File size: 4,580 Bytes
25c26f4 01cd668 25c26f4 01cd668 25c26f4 01cd668 36d03de af1b73c 36d03de af1b73c 36d03de af1b73c 36d03de 01cd668 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 |
---
library_name: peft
license: mit
datasets:
- multi_nli
- snli
language:
- en
metrics:
- spearmanr
---
# AnglE📐: Angle-optimized Text Embeddings
> It is Angle 📐, not Angel 👼.
🔥 A New SOTA Model for Semantic Textual Similarity!
Github: https://github.com/SeanLee97/AnglE
<a href="https://arxiv.org/abs/2309.12871">
<img src="https://img.shields.io/badge/Arxiv-2306.06843-yellow.svg?style=flat-square" alt="https://arxiv.org/abs/2309.12871" />
</a>
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/angle-optimized-text-embeddings/semantic-textual-similarity-on-sick-r-1)](https://paperswithcode.com/sota/semantic-textual-similarity-on-sick-r-1?p=angle-optimized-text-embeddings)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/angle-optimized-text-embeddings/semantic-textual-similarity-on-sts16)](https://paperswithcode.com/sota/semantic-textual-similarity-on-sts16?p=angle-optimized-text-embeddings)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/angle-optimized-text-embeddings/semantic-textual-similarity-on-sts15)](https://paperswithcode.com/sota/semantic-textual-similarity-on-sts15?p=angle-optimized-text-embeddings)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/angle-optimized-text-embeddings/semantic-textual-similarity-on-sts14)](https://paperswithcode.com/sota/semantic-textual-similarity-on-sts14?p=angle-optimized-text-embeddings)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/angle-optimized-text-embeddings/semantic-textual-similarity-on-sts13)](https://paperswithcode.com/sota/semantic-textual-similarity-on-sts13?p=angle-optimized-text-embeddings)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/angle-optimized-text-embeddings/semantic-textual-similarity-on-sts12)](https://paperswithcode.com/sota/semantic-textual-similarity-on-sts12?p=angle-optimized-text-embeddings)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/angle-optimized-text-embeddings/semantic-textual-similarity-on-sts-benchmark)](https://paperswithcode.com/sota/semantic-textual-similarity-on-sts-benchmark?p=angle-optimized-text-embeddings)
**STS Results**
| Model | STS12 | STS13 | STS14 | STS15 | STS16 | STSBenchmark | SICKRelatedness | Avg. |
| ------- |-------|-------|-------|-------|-------|--------------|-----------------|-------|
| [SeanLee97/angle-llama-7b-nli-20231027](https://huggingface.co/SeanLee97/angle-llama-7b-nli-20231027) | 78.68 | 90.58 | 85.49 | 89.56 | 86.91 | 88.92 | 81.18 | 85.90 |
| [SeanLee97/angle-llama-7b-nli-v2](https://huggingface.co/SeanLee97/angle-llama-7b-nli-v2) | 79.00 | 90.56 | 85.79 | 89.43 | 87.00 | 88.97 | 80.94 | **85.96** |
## Usage
1) use AnglE
```bash
python -m pip install -U angle-emb
```
```python
from angle_emb import AnglE, Prompts
# init
angle = AnglE.from_pretrained('NousResearch/Llama-2-7b-hf', pretrained_lora_path='SeanLee97/angle-llama-7b-nli-v2')
# set prompt
print('All predefined prompts:', Prompts.list_prompts())
angle.set_prompt(prompt=Prompts.A)
print('prompt:', angle.prompt)
# encode text
vec = angle.encode({'text': 'hello world'}, to_numpy=True)
print(vec)
vecs = angle.encode([{'text': 'hello world1'}, {'text': 'hello world2'}], to_numpy=True)
print(vecs)
```
2) use transformers
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel, PeftConfig
peft_model_id = 'SeanLee97/angle-llama-7b-nli-20231027'
config = PeftConfig.from_pretrained(peft_model_id)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path).bfloat16().cuda()
model = PeftModel.from_pretrained(model, peft_model_id).cuda()
def decorate_text(text: str):
return f'Summarize sentence "{text}" in one word:"'
inputs = 'hello world!'
tok = tokenizer([decorate_text(inputs)], return_tensors='pt')
for k, v in tok.items():
tok[k] = v.cuda()
vec = model(output_hidden_states=True, **tok).hidden_states[-1][:, -1].float().detach().cpu().numpy()
print(vec)
```
## Citation
You are welcome to use our code and pre-trained models. If you use our code and pre-trained models, please support us by citing our work as follows:
```bibtex
@article{li2023angle,
title={AnglE-Optimized Text Embeddings},
author={Li, Xianming and Li, Jing},
journal={arXiv preprint arXiv:2309.12871},
year={2023}
}
``` |