File size: 12,912 Bytes
dd198e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# GSI Technology Video Search Demo - Embedding Videos Notebook:\n",
"\n",
"The following Notebook will include code that demonstrates the process of video embedding.<br>\n",
"It specifically focuses on embedding a single video using the [Diangle/clip4clip-webvid](https://huggingface.co/Diangle/clip4clip-webvid) model."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"example = './example/34721191.mp4'"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize, InterpolationMode\n",
"from PIL import Image\n",
"import cv2\n",
"import numpy as np\n",
"import torch\n",
"\n",
"# Code to convert one video to few images. \n",
"def video2image(video_path, frame_rate=1.0, size=224):\n",
" def preprocess(size, n_px):\n",
" return Compose([\n",
" Resize(size, interpolation=InterpolationMode.BICUBIC), \n",
" CenterCrop(size),\n",
" lambda image: image.convert(\"RGB\"),\n",
" ToTensor(),\n",
" Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),\n",
" ])(n_px)\n",
" \n",
" cap = cv2.VideoCapture(video_path)\n",
" cap = cv2.VideoCapture(video_path, cv2.CAP_FFMPEG)\n",
" frameCount = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))\n",
" fps = int(cap.get(cv2.CAP_PROP_FPS))\n",
" if fps < 1:\n",
" images = np.zeros([3, size, size], dtype=np.float32) \n",
" print(\"ERROR: problem reading video file: \", video_path)\n",
" else:\n",
" total_duration = (frameCount + fps - 1) // fps\n",
" start_sec, end_sec = 0, total_duration\n",
" interval = fps / frame_rate\n",
" frames_idx = np.floor(np.arange(start_sec*fps, end_sec*fps, interval))\n",
" ret = True \n",
" images = np.zeros([len(frames_idx), 3, size, size], dtype=np.float32)\n",
" \n",
" for i, idx in enumerate(frames_idx):\n",
" cap.set(cv2.CAP_PROP_POS_FRAMES , idx)\n",
" ret, frame = cap.read() \n",
" if not ret: break\n",
" frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) \n",
" last_frame = i\n",
" images[i,:,:,:] = preprocess(size, Image.fromarray(frame).convert(\"RGB\"))\n",
" \n",
" images = images[:last_frame+1]\n",
" cap.release()\n",
" video_frames = torch.tensor(images)\n",
" return video_frames\n",
" \n",
"video = video2image(example)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tensor([-2.9570e-02, 6.0339e-03, 1.7294e-02, -1.3951e-02, 4.8329e-02,\n",
" 2.4099e-02, 3.3340e-02, 3.1769e-02, 2.1997e-03, 4.2602e-03,\n",
" -1.3887e-02, 8.2744e-03, 2.5123e-03, -2.2163e-02, -4.1139e-02,\n",
