Upload folder using huggingface_hub
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 205.60 +/- 46.26
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b7742264430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b77422644c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b7742264550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b77422645e0>", "_build": "<function ActorCriticPolicy._build at 0x7b7742264670>", "forward": "<function ActorCriticPolicy.forward at 0x7b7742264700>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b7742264790>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b7742264820>", "_predict": "<function ActorCriticPolicy._predict at 0x7b77422648b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b7742264940>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b77422649d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b7742264a60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b7742405b40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1716694791591594932, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIDdID7c4gg9nSP1us61b775+E27ancDPQAAAAAAAAAA80AdvlwnSjvao5Q9ENSBvQO8Er74n9M+AACAPwAAgD+a0u48mTW3P8rLxD4+xUs9pj8PPMZgGD4AAAAAAAAAAOZoYb0jAY8/J9KLvg8lLb/TYY697nyyPAAAAAAAAAAAhmzEPmx92rtKTIw8mQvHui4Fxb27SNS7AACAPwAAgD/TdFo+QcK/vMZu3js0M0C6ojctvnJ2FbsAAIA/AACAP6bFaT7lfxw/lmSoPTdv4r5bla09MCh+vAAAAAAAAAAAoEYEPlt+Tz+uXQg+w3gGvyGZmz1Fie+8AAAAAAAAAADgVbQ+dg3pPuLg1z100ae+QIoTPrVe3b0AAAAAAAAAAGbFg76hv7O8T88LOktDRDjAtRw+NU7quAAAgD8AAIA/vSysvnHfaT8AGNC+b6ggvwCicL6QRDq9AAAAAAAAAADgE2w+M4F0P1W/kz5+bzK/wNMlPrXaUz0AAAAAAAAAAKCaZr6pQi8/jf+NvuRo9b5iDBq+yogMPQAAAAAAAAAAgMWLvjHvIb0dyoO8DjRXPAc9Wj7wGlY9AACAPwAAgD9N1eO+z5D1va3agrsdMxq6l7vSPZWELbsAAIA/AACAPwAeLD1TtK0/zVRhPo8Iv77dyjo9dnJsuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVAgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEVag3cYZVKMAWyUS9KMAXSUR0Cf7wXOnl4kdX2UKGgGR0BwpTGrCFbnaAdL6WgIR0Cf70wLmZE2dX2UKGgGR0BwyoaGYa5xaAdLz2gIR0Cf76CUHIIXdX2UKGgGR0BAiRzaK1ohaAdLmGgIR0Cf7/C1Z1V6dX2UKGgGR0BwaQ2pAD7qaAdNBgFoCEdAn/BwBgeA/nV9lChoBkdAblRah