--- library_name: peft license: mit datasets: - multi_nli - snli language: - en metrics: - spearmanr --- # AnglE📐: Angle-optimized Text Embeddings > It is Angle 📐, not Angel 👼. 🔥 A New SOTA Model for Semantic Textual Similarity! Github: https://github.com/SeanLee97/AnglE https://arxiv.org/abs/2309.12871 [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/angle-optimized-text-embeddings/semantic-textual-similarity-on-sick-r-1)](https://paperswithcode.com/sota/semantic-textual-similarity-on-sick-r-1?p=angle-optimized-text-embeddings) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/angle-optimized-text-embeddings/semantic-textual-similarity-on-sts16)](https://paperswithcode.com/sota/semantic-textual-similarity-on-sts16?p=angle-optimized-text-embeddings) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/angle-optimized-text-embeddings/semantic-textual-similarity-on-sts15)](https://paperswithcode.com/sota/semantic-textual-similarity-on-sts15?p=angle-optimized-text-embeddings) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/angle-optimized-text-embeddings/semantic-textual-similarity-on-sts14)](https://paperswithcode.com/sota/semantic-textual-similarity-on-sts14?p=angle-optimized-text-embeddings) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/angle-optimized-text-embeddings/semantic-textual-similarity-on-sts13)](https://paperswithcode.com/sota/semantic-textual-similarity-on-sts13?p=angle-optimized-text-embeddings) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/angle-optimized-text-embeddings/semantic-textual-similarity-on-sts12)](https://paperswithcode.com/sota/semantic-textual-similarity-on-sts12?p=angle-optimized-text-embeddings) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/angle-optimized-text-embeddings/semantic-textual-similarity-on-sts-benchmark)](https://paperswithcode.com/sota/semantic-textual-similarity-on-sts-benchmark?p=angle-optimized-text-embeddings) **STS Results** | Model | STS12 | STS13 | STS14 | STS15 | STS16 | STSBenchmark | SICKRelatedness | Avg. | | ------- |-------|-------|-------|-------|-------|--------------|-----------------|-------| | [SeanLee97/angle-llama-7b-nli-20231027](https://huggingface.co/SeanLee97/angle-llama-7b-nli-20231027) | 78.68 | 90.58 | 85.49 | 89.56 | 86.91 | 88.92 | 81.18 | 85.90 | | [SeanLee97/angle-llama-7b-nli-v2](https://huggingface.co/SeanLee97/angle-llama-7b-nli-v2) | 79.00 | 90.56 | 85.79 | 89.43 | 87.00 | 88.97 | 80.94 | 85.96 | | [SeanLee97/angle-llama-13b-nli](https://huggingface.co/SeanLee97/angle-llama-13b-nli) | 79.33 | 90.65 | 86.89 | 90.45 | 87.32 | 89.69 | 81.32 | **86.52** | ## Usage ```bash python -m pip install -U angle-emb ``` ```python from angle_emb import AnglE, Prompts # init angle = AnglE.from_pretrained('NousResearch/Llama-2-13b-hf', pretrained_lora_path='SeanLee97/angle-llama-13b-nli', load_kbit=16, apply_bfloat16=False) # set prompt print('All predefined prompts:', Prompts.list_prompts()) angle.set_prompt(prompt=Prompts.A) print('prompt:', angle.prompt) # encode text vec = angle.encode({'text': 'hello world'}, to_numpy=True) print(vec) vecs = angle.encode([{'text': 'hello world1'}, {'text': 'hello world2'}], to_numpy=True) print(vecs) ``` ## Citation You are welcome to use our code and pre-trained models. If you use our code and pre-trained models, please support us by citing our work as follows: ```bibtex @article{li2023angle, title={AnglE-Optimized Text Embeddings}, author={Li, Xianming and Li, Jing}, journal={arXiv preprint arXiv:2309.12871}, year={2023} } ```