" -1.2101e-02, -6.1914e-02, 6.7091e-03, 4.2834e-02, -2.2604e-02,\n",
" -2.7443e-02, 1.0600e-02, 2.9430e-03, 3.2580e-02, -1.3577e-02,\n",
" 7.8084e-03, 1.2397e-02, -5.3404e-03, 1.4736e-02, -2.4564e-02,\n",
" -5.4057e-02, 3.9507e-02, 1.2754e-02, 4.6864e-04, 7.4087e-03,\n",
" 3.8710e-03, 7.9482e-03, 1.3444e-02, -1.7326e-02, -1.2486e-01,\n",
" -8.4992e-02, -3.9097e-02, -2.1903e-02, -7.1480e-03, -2.7220e-03,\n",
" 4.1397e-03, 1.7315e-02, 4.4724e-02, 9.1722e-04, 3.1429e-02,\n",
" 3.8212e-02, -2.1133e-02, 2.4437e-03, -1.4371e-03, -2.9859e-03,\n",
" 7.8939e-04, 2.4093e-02, -2.2199e-02, -3.9110e-02, 1.7673e-02,\n",
" 1.1360e-01, 3.3466e-03, -1.9643e-02, 1.7798e-03, 1.5112e-02,\n",
" -6.2003e-03, -2.0564e-02, 6.4936e-02, 6.6286e-02, -2.0585e-02,\n",
" 2.0740e-02, 1.0476e-02, -5.9948e-03, -2.4672e-02, 2.3725e-02,\n",
" -4.6442e-03, 1.8887e-02, 3.7517e-02, 3.1605e-02, -3.7756e-03,\n",
" 2.7584e-02, 5.7234e-03, 3.4368e-02, 1.4564e-02, 2.6392e-02,\n",
" -1.9975e-02, 1.2648e-01, -5.3093e-03, 7.3013e-02, 4.8827e-03,\n",
" -2.8492e-02, -4.9734e-02, -6.6967e-01, 1.2463e-02, 2.4013e-02,\n",
" 1.3702e-02, 2.9382e-02, 1.4373e-02, -2.1994e-02, 3.6824e-03,\n",
" 2.9366e-02, -2.1474e-03, 1.7371e-02, -6.1958e-02, -4.6649e-02,\n",
" -4.3063e-03, 1.0081e-01, -3.1598e-02, 9.4211e-03, -9.7909e-03,\n",
" 4.4678e-02, -4.8716e-03, 1.8896e-02, 9.5822e-03, -2.3881e-02,\n",
" -9.0785e-03, 5.4653e-03, 3.0017e-02, -3.0415e-02, -1.3150e-03,\n",
" 2.9047e-02, 3.2315e-02, -1.0728e-02, 4.7503e-02, -4.0033e-02,\n",
" 3.4482e-02, 6.2684e-02, 3.0337e-02, 5.0680e-02, -8.6022e-03,\n",
" 1.5261e-02, 3.7766e-02, -2.4730e-02, 8.6131e-02, 4.5388e-02,\n",
" 5.4677e-02, 3.9401e-02, 4.4164e-02, -5.2270e-02, -8.8473e-03,\n",
" 8.1178e-03, -1.0574e-02, -7.6409e-05, -8.3209e-03, -8.1179e-04,\n",
" 3.2574e-02, -1.4150e-02, -4.0937e-02, 1.0180e-02, 1.3868e-03,\n",
" 3.4978e-02, -1.1991e-02, -2.1560e-02, 2.0833e-02, 3.8494e-02,\n",
" 1.4916e-02, -1.5102e-02, -1.0009e-02, -9.6670e-03, 3.6516e-03,\n",
" 2.6473e-02, -9.1190e-03, -1.9326e-02, 3.2072e-02, -2.9562e-02,\n",
" -4.1949e-02, -9.4430e-03, 2.7654e-02, 3.1868e-02, 2.6336e-03,\n",
" -1.6622e-02, -3.4676e-02, -3.4540e-02, 8.5971e-03, -9.4823e-03,\n",
" -3.6754e-02, 4.9925e-02, 9.8040e-04, -6.7678e-02, 5.0645e-03,\n",
" -7.5227e-03, 1.2880e-02, 5.5055e-02, -5.1705e-02, -6.1548e-02,\n",
" 1.4440e-03, -6.8204e-03, -1.4279e-02, -2.8179e-02, -2.2386e-02,\n",
" 5.2374e-02, -3.4718e-02, 5.3560e-03, -6.3553e-02, 8.3361e-02,\n",
" -2.7192e-02, 4.2078e-02, 3.2605e-03, -5.6035e-02, -8.2745e-03,\n",
