--- library_name: speechbrain pipeline_tag: text-to-speech language: "en" tags: - text-to-speech - TTS - speech-synthesis - speechbrain license: "apache-2.0" datasets: - LJSpeech --- # Text-to-Speech (TTS) with Transformer trained on LJSpeech This repository provides all the necessary tools for Text-to-Speech (TTS) with SpeechBrain using a [Transformer](https://arxiv.org/pdf/1809.08895.pdf) pretrained on [LJSpeech](https://keithito.com/LJ-Speech-Dataset/). The pre-trained model takes in text input and produces a spectrogram in output. One can get the final waveform by applying a vocoder (e.g., HiFIGAN) on top of the generated spectrogram. ### Perform Text-to-Speech (TTS) ```python import torchaudio from speechbrain.inference.vocoders import HIFIGAN texts = ["This is the example text"] #initializing my model my_tts_model = TextToSpeech.from_hparams(source="/content/") #initializing vocoder(Hifigan) model hifi_gan = HIFIGAN.from_hparams(source="speechbrain/tts-hifigan-ljspeech", savedir="tmpdir_vocoder") # Running the TTS mel_output = my_tts_model.encode_text(texts) # Running Vocoder (spectrogram-to-waveform) waveforms = hifi_gan.decode_batch(mel_output) # Save the waverform torchaudio.save('example_TTS.wav',waveforms.squeeze(1), 22050) ```