6By0mgHTQkBaAhHQJ/0EFbFCLN1fZQoaAZHQHAB5sj3VTdoB00gAWgIR0Cf9VAh0QsgdX2UKGgGR0BtkkHryDqXaAdNSwFoCEdAn/aUjLSuyXV9lChoBkdAbv8Aqd6LO2gHS9loCEdAn/aukDZDiXV9lChoBkdAbSlAu7HyVmgHS9hoCEdAn/gshkiD/XV9lChoBkdAa4t7Kq4pdGgHS99oCEdAn/hH1SOzY3V9lChoBkdAYKMfthNM5GgHTegDaAhHQJ/6BVhkRSR1fZQoaAZHQG9wWnbZezFoB0vTaAhHQJ/6b4ZdfLN1fZQoaAZHQGEdnTqjaf1oB03oA2gIR0Cf+vjqfOD8dX2UKGgGR0Btw83hn8KpaAdNAgFoCEdAn/sr0SRKYnV9lChoBkdAcDdUKzAvc2gHS+poCEdAn/t5NwiqyXV9lChoBkdAb4bcHnlny2gHS95oCEdAn/wAqNIbwXV9lChoBkdAYC1rftQbdmgHTegDaAhHQJ/8ejO9nK51fZQoaAZHQG4bKKHfuTloB0vtaAhHQJ/9tpvgm7d1fZQoaAZHQHCCJuIhyKhoB0u/aAhHQJ/94+4b0e51fZQoaAZHQG+85DRc/t9oB0vUaAhHQJ/+oam4y451fZQoaAZHQEHpkTYdyT9oB0u2aAhHQJ//PUe+23N1fZQoaAZHQG2xr9MsYl9oB0voaAhHQKABtALRa5h1fZQoaAZHQHDgSmALApNoB0v1aAhHQKABx/82rGR1fZQoaAZHQG470+C9RJpoB01xAWgIR0CgAhIePq9odX2UKGgGR0BtgMfs/pt8aAdL/GgIR0CgAkiA2AG0dX2UKGgGR0Br+eNxVAAyaAdNBQFoCEdAoALdlum78XV9lChoBkdAb1A3nZCfH2gHS/5oCEdAoANAcT8HfXV9lChoBkdAcDlcRUWEb2gHS8xoCEdAoANJXCCSR3V9lChoBkdAcU9xlQMx5GgHS8RoCEdAoAPB6MR6GHV9lChoBkdAZOblnRLK3mgHTegDaAhHQKAD9mMfigl1fZQoaAZHQHBO393r2QJoB00NAWgIR0CgBIEFnqVydX2UKGgGR0BwbsuVX3g2aAdL62gIR0CgBLpQLux9dX2UKGgGR0Bivk4iosI3aAdNfwFoCEdAoAS//m1YyXV9lChoBkdAcFnl5WzWw2gHS9FoCEdAoAXUWRA8jnV9lChoBkdAcIiMJx//emgHS9hoCEdAoAY04FRpDnV9lChoBkdAcMYu+h4+r2gHTZwCaAhHQKAGNR51Ng11fZQoaAZHQGyefGMn7YVoB0vxaAhHQKAGTPZZjhF1fZQoaAZHQG8GQkxASnNoB0vZaAhHQKAGZyXD3uh1fZQoaAZHQEEgJVKf4AVoB0uvaAhHQKAGnvuw5eZ1fZQoaAZHQEAgTW5H3DhoB0uyaAhHQKAG1h73PAx1fZQoaAZHQCU2CoS+QEJoB0u7aAhHQKAHcKDTSb91fZQoaAZHQG6GGQ0XP7hoB00HAWgIR0CgB4ah6By0dX2UKGgGR0BwMx+c6NlzaAdL2mgIR0CgCCTnRsuWdX2UKGgGR0BwqDvNNahYaAdLuGgIR0CgCMPBJqZddX2UKGgGR0BvYWTkhib2aAdNbgFoCEdAoAmUEzO5a3V9lChoBkdAb6oOe8PFvWgHS9loCEdAoAncqc3ERHV9lChoBkdAbnWOMl1KXmgHS9VoCEdAoAoG3Sa3JHV9lChoBkdAcLf+pwS8J2gHTT8BaAhHQKAKFNmDlHV1fZQoaAZHQG+fjZlFtsNoB0vYaAhHQKAKU0j1PFh1fZQoaAZHQG/yYHHFPzpoB0vMaAhHQKALGJhvze51fZQoaAZHQG32mQr+YMRoB0vIaAhHQKALHv5P/Jh1fZQoaAZHQGG6TWwu/URoB03oA2gIR0CgC8aJIlMRdX2UKGgGR0BsLKWzF+/haAdNGgFoCEdAoAvM9IPK+3V9lChoBkdAcGFfsu3+dmgHS+VoCEdAoAxL2HtWuHV9lChoBkdAb8J5aePJaWgHS+1oCEdAoAz+fTTfBXV9lChoBkdANUpSBK+SKWgHS8