" -2.8813e-02, 4.3161e-02, -5.0922e-02, 3.0529e-02, 2.0102e-02,\n",
" 2.9533e-02, -7.8186e-03, -3.0819e-02, -2.1356e-02, -2.7967e-02,\n",
" 2.4877e-02, 2.3300e-02, 2.8305e-02, 2.9761e-02, 1.2363e-02,\n",
" -1.4158e-02, -1.1000e-02, 2.3479e-02, 4.8863e-02, -1.3325e-02,\n",
" 1.2415e-02, -1.0494e-02, -5.3160e-04, -1.3253e-02, -2.4968e-03,\n",
" 2.0370e-02, -5.9943e-03, -9.5419e-03, 5.9531e-03, -8.3129e-03,\n",
" -4.0607e-03, 6.1272e-03, -2.9724e-02, -1.8579e-02, 1.2740e-02,\n",
" -2.6391e-02, 4.1079e-03, -4.0331e-03, 3.4990e-02, -3.4697e-04,\n",
" -9.6936e-03, -2.2701e-02, 3.2625e-02, 1.1973e-02, -3.9408e-02,\n",
" -6.4848e-02, 4.3097e-02, 2.6910e-02, -3.9942e-02, 3.4112e-02,\n",
" -7.8409e-03, -4.3240e-02, -1.6996e-02, 3.8101e-02, -3.8530e-02,\n",
" 2.1452e-04, 3.7173e-02, 2.3474e-02, 1.9435e-03, -2.1596e-02,\n",
" 1.2855e-02, 4.8854e-03, 2.1395e-02, -2.4349e-02, 7.3487e-03,\n",
" -2.7641e-02, -1.5773e-02, 1.1367e-02, 8.7802e-03, 2.3783e-02,\n",
" 3.3420e-02, 3.4498e-02, 2.2979e-02, -1.2473e-02, 3.1100e-02,\n",
" 6.0752e-02, -2.5795e-02, 1.7830e-02, -1.3168e-02, 8.0613e-04,\n",
" 1.3292e-02, 8.1109e-03, 2.1875e-03, -1.0863e-02, 3.8718e-02,\n",
" 4.5967e-02, -1.2454e-01, 2.6564e-02, -4.4082e-04, 1.8394e-02,\n",
" 2.9872e-02, 6.4751e-03, 5.4129e-03, 2.0823e-02, -4.9624e-02,\n",
" -2.3234e-02, -5.7144e-02, -1.3117e-02, -5.3304e-02, -1.9084e-02,\n",
" -1.9121e-02, 2.5556e-04, -3.9970e-02, -3.3640e-02, 1.0532e-02,\n",
" 5.7862e-02, -4.0414e-02, 6.6390e-03, 1.6265e-03, 1.0555e-02,\n",
" -5.1818e-03, -3.9941e-02, 8.6119e-02, 2.5038e-02, 1.1136e-02,\n",
" -8.5421e-03, -2.0004e-02, 3.0798e-02, -4.8180e-03, -1.1030e-02,\n",
" 7.1489e-03, 7.0376e-02, -4.2558e-02, -5.4193e-02, 6.0990e-03,\n",
" 1.5232e-02, 1.3667e-02, -1.5016e-02, -1.0382e-03, -6.4072e-03,\n",
" 2.3970e-03, 3.7884e-02, -1.7684e-02, 2.0192e-02, -2.1400e-02,\n",
" 1.6529e-02, 1.8982e-02, 1.6748e-02, -2.0919e-02, 1.2904e-02,\n",
" -1.5105e-02, -1.7961e-02, 2.2824e-03, 9.0103e-04, 1.3905e-02,\n",
" -5.2162e-02, 5.7747e-03, 6.7262e-03, 6.3685e-03, -1.2071e-02,\n",
" -2.7873e-02, -1.4171e-04, -4.8872e-02, -8.9744e-03, -1.0448e-02,\n",
" 4.9146e-02, -2.0365e-02, -6.8874e-02, 1.3715e-02, -2.8159e-02,\n",
" 5.1973e-03, -4.1494e-02, 1.7353e-02, -1.4510e-02, -4.5331e-03,\n",
" 1.0267e-02, -2.9127e-02, 1.0169e-02, -5.0776e-03, -2.0463e-02,\n",
" 1.6880e-02, 2.4789e-02, -3.2186e-02, -1.5043e-02, -9.5236e-03,\n",
" -1.8453e-02, 1.9968e-01, -3.1110e-02, -3.4481e-02, -5.3706e-03,\n",
