
171
+
172
+ device = "cuda" # the device to load the model onto
173
+
174
+ model = AutoModelForCausalLM.from_pretrained("SeaLLMs/SeaLLM-7B-v2", torch_dtype=torch.bfloat16, device_map=device)
175
+ tokenizer = AutoTokenizer.from_pretrained("SeaLLMs/SeaLLM-7B-v2")
176
+
177
+ messages = [
178
+ {"role": "system", "content": "You are a helpful assistant."},
179
+ {"role": "user", "content": "Hello world"},
180
+ {"role": "assistant", "content": "Hi there, how can I help you today?"},
181
+ {"role": "user", "content": "Explain general relativity in details."}
182
+ ]
183
+
184
+ encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True)
185
+ print(tokenizer.convert_ids_to_tokens(encodeds[0]))
186
+ # ['<s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'system', '<0x0A>', 'You', '▁are', '▁a', '▁helpful', '▁assistant', '.', '</s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'user', '<0x0A>', 'Hello', '▁world', '</s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'ass', 'istant', '<0x0A>', 'Hi', '▁there', ',', '▁how', '▁can', '▁I', '▁help', '▁you', '▁today', '?', '</s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'user', '<0x0A>', 'Ex', 'plain', '▁general', '▁rel', 'ativity', '▁in', '▁details', '.', '</s>', '▁<', '|', 'im', '_', 'start', '|', '>', 'ass', 'istant', '<0x0A>']
187
+
188
+ model_inputs = encodeds.to(device)
189
+ model.to(device)
190
+
191
+ generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True, pad_token_id=tokenizer.pad_token_id)
192
+ decoded = tokenizer.batch_decode(generated_ids)
193
+ print(decoded[0])
194
+
195
+ ```
196
+
197
+ #### Using vLLM
198
+
199
+ ```python
200
+ from vllm import LLM, SamplingParams
201
+ TURN_TEMPLATE = "<|im_start|>{role}\n{content}</s>"
202
+ TURN_PREFIX = "<|im_start|>{role}\n"
203
+
204
+ def seallm_chat_convo_format(conversations, add_assistant_prefix: bool, system_prompt=None):
205
+ # conversations: list of dict with key `role` and `content` (openai format)
206
+ if conversations[0]['role'] != 'system' and system_prompt is not None:
207
+ conversations = [{"role": "system", "content": system_prompt}] + conversations
208
+ text = ''
209
+ for turn_id, turn in enumerate(conversations):
210
+ prompt = TURN_TEMPLATE.format(role=turn['role'], content=turn['content'])
211
+ text += prompt
212
+ if add_assistant_prefix:
213
+ prompt = TURN_PREFIX.format(role='assistant')
214
+ text += prompt
215
+ return text
216
+
217
+ sparams = SamplingParams(temperature=0.1, max_tokens=1024, stop=['</s>', '<|im_start|>'])
218
+ llm = LLM("SeaLLMs/SeaLLM-7B-v2", dtype="bfloat16")
219
+
220
+ message = "Explain general relativity in details."
221
+ prompt = seallm_chat_convo_format(message, True)
222
+ gen = llm.generate(prompt, sampling_params)
223
+
224
+ print(gen[0].outputs[0].text)
225
+ ```
226
+
227
+
228
+ ## Acknowledgement to Our Linguists
229
+
230
+ We would like to express our special thanks to our professional and native linguists, Tantong Champaiboon, Nguyen Ngoc Yen Nhi and Tara Devina Putri, who helped build, evaluate, and fact-check our sampled pretraining and SFT dataset as well as evaluating our models across different aspects, especially safety.
231
+
232
+ ## Citation
233
+
234
+ If you find our project useful, we hope you would kindly star our repo and cite our work as follows: Corresponding Author: [[email protected]](mailto:[email protected])
235
+
236
+ **Author list and order will change!**
237
+
238
+ * `*` and `^` are equal contributions.
239
+
240
+ ```
241
+ @article{damonlpsg2023seallm,
242
+ author = {Xuan-Phi Nguyen*, Wenxuan Zhang*, Xin Li*, Mahani Aljunied*,
243
+ Zhiqiang Hu, Chenhui Shen^, Yew Ken Chia^, Xingxuan Li, Jianyu Wang,
244
+ Qingyu Tan, Liying Cheng, Guanzheng Chen, Yue Deng, Sen Yang,
245
+ Chaoqun Liu, Hang Zhang, Lidong Bing},
246
+ title = {SeaLLMs - Large Language Models for Southeast Asia},
247
+ year = 2023,
248
+ Eprint = {arXiv:2312.00738},
249
+ }
250
+ ```
251
+