update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: deberta-v3-large__sst2__train-16-3
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# deberta-v3-large__sst2__train-16-3
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.6286
|
20 |
+
- Accuracy: 0.7068
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 2e-05
|
40 |
+
- train_batch_size: 4
|
41 |
+
- eval_batch_size: 4
|
42 |
+
- seed: 42
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- num_epochs: 50
|
46 |
+
- mixed_precision_training: Native AMP
|
47 |
+
|
48 |
+
### Training results
|
49 |
+
|
50 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
51 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
52 |
+
| 0.6955 | 1.0 | 7 | 0.7370 | 0.2857 |
|
53 |
+
| 0.6919 | 2.0 | 14 | 0.6855 | 0.4286 |
|
54 |
+
| 0.6347 | 3.0 | 21 | 0.5872 | 0.7143 |
|
55 |
+
| 0.4016 | 4.0 | 28 | 0.6644 | 0.7143 |
|
56 |
+
| 0.3097 | 5.0 | 35 | 0.5120 | 0.7143 |
|
57 |
+
| 0.0785 | 6.0 | 42 | 0.5845 | 0.7143 |
|
58 |
+
| 0.024 | 7.0 | 49 | 0.6951 | 0.7143 |
|
59 |
+
| 0.0132 | 8.0 | 56 | 0.8972 | 0.7143 |
|
60 |
+
| 0.0037 | 9.0 | 63 | 1.5798 | 0.7143 |
|
61 |
+
| 0.0034 | 10.0 | 70 | 1.5178 | 0.7143 |
|
62 |
+
| 0.003 | 11.0 | 77 | 1.3511 | 0.7143 |
|
63 |
+
| 0.0012 | 12.0 | 84 | 1.1346 | 0.7143 |
|
64 |
+
| 0.0007 | 13.0 | 91 | 0.9752 | 0.7143 |
|
65 |
+
| 0.0008 | 14.0 | 98 | 0.8531 | 0.7143 |
|
66 |
+
| 0.0007 | 15.0 | 105 | 0.8149 | 0.7143 |
|
67 |
+
|
68 |
+
|
69 |
+
### Framework versions
|
70 |
+
|
71 |
+
- Transformers 4.15.0
|
72 |
+
- Pytorch 1.10.2+cu102
|
73 |
+
- Datasets 1.18.2
|
74 |
+
- Tokenizers 0.10.3
|