--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer base_model: sentence-transformers/paraphrase-mpnet-base-v2 metrics: - accuracy widget: - text: cookie boxes for gifting under $20 - text: Are there any restrictions on returning candle supplies? - text: special features for bakery boxes - text: I need to confirm the shipping date for my recent purchase. Can you help me with that? - text: different types of bakery boxes available pipeline_tag: text-classification inference: true model-index: - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.8380952380952381 name: Accuracy --- # SetFit with sentence-transformers/paraphrase-mpnet-base-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 4 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | product discoverability | | | order tracking | | | product policy | | | product faq | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.8381 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("setfit_model_id") # Run inference preds = model("special features for bakery boxes") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 3 | 11.6415 | 24 | | Label | Training Sample Count | |:------------------------|:----------------------| | order tracking | 30 | | product discoverability | 30 | | product faq | 16 | | product policy | 30 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (2, 2) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: True ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0019 | 1 | 0.1782 | - | | 0.0965 | 50 | 0.0628 | - | | 0.1931 | 100 | 0.0036 | - | | 0.2896 | 150 | 0.0013 | - | | 0.3861 | 200 | 0.0012 | - | | 0.4826 | 250 | 0.0003 | - | | 0.5792 | 300 | 0.0002 | - | | 0.6757 | 350 | 0.0003 | - | | 0.7722 | 400 | 0.0002 | - | | 0.8687 | 450 | 0.0005 | - | | 0.9653 | 500 | 0.0003 | - | | 1.0618 | 550 | 0.0001 | - | | 1.1583 | 600 | 0.0002 | - | | 1.2548 | 650 | 0.0002 | - | | 1.3514 | 700 | 0.0002 | - | | 1.4479 | 750 | 0.0001 | - | | 1.5444 | 800 | 0.0001 | - | | 1.6409 | 850 | 0.0001 | - | | 1.7375 | 900 | 0.0002 | - | | 1.8340 | 950 | 0.0001 | - | | 1.9305 | 1000 | 0.0001 | - | ### Framework Versions - Python: 3.9.16 - SetFit: 1.0.3 - Sentence Transformers: 2.7.0 - Transformers: 4.40.2 - PyTorch: 2.3.0 - Datasets: 2.19.1 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```