File size: 1,603 Bytes
5d1f01a
 
be948cf
 
 
 
9a5ecc3
 
72355bc
 
 
5d1f01a
be948cf
72355bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be948cf
72355bc
be948cf
b999d22
be948cf
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
---
license: other

tags:
- diffusion
- point-cloud
- airplane
- 3D

datasets:
- shapenet
---

### Model Description
– Luo, Shitong and Hu, Wei
– 2021

Proposed a probabilistic generative model for point clouds inspired by non-equilibrium thermodynamics, exploiting the reverse diffusion process to learn the point distribution. All models are available on the original [***Github repo Link***](https://github.com/luost26/diffusion-point-cloud). It consists of a model for airplane model generating.


### Documents
- [GitHub Repo](https://github.com/luost26/diffusion-point-cloud)
- [Paper - Diffusion Probabilistic Models for 3D Point Cloud Generation](https://arxiv.org/abs/2103.01458)
  
### Datasets
ShapeNet is a comprehensive 3D shape dataset created for research in computer graphics, computer vision, robotics and related diciplines.

- [Offical Dataset of ShapeNet](https://shapenet.org/)
- [author's training dataset](https://drive.google.com/drive/folders/1SRJdYDkVDU9Li5oNFVPOutJzbrW7KQ-b?usp=share_link)
- [pre-trained models](https://drive.google.com/drive/folders/1sH7v2xmQ6ImC4rll28mktEK4hucFO_yz?usp=share_link)


### How to use

Train and test snippets for both auto-encoder and generator are published under the official GitHub repository above.

### BibTeX Entry and Citation Info
 ```
@inproceedings{luo2021diffusion,
  author = {Luo, Shitong and Hu, Wei},
  title = {Diffusion Probabilistic Models for 3D Point Cloud Generation},
  booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  month = {June},
  year = {2021}
}
 ```