Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Small-E-Czech
|
2 |
+
|
3 |
+
Small-E-Czech is an [Electra](https://arxiv.org/abs/2003.10555)-small model pretrained on a Czech corpus created at Seznam.cz. Like other pretrained models, it should be finetuned on a downstream task of interest before use.
|
4 |
+
|
5 |
+
### How to use the discriminator in transformers
|
6 |
+
```python
|
7 |
+
from transformers import ElectraForPreTraining, ElectraTokenizerFast
|
8 |
+
import torch
|
9 |
+
|
10 |
+
discriminator = ElectraForPreTraining.from_pretrained("seznam/small-e-czech")
|
11 |
+
tokenizer = ElectraTokenizerFast.from_pretrained(
|
12 |
+
"seznam/small-e-czech", strip_accents=False
|
13 |
+
)
|
14 |
+
|
15 |
+
sentence = "Za hory, za doly, mé zlaté parohy"
|
16 |
+
fake_sentence = "Za hory, za doly, kočka zlaté parohy"
|
17 |
+
|
18 |
+
fake_sentence_tokens = ["[CLS]"] + tokenizer.tokenize(fake_sentence) + ["[SEP]"]
|
19 |
+
fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt")
|
20 |
+
discriminator_outputs = discriminator(fake_inputs)
|
21 |
+
predictions = torch.nn.Sigmoid()(discriminator_outputs[0]).cpu().detach().numpy()
|
22 |
+
|
23 |
+
for token in fake_sentence_tokens:
|
24 |
+
print("{:>7s}".format(token), end="")
|
25 |
+
print()
|
26 |
+
|
27 |
+
for prediction in predictions.squeeze():
|
28 |
+
print("{:7.1f}".format(prediction), end="")
|
29 |
+
print()
|
30 |
+
```
|
31 |
+
|
32 |
+
In the output we can see the probabilities of particular tokens not belonging in the sentence (i.e. having been faked by the generator) according to the discriminator:
|
33 |
+
|
34 |
+
```
|
35 |
+
[CLS] za hory , za dol ##y , kočka zlaté paro ##hy [SEP]
|
36 |
+
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.3 0.2 0.1 0.0
|
37 |
+
```
|
38 |
+
|
39 |
+
### Finetuning
|
40 |
+
|
41 |
+
For instructions on how to finetune the model on a new task, see the official HuggingFace transformers [tutorial](https://huggingface.co/transformers/training.html).
|