File size: 2,130 Bytes
414d24f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: mit
tags:
- generated_from_trainer
datasets:
- imagefolder
model-index:
- name: git-base-pokemon
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# git-base-pokemon
This model is a fine-tuned version of [microsoft/git-base](https://huggingface.co/microsoft/git-base) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0345
- Wer Score: 2.4097
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer Score |
|:-------------:|:-----:|:----:|:---------------:|:---------:|
| 7.3695 | 4.17 | 50 | 4.5700 | 21.4160 |
| 2.3984 | 8.33 | 100 | 0.4696 | 10.9249 |
| 0.1439 | 12.5 | 150 | 0.0305 | 1.1692 |
| 0.02 | 16.67 | 200 | 0.0263 | 1.5229 |
| 0.0084 | 20.83 | 250 | 0.0295 | 2.6539 |
| 0.003 | 25.0 | 300 | 0.0324 | 3.2125 |
| 0.0018 | 29.17 | 350 | 0.0329 | 2.6628 |
| 0.0014 | 33.33 | 400 | 0.0336 | 2.5407 |
| 0.0013 | 37.5 | 450 | 0.0338 | 2.4008 |
| 0.0011 | 41.67 | 500 | 0.0344 | 2.5115 |
| 0.0011 | 45.83 | 550 | 0.0344 | 2.3766 |
| 0.0011 | 50.0 | 600 | 0.0345 | 2.4097 |
### Framework versions
- Transformers 4.27.4
- Pytorch 1.13.1+cu116
- Datasets 2.11.0
- Tokenizers 0.13.2
|