loCEdAoA1SXdCVr3V9lChoBkdAN4m0NSZSemgHS9JoCEdAoA2ruUliSnV9lChoBkdAcPmQoCuEEmgHS+5oCEdAoA4YH9m6G3V9lChoBkdAXp+tYB/7SGgHTegDaAhHQKAOhuZ1FH91fZQoaAZHQGzYQ/HHWBloB0v/aAhHQKAOt4iX6ZZ1fZQoaAZHQHHEfJA+pwVoB0vZaAhHQKAO1WluWKN1fZQoaAZHQG3GK6nR9gFoB0vxaAhHQKAPMmJFb3Z1fZQoaAZHQGIaAjyFwkxoB03oA2gIR0CgD0enIhhZdX2UKGgGR0Btf5jhDPWyaAdL6GgIR0CgD9nJ9y93dX2UKGgGR0BwFALORkmQaAdL7mgIR0CgD/OskpqidX2UKGgGR0BvNN9MK1G9aAdL5mgIR0CgEHsWXTmXdX2UKGgGR0BwxzszEaVEaAdL2GgIR0CgEbB9b5dodX2UKGgGR0Bv2p9d/rjYaAdL3mgIR0CgEqGbsniOdX2UKGgGR0A70d+G47RwaAdLuWgIR0CgE1xxtHhCdX2UKGgGR0BwV9dyDIzWaAdL42gIR0CgFAjcmBvrdX2UKGgGR0Bmjtr9ETg3aAdNcQFoCEdAoBV3WOIZZXV9lChoBkdAcWaF0PpY92gHS9doCEdAoBW38yeqaXV9lChoBkdAab97Q9ic5WgHTRgBaAhHQKAWZv9cbBJ1fZQoaAZHQHFQiH/LkjpoB0voaAhHQKAWmglnh891fZQoaAZHQGxMrTYukDZoB00IAWgIR0CgFqlr/KhddX2UKGgGR0BuHMA93bEhaAdNKgFoCEdAoBbNPN3W4HV9lChoBkdAYNG7nPmgamgHTegDaAhHQKAW8F6Avtd1fZQoaAZHQG9lTiCJ40NoB0vOaAhHQKAW/Vn27Ft1fZQoaAZHQHAiWY0EX+FoB0vSaAhHQKAXhjvNNah1fZQoaAZHQG2BdVFQVKxoB0vRaAhHQKAYZ+ocaOx1fZQoaAZHQHHJNpAUtZpoB0vDaAhHQKAZQhllK9R1fZQoaAZHQHAnFIAfdRBoB0vSaAhHQKAZXVDKHO91fZQoaAZHQFwU5Gz8gp1oB03oA2gIR0CgGcODzyz5dX2UKGgGR0BhPQRf4REnaAdN6ANoCEdAoBndk6Lfk3V9lChoBkdARea9bor4FmgHS8BoCEdAoBo8afjCHnV9lChoBkdAcmu0aZQYUGgHTVQBaAhHQKAaQhew9q11fZQoaAZHQG+Lux8lXzVoB0vXaAhHQKAafjZL7Gh1fZQoaAZHQGxA1KGtZFJoB00MAWgIR0CgGvw5WBBidX2UKGgGR0Bx9Zj7Q9idaAdL1GgIR0CgGxsgEEDAdX2UKGgGR0BviJqM3qA0aAdNJAFoCEdAoBuVtZV4o3V9lChoBkdAbhXeb/ffoGgHS/5oCEdAoBy0wlByCHV9lChoBkdAcSLCTUy57WgHS9NoCEdAoBzHVoYek3V9lChoBkdAZn43y7PIGWgHTXoBaAhHQKAdAfozN2V1fZQoaAZHQFtIT0QK8cxoB03oA2gIR0CgHR3qZ+hHdX2UKGgGR0A8shV2icoZaAdLr2gIR0CgHSXI+4b0dX2UKGgGR0BxMbMLWqcWaAdLymgIR0CgHTYOc2BKdX2UKGgGR0AWuVHFxXGPaAdL0WgIR0CgHbAHmig1dX2UKGgGR0BtneSntOVPaAdNBwFoCEdAoB22UfPom3V9lChoBkdAbzCVY6nzhGgHS9JoCEdAoB3l7OVxCXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ab5c8c595e23a4c350584fb21b8b314064ccfd91e6256e68a988a4b9839d8f67
|
3 |
+
size 147999
