Seogmin commited on
Commit
8fe7a44
1 Parent(s): 63e4e96

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -11
README.md CHANGED
@@ -24,16 +24,16 @@ model-index:
24
  metrics:
25
  - name: Precision
26
  type: precision
27
- value: 0.5834885164494104
28
  - name: Recall
29
  type: recall
30
- value: 0.6555090655509066
31
  - name: F1
32
  type: f1
33
- value: 0.6174055829228243
34
  - name: Accuracy
35
  type: accuracy
36
- value: 0.9235426702611924
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -43,11 +43,11 @@ should probably proofread and complete it, then remove this comment. -->
43
 
44
  This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the klue dataset.
45
  It achieves the following results on the evaluation set:
46
- - Loss: 0.2397
47
- - Precision: 0.5835
48
- - Recall: 0.6555
49
- - F1: 0.6174
50
- - Accuracy: 0.9235
51
 
52
  ## Model description
53
 
@@ -78,8 +78,8 @@ The following hyperparameters were used during training:
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
- | No log | 1.0 | 313 | 0.2569 | 0.5378 | 0.6297 | 0.5801 | 0.9190 |
82
- | 0.3194 | 2.0 | 626 | 0.2397 | 0.5835 | 0.6555 | 0.6174 | 0.9235 |
83
 
84
 
85
  ### Framework versions
 
24
  metrics:
25
  - name: Precision
26
  type: precision
27
+ value: 0.5973782771535581
28
  - name: Recall
29
  type: recall
30
+ value: 0.6673640167364017
31
  - name: F1
32
  type: f1
33
+ value: 0.6304347826086957
34
  - name: Accuracy
35
  type: accuracy
36
+ value: 0.9227913554602908
37
  ---
38
 
39
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
43
 
44
  This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on the klue dataset.
45
  It achieves the following results on the evaluation set:
46
+ - Loss: 0.2382
47
+ - Precision: 0.5974
48
+ - Recall: 0.6674
49
+ - F1: 0.6304
50
+ - Accuracy: 0.9228
51
 
52
  ## Model description
53
 
 
78
 
79
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | No log | 1.0 | 313 | 0.2539 | 0.5534 | 0.6395 | 0.5933 | 0.9205 |
82
+ | 0.3052 | 2.0 | 626 | 0.2382 | 0.5974 | 0.6674 | 0.6304 | 0.9228 |
83
 
84
 
85
  ### Framework versions