maliozer commited on
Commit
fc550d0
1 Parent(s): 9a5ecc3

Update README.md

Browse files

ADDED Model Description, Datasets, Documents and How to use sections

Files changed (1) hide show
  1. README.md +34 -4
README.md CHANGED
@@ -6,17 +6,47 @@ tags:
6
  - point-cloud
7
  - airplane
8
  - 3D
 
 
 
9
  ---
10
 
11
- ### About
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
- Other models are available on the original [***Github repo Link***](https://github.com/luost26/diffusion-point-cloud). It consists of a model for airplane model generating.
14
 
15
- ### Paper
 
 
16
 
17
- [Paper - Diffusion Probabilistic Models for 3D Point Cloud Generation](https://arxiv.org/abs/2103.01458)
 
 
18
 
 
 
 
19
 
 
 
 
20
 
21
  ### BibTeX Entry and Citation Info
22
  ```
 
6
  - point-cloud
7
  - airplane
8
  - 3D
9
+
10
+ datasets:
11
+ - shapenet
12
  ---
13
 
14
+ ### Model Description
15
+ – Luo, Shitong and Hu, Wei
16
+ – 2021
17
+
18
+ Proposed a probabilistic generative model for point clouds inspired by non-equilibrium thermodynamics, exploiting the reverse diffusion process to learn the point distribution. All models are available on the original [***Github repo Link***](https://github.com/luost26/diffusion-point-cloud). It consists of a model for airplane model generating.
19
+
20
+
21
+ ### Documents
22
+ - [GitHub Repo](https://github.com/luost26/diffusion-point-cloud)
23
+ - [Paper - Diffusion Probabilistic Models for 3D Point Cloud Generation](https://arxiv.org/abs/2103.01458)
24
+
25
+ ### Datasets
26
+ ShapeNet is a comprehensive 3D shape dataset created for research in computer graphics, computer vision, robotics and related diciplines.
27
+
28
+ - [Offical Dataset of ShapeNet](https://shapenet.org/)
29
+ - [author's training dataset](https://drive.google.com/drive/folders/1SRJdYDkVDU9Li5oNFVPOutJzbrW7KQ-b?usp=share_link)
30
+ - [pre-trained models](https://drive.google.com/drive/folders/1sH7v2xmQ6ImC4rll28mktEK4hucFO_yz?usp=share_link)
31
+
32
 
33
+ ### How to use
34
 
35
+ ```python
36
+ # Train an auto-encoder
37
+ python train_ae.py
38
 
39
+ # Train a generator
40
+ python train_gen.py
41
+ ```
42
 
43
+ ```python
44
+ # Test an auto-encoder
45
+ python test_ae.py --ckpt ./pretrained/AE_all.pt --categories all
46
 
47
+ # Test a generator
48
+ python test_gen.py --ckpt ./pretrained/GEN_airplane.pt --categories airplane
49
+ ```
50
 
51
  ### BibTeX Entry and Citation Info
52
  ```