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7b7742264430>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b77422644c0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b7742264550>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b77422645e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7b7742264670>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7b7742264700>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7b7742264790>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b7742264820>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7b77422648b0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b7742264940>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b77422649d0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7b7742264a60>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7b7742405b40>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1716694791591594932,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIDdID7c4gg9nSP1us61b775+E27ancDPQAAAAAAAAAA80AdvlwnSjvao5Q9ENSBvQO8Er74n9M+AACAPwAAgD+a0u48mTW3P8rLxD4+xUs9pj8PPMZgGD4AAAAAAAAAAOZoYb0jAY8/J9KLvg8lLb/TYY697nyyPAAAAAAAAAAAhmzEPmx92rtKTIw8mQvHui4Fxb27SNS7AACAPwAAgD/TdFo+QcK/vMZu3js0M0C6ojctvnJ2FbsAAIA/AACAP6bFaT7lfxw/lmSoPTdv4r5bla09MCh+vAAAAAAAAAAAoEYEPlt+Tz+uXQg+w3gGvyGZmz1Fie+8AAAAAAAAAADgVbQ+dg3pPuLg1z100ae+QIoTPrVe3b0AAAAAAAAAAGbFg76hv7O8T88LOktDRDjAtRw+NU7quAAAgD8AAIA/vSysvnHfaT8AGNC+b6ggvwCicL6QRDq9AAAAAAAAAADgE2w+M4F0P1W/kz5+bzK/wNMlPrXaUz0AAAAAAAAAAKCaZr6pQi8/jf+NvuRo9b5iDBq+yogMPQAAAAAAAAAAgMWLvjHvIb0dyoO8DjRXPAc9Wj7wGlY9AACAPwAAgD9N1eO+z5D1va3agrsdMxq6l7vSPZWELbsAAIA/AACAPwAeLD1TtK0/zVRhPo8Iv77dyjo9dnJsuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVAgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQEVag3cYZVKMAWyUS9KMAXSUR0Cf7wXOnl4kdX2UKGgGR0BwpTGrCFbnaAdL6WgIR0Cf70wLmZE2dX2UKGgGR0BwyoaGYa5xaAdLz2gIR0Cf76CUHIIXdX2UKGgGR0BAiRzaK1ohaAdLmGgIR0Cf7/C1Z1V6dX2UKGgGR0BwaQ2pAD7qaAdNBgFoCEdAn/BwBgeA/nV9lChoBkdAblRah6By0mgHTQkBaAhHQJ/0EFbFCLN1fZQoaAZHQHAB5sj3VTdoB00gAWgIR0Cf9VAh0QsgdX2UKGgGR0BtkkHryDqXaAdNSwFoCEdAn/aUjLSuyXV9lChoBkdAbv8Aqd6LO2gHS9loCEdAn/aukDZDiXV9lChoBkdAbSlAu7HyVmgHS9hoCEdAn/gshkiD/XV9lChoBkdAa4t7Kq4pdGgHS99oCEdAn/hH1SOzY3V9lChoBkdAYKMfthNM5GgHTegDaAhHQJ/6BVhkRSR1fZQoaAZHQG9wWnbZezFoB0vTaAhHQJ/6b4ZdfLN1fZQoaAZHQGEdnTqjaf1oB03oA2gIR0Cf+vjqfOD8dX2UKGgGR0Btw83hn8KpaAdNAgFoCEdAn/sr0SRKYnV9lChoBkdAcDdUKzAvc2gHS+poCEdAn/t5NwiqyXV9lChoBkdAb4bcHnlny2gHS95oCEdAn/wAqNIbwXV9lChoBkdAYC1rftQbdmgHTegDaAhHQJ/8ejO9nK51fZQoaAZHQG4bKKHfuTloB0vtaAhHQJ/9tpvgm7d1fZQoaAZHQHCCJuIhyKhoB0u/aAhHQJ/94+4b0e51fZQoaAZHQG+85DRc/t9oB0vUaAhHQJ/+oam4y451fZQoaAZHQEHpkTYdyT9oB0u2aAhHQJ//PUe+23N1fZQoaAZHQG2xr9MsYl9oB0voaAhHQKABtALRa5h1fZQoaAZHQHDgSmALApNoB0v1aAhHQKABx/82rGR1fZQoaAZHQG470+C9RJpoB01xAWgIR0CgAhIePq9odX2UKGgGR0BtgMfs/pt8aAdL/GgIR0CgAkiA2AG0dX2UKGgGR0Br+eNxVAAyaAdNBQFoCEdAoALdlum78XV9lChoBkdAb1A3nZCfH2gHS/5oCEdAoANAcT8HfXV9lChoBkdAcDlcRUWEb2gHS8xoCEdAoANJXCCSR3V9lChoBkdAcU9xlQMx5GgHS8RoCEdAoAPB6MR6GHV9lChoBkdAZOblnRLK3mgHTegDaAhHQKAD9mMfigl1fZQoaAZHQHBO393r2QJoB00NAWgIR0CgBIEFnqVydX2UKGgGR0BwbsuVX3g2aAdL62gIR0CgBLpQLux9dX2UKGgGR0Bivk4iosI3aAdNfwFoCEdAoAS//m1YyXV9lChoBkdAcFnl5WzWw2gHS9FoCEdAoAXUWRA8jnV9lChoBkdAcIiMJx//emgHS9hoCEdAoAY04FRpDnV9lChoBkdAcMYu+h4+r2gHTZwCaAhHQKAGNR51Ng11fZQoaAZHQGyefGMn7YVoB0vxaAhHQKAGTPZZjhF1fZQoaAZHQG8GQkxASnNoB0vZaAhHQKAGZyXD3uh1fZQoaAZHQEEgJVKf4AVoB0uvaAhHQKAGnvuw5eZ1fZQoaAZHQEAgTW5H3DhoB0uyaAhHQKAG1h73PAx1fZQoaAZHQCU2CoS+QEJoB0u7aAhHQKAHcKDTSb91fZQoaAZHQG6GGQ0XP7hoB00HAWgIR0CgB4ah6By0dX2UKGgGR0BwMx+c6NlzaAdL2mgIR0CgCCTnRsuWdX2UKGgGR0BwqDvNNahYaAdLuGgIR0CgCMPBJqZddX2UKGgGR0BvYWTkhib2aAdNbgFoCEdAoAmUEzO5a3V9lChoBkdAb6oOe8PFvWgHS9loCEdAoAncqc3ERHV9lChoBkdAbnWOMl1KXmgHS9VoCEdAoAoG3Sa3JHV9lChoBkdAcLf+pwS8J2gHTT8BaAhHQKAKFNmDlHV1fZQoaAZHQG+fjZlFtsNoB0vYaAhHQKAKU0j1PFh1fZQoaAZHQG/yYHHFPzpoB0vMaAhHQKALGJhvze51fZQoaAZHQG32mQr+YMRoB0vIaAhHQKALHv5P/Jh1fZQoaAZHQGG6TWwu/URoB03oA2gIR0CgC8aJIlMRdX2UKGgGR0BsLKWzF+/haAdNGgFoCEdAoAvM9IPK+3V9lChoBkdAcGFfsu3+dmgHS+VoCEdAoAxL2HtWuHV9lChoBkdAb8J5aePJaWgHS+1oCEdAoAz+fTTfBXV9lChoBkdANUpSBK+SKWgHS8loCEdAoA1SXdCVr3V9lChoBkdAN4m0NSZSemgHS9JoCEdAoA2ruUliSnV9lChoBkdAcPmQoCuEEmgHS+5oCEdAoA4YH9m6G3V9lChoBkdAXp+tYB/7SGgHTegDaAhHQKAOhuZ1FH91fZQoaAZHQGzYQ/HHWBloB0v/aAhHQKAOt4iX6ZZ1fZQoaAZHQHHEfJA+pwVoB0vZaAhHQKAO1WluWKN1fZQoaAZHQG3GK6nR9gFoB0vxaAhHQKAPMmJFb3Z1fZQoaAZHQGIaAjyFwkxoB03oA2gIR0CgD0enIhhZdX2UKGgGR0Btf5jhDPWyaAdL6GgIR0CgD9nJ9y93dX2UKGgGR0BwFALORkmQaAdL7mgIR0CgD/OskpqidX2UKGgGR0BvNN9MK1G9aAdL5mgIR0CgEHsWXTmXdX2UKGgGR0BwxzszEaVEaAdL2GgIR0CgEbB9b5dodX2UKGgGR0Bv2p9d/rjYaAdL3mgIR0CgEqGbsniOdX2UKGgGR0A70d+G47RwaAdLuWgIR0CgE1xxtHhCdX2UKGgGR0BwV9dyDIzWaAdL42gIR0CgFAjcmBvrdX2UKGgGR0Bmjtr9ETg3aAdNcQFoCEdAoBV3WOIZZXV9lChoBkdAcWaF0PpY92gHS9doCEdAoBW38yeqaXV9lChoBkdAab97Q9ic5WgHTRgBaAhHQKAWZv9cbBJ1fZQoaAZHQHFQiH/LkjpoB0voaAhHQKAWmglnh891fZQoaAZHQGxMrTYukDZoB00IAWgIR0CgFqlr/KhddX2UKGgGR0BuHMA93bEhaAdNKgFoCEdAoBbNPN3W4HV9lChoBkdAYNG7nPmgamgHTegDaAhHQKAW8F6Avtd1fZQoaAZHQG9lTiCJ40NoB0vOaAhHQKAW/Vn27Ft1fZQoaAZHQHAiWY0EX+FoB0vSaAhHQKAXhjvNNah1fZQoaAZHQG2BdVFQVKxoB0vRaAhHQKAYZ+ocaOx1fZQoaAZHQHHJNpAUtZpoB0vDaAhHQKAZQhllK9R1fZQoaAZHQHAnFIAfdRBoB0vSaAhHQKAZXVDKHO91fZQoaAZHQFwU5Gz8gp1oB03oA2gIR0CgGcODzyz5dX2UKGgGR0BhPQRf4REnaAdN6ANoCEdAoBndk6Lfk3V9lChoBkdARea9bor4FmgHS8BoCEdAoBo8afjCHnV9lChoBkdAcmu0aZQYUGgHTVQBaAhHQKAaQhew9q11fZQoaAZHQG+Lux8lXzVoB0vXaAhHQKAafjZL7Gh1fZQoaAZHQGxA1KGtZFJoB00MAWgIR0CgGvw5WBBidX2UKGgGR0Bx9Zj7Q9idaAdL1GgIR0CgGxsgEEDAdX2UKGgGR0BviJqM3qA0aAdNJAFoCEdAoBuVtZV4o3V9lChoBkdAbhXeb/ffoGgHS/5oCEdAoBy0wlByCHV9lChoBkdAcSLCTUy57WgHS9NoCEdAoBzHVoYek3V9lChoBkdAZn43y7PIGWgHTXoBaAhHQKAdAfozN2V1fZQoaAZHQFtIT0QK8cxoB03oA2gIR0CgHR3qZ+hHdX2UKGgGR0A8shV2icoZaAdLr2gIR0CgHSXI+4b0dX2UKGgGR0BxMbMLWqcWaAdLymgIR0CgHTYOc2BKdX2UKGgGR0AWuVHFxXGPaAdL0WgIR0CgHbAHmig1dX2UKGgGR0BtneSntOVPaAdNBwFoCEdAoB22UfPom3V9lChoBkdAbzCVY6nzhGgHS9JoCEdAoB3l7OVxCXVlLg=="
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 310,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af11684f628c3441781a2520fdc77aef98d38a95ce606b1a93bf3afec943982a
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e5142f5ab64863c5d407c674b3d615b36a60874cb3b23ed8d594cc42cbeb9aa0
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.3.0+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (175 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 205.60498769999998, "std_reward": 46.26068658481121, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-05-26T04:06:19.444247"}
|