File size: 3,091 Bytes
b88cf0f 40b2001 468f4bb d0579e9 b88cf0f 40b2001 7840dd2 b88cf0f 7840dd2 b88cf0f 7840dd2 b88cf0f 40b2001 b88cf0f 40b2001 b88cf0f 40b2001 b88cf0f 40b2001 7840dd2 40b2001 b88cf0f 40b2001 b88cf0f 40b2001 b88cf0f 40b2001 b88cf0f 40b2001 b88cf0f 486c8d1 b88cf0f 40b2001 b88cf0f 827d745 b88cf0f 40b2001 b88cf0f 40b2001 b88cf0f 486c8d1 b88cf0f 7c3273d 5ae7b6e 7c3273d 63d5ecf 7c3273d b88cf0f f396bba b88cf0f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
tags:
- vision
- clip
- clip4clip
- video
- retrieval
pipeline_tag: text-to-video
---
# Model Card
## Details
This model underwent training using CLIP4Clip, a video retrieval method based on the CLIP framework, as described in the paper [here](https://arxiv.org/pdf/2104.08860.pdf) and implemented in the accompanying [code](https://github.com/ArrowLuo/CLIP4Clip).
The training process involved 150,000 videos obtained from the [WebVid Dataset](https://m-bain.github.io/webvid-dataset/), a comprehensive collection of short videos with corresponding textual descriptions sourced from the web.
To adapt the clip model obtained during training, we adjusted the weights and integrated them into the implementation of [clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32), making certain modifications to the final layers.
### Use with Transformers
```python
import numpy as np
import torch
from transformers import AutoTokenizer, CLIPTextModelWithProjection
search_sentence = "a basketball player performing a slam dunk"
model = CLIPTextModelWithProjection.from_pretrained("Diangle/clip4clip-webvid")
tokenizer = AutoTokenizer.from_pretrained("Diangle/clip4clip-webvid")
inputs = tokenizer(text=search_sentence , return_tensors="pt", padding=True)
outputs = model(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], return_dict=False)
# Special projection and changing last layers:
text_projection = model.state_dict()['text_projection.weight']
text_embeds = outputs[1] @ text_projection
final_output = text_embeds[torch.arange(text_embeds.shape[0]), inputs["input_ids"].argmax(dim=-1)]
# Normalizing the embeddings:
final_output = final_output / final_output.norm(dim=-1, keepdim=True)
final_output = final_output.cpu().detach().numpy()
sequence_output = final_output / np.sum(final_output**2, axis=1, keepdims=True)
print("sequence_output: ", sequence_output)
```
## Model Use
### Intended Use
This model is intended to use for video retrival, look for example this [**space**](https://huggingface.co/spaces/Diangle/Clip4Clip-webvid).
### Extra Information
For video embedding there is an extra [notebook](https://huggingface.co/Diangle/clip4clip-webvid/blob/main/Notebooks/GSI_VideoRetrieval_EmbedVideos.ipynb) that describes how to embed videos.
## Performance and Limitations
### Performance
We have evaluated the performance of differnet models on the last 10k video clips from Webvid database.
| Model | R1 | R5 | R10 | MedianR | MeanR
|------------------------|-------|-------|-------|-----|---------|
| Zero-shot clip weights | 37.16 | 62.10 | 71.16 | 3.0 | 42.2128
| CLIP4Clip weights trained on msr-vtt | 38.38 | 62.89 | 72.01 | 3.0 |39.3023
| **CLIP4Clip trained on 150k Webvid** | 50.74 | 77.30 | 85.05 | 1.0 | 14.9535
| Binarized CLIP4Clip trained on 150k Webvid with rerank100 | 50.56 | 76.39 | 83.51 | 1.0 | 43.2964
For more information about the evaluation you can look at this [notebook](https://huggingface.co/Diangle/clip4clip-webvid/blob/main/Notebooks/GSI_VideoRetrieval-Evaluation.ipynb).
|