File size: 1,502 Bytes
a5514ce a4d5817 a5514ce a4d5817 c24be28 a4d5817 d7f537c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
inference: false
license: apache-2.0
---
<br>
<br>
# LLaVA-Hound Model Card
## Model details
**Model type:**
LLaVA-Hound is an open-source video large multimodal model, fine-tuned from video instruction following data based on large language model.
This model is the **pre-trained** ckpt on **image and video caption** data.
Base LLM: [lmsys/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5)
**Model date:**
Trained on March 15, 2024.
**Paper or resources for more information:**
https://github.com/RifleZhang/LLaVA-Hound-DPO
## License
[lmsys/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) license.
**Where to send questions or comments about the model:**
https://github.com/RifleZhang/LLaVA-Hound-DPO/issues
## Intended use
**Primary intended uses:**
Video detailed captioning
**Primary intended users:**
Researchers in artificial intelligence, large multimodal model, etc.
## Training dataset
ShareGPTVideo dataset.
## Evaluation
Follow https://github.com/RifleZhang/LLaVA-Hound-DPO/blob/main/README.md
## Paper
https://huggingface.co/papers/2404.01258
citation
```
@article{zhang2024direct,
title={Direct Preference Optimization of Video Large Multimodal Models from Language Model Reward},
author={Zhang, Ruohong and Gui, Liangke and Sun, Zhiqing and Feng, Yihao and Xu, Keyang and Zhang, Yuanhan and Fu, Di and Li, Chunyuan and Hauptmann, Alexander and Bisk, Yonatan and others},
journal={arXiv preprint arXiv:2404.01258},
year={2024}
}
```
|