--- license: apache-2.0 base_model: facebook/wav2vec2-xls-r-300m tags: - generated_from_trainer datasets: - common_voice_16_0 metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-hi-colab results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_16_0 type: common_voice_16_0 config: hi split: test args: hi metrics: - name: Wer type: wer value: 0.4948465637275874 --- # wav2vec2-large-xls-r-300m-hi-colab This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_16_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.6983 - Wer: 0.4948 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 5.491 | 1.8059 | 400 | 1.3703 | 0.9679 | | 0.6981 | 3.6117 | 800 | 0.7041 | 0.6607 | | 0.3758 | 5.4176 | 1200 | 0.6709 | 0.6185 | | 0.2736 | 7.2235 | 1600 | 0.7170 | 0.5925 | | 0.2089 | 9.0293 | 2000 | 0.6445 | 0.5722 | | 0.1686 | 10.8352 | 2400 | 0.7004 | 0.5770 | | 0.1408 | 12.6411 | 2800 | 0.7097 | 0.5735 | | 0.1227 | 14.4470 | 3200 | 0.6763 | 0.5533 | | 0.1056 | 16.2528 | 3600 | 0.7245 | 0.5484 | | 0.0923 | 18.0587 | 4000 | 0.7198 | 0.5480 | | 0.083 | 19.8646 | 4400 | 0.6568 | 0.5251 | | 0.0742 | 21.6704 | 4800 | 0.7183 | 0.5252 | | 0.0647 | 23.4763 | 5200 | 0.7306 | 0.5141 | | 0.0574 | 25.2822 | 5600 | 0.7236 | 0.5063 | | 0.052 | 27.0880 | 6000 | 0.7234 | 0.4969 | | 0.0478 | 28.8939 | 6400 | 0.6983 | 0.4948 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1