" -2.3295e-02, -6.6525e-02, 1.5241e-02, -5.3700e-02, -1.3558e-02,\n",
" -7.4800e-02, 4.6305e-02, 4.3405e-03, 1.0513e-02, -1.4961e-02,\n",
" 1.2347e-01, -4.1887e-02, -2.9692e-02, -2.0832e-02, 2.5459e-03,\n",
" 1.5311e-02, -1.3357e-02, 1.3205e-02, 2.8943e-02, 4.9173e-02,\n",
" 3.3758e-02, 1.1087e-02, 4.2151e-02, 6.3205e-04, -4.3288e-02,\n",
" 2.3333e-02, 1.5167e-02, -1.0237e-02, -7.9236e-02, 4.3594e-03,\n",
" 3.1445e-02, 4.2794e-03, -9.3492e-03, -3.5418e-02, -1.9242e-02,\n",
" -3.0336e-02, 7.7880e-03, 6.6255e-02, -7.5213e-03, 2.5932e-02,\n",
" -1.7802e-02, 1.8590e-03, 5.3834e-03, 9.6787e-02, 2.8787e-02,\n",
" 9.1017e-04, -1.8586e-02, 2.2730e-02, -9.7814e-02, 4.2616e-02,\n",
" 4.0229e-02, -8.9988e-03, -2.0952e-02, 7.7816e-03, -4.0449e-04,\n",
" -1.3639e-02, -1.7206e-03, -9.1304e-03, 4.3670e-03, 1.9919e-02,\n",
" -2.0095e-02, -2.6256e-03, 3.0235e-02, 3.7728e-03, 6.3254e-04,\n",
" -6.9728e-02, 2.5881e-03, 1.0343e-02, 3.3831e-02, 2.2356e-03,\n",
" -2.7363e-02, 3.5232e-02, 5.3659e-02, -7.8222e-03, -2.0881e-03,\n",
" 2.2187e-02, 2.0626e-02, 3.6413e-02, -4.4460e-03, 4.6213e-02,\n",
" -1.4652e-03, 2.1768e-02, 3.3055e-03, -2.3867e-02, -2.7972e-02,\n",
" -6.7086e-02, 2.4510e-02, 4.0885e-02, -1.6748e-03, 1.2575e-02,\n",
" -2.0675e-04, -1.1889e-02, 4.2555e-03, -2.6686e-02, -9.5006e-03,\n",
" -1.3144e-02, 3.0939e-02, -1.9938e-02, 4.2527e-02, -1.4343e-02,\n",
" 5.5876e-03, 2.4495e-02, 3.9814e-03, 2.8102e-02, 4.3181e-02,\n",
" -1.7406e-02, -4.2736e-02, -8.1578e-03, -5.3989e-03, 2.9429e-03,\n",
" 4.3196e-02, -2.0857e-02, -3.0203e-02, -4.0288e-03, -4.4894e-02,\n",
" 2.7039e-02, 3.5724e-02, -1.4012e-02, -2.3949e-03, 1.4861e-02,\n",
" 3.1610e-02, 4.8555e-02, 1.8550e-02, 1.2663e-02, -6.1358e-03,\n",
" -4.1771e-02, 2.8252e-02, -1.1711e-02, -4.0601e-03, -2.9267e-02,\n",
" -3.0001e-02, 1.6215e-02], grad_fn=<DivBackward0>)\n"
]
}
],
"source": [
"from transformers import CLIPVisionModelWithProjection\n",
"\n",
"model = CLIPVisionModelWithProjection.from_pretrained(\"Diangle/clip4clip-webvid\")\n",
"model = model.eval()\n",
"visual_output = model(video)\n",
"\n",
"# Normalizing the embeddings and calculating mean between all embeddings. \n",
"visual_output = visual_output[\"image_embeds\"]\n",
"visual_output = visual_output / visual_output.norm(dim=-1, keepdim=True)\n",
"visual_output = torch.mean(visual_output, dim=0)\n",
"visual_output = visual_output / visual_output.norm(dim=-1, keepdim=True)\n",
"print(visual_output)\n",
"\n",
" "
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
|