Upload 21 files
Browse files- README.md +205 -1
- added_tokens.json +1037 -0
- annotated_snowman.jpg +0 -0
- config.json +173 -0
- configuration_kosmos2.py +331 -0
- draw_bboxes.py +119 -0
- generation_config.json +9 -0
- image_processing_kosmos2.py +304 -0
- modeling_kosmos2.py +1747 -0
- preprocessor_config.json +32 -0
- processing_kosmos2.py +604 -0
- pytorch_model.bin +3 -0
- sentencepiece.bpe.model +3 -0
- snowman.jpg +0 -0
- special_tokens_map.json +15 -0
- tokenization_kosmos2.py +413 -0
- tokenization_kosmos2_fast.py +250 -0
- tokenizer.json +0 -0
- tokenizer_config.json +27 -0
- two_dogs.jpg +0 -0
README.md
CHANGED
@@ -1,3 +1,207 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
# For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
|
3 |
+
# Doc / guide: https://huggingface.co/docs/hub/model-cards
|
4 |
+
{}
|
5 |
---
|
6 |
+
# Kosmos-2: Grounding Multimodal Large Language Models to the World
|
7 |
+
|
8 |
+
<a href="https://huggingface.co/ydshieh/kosmos-2-patch14-224/resolve/main/annotated_snowman.jpg" target="_blank"><figure><img src="https://huggingface.co/ydshieh/kosmos-2-patch14-224/resolve/main/annotated_snowman.jpg" width="384"><figcaption><b>[An image of a snowman warming himself by a fire.]</b></figcaption></figure></a>
|
9 |
+
|
10 |
+
|
11 |
+
This Hub repository contains a HuggingFace's `transformers` implementation of [the original Kosmos-2 model](https://github.com/microsoft/unilm/tree/master/kosmos-2) from Microsoft.
|
12 |
+
|
13 |
+
## How to Get Started with the Model
|
14 |
+
|
15 |
+
Use the code below to get started with the model.
|
16 |
+
|
17 |
+
```python
|
18 |
+
import requests
|
19 |
+
|
20 |
+
from PIL import Image
|
21 |
+
from transformers import AutoProcessor, AutoModelForVision2Seq
|
22 |
+
|
23 |
+
|
24 |
+
model = AutoModelForVision2Seq.from_pretrained("ydshieh/kosmos-2-patch14-224", trust_remote_code=True)
|
25 |
+
processor = AutoProcessor.from_pretrained("ydshieh/kosmos-2-patch14-224", trust_remote_code=True)
|
26 |
+
|
27 |
+
prompt = "<grounding>An image of"
|
28 |
+
|
29 |
+
url = "https://huggingface.co/ydshieh/kosmos-2-patch14-224/resolve/main/snowman.jpg"
|
30 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
31 |
+
|
32 |
+
# The original Kosmos-2 demo saves the image first then reload it. For some images, this will give slightly different image input and change the generation outputs.
|
33 |
+
# Uncomment the following 2 lines if you want to match the original demo's outputs.
|
34 |
+
# (One example is the `two_dogs.jpg` from the demo)
|
35 |
+
# image.save("new_image.jpg")
|
36 |
+
# image = Image.open("new_image.jpg")
|
37 |
+
|
38 |
+
inputs = processor(text=prompt, images=image, return_tensors="pt")
|
39 |
+
|
40 |
+
generated_ids = model.generate(
|
41 |
+
pixel_values=inputs["pixel_values"],
|
42 |
+
input_ids=inputs["input_ids"][:, :-1],
|
43 |
+
attention_mask=inputs["attention_mask"][:, :-1],
|
44 |
+
img_features=None,
|
45 |
+
img_attn_mask=inputs["img_attn_mask"][:, :-1],
|
46 |
+
use_cache=True,
|
47 |
+
max_new_tokens=64,
|
48 |
+
)
|
49 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
50 |
+
|
51 |
+
# Specify `cleanup_and_extract=False` in order to see the raw model generation.
|
52 |
+
processed_text = processor.post_processor_generation(generated_text, cleanup_and_extract=False)
|
53 |
+
|
54 |
+
print(processed_text)
|
55 |
+
# `<grounding> An image of<phrase> a snowman</phrase><object><patch_index_0044><patch_index_0863></object> warming himself by<phrase> a fire</phrase><object><patch_index_0005><patch_index_0911></object>.`
|
56 |
+
|
57 |
+
# By default, the generated text is cleanup and the entities are extracted.
|
58 |
+
processed_text, entities = processor.post_processor_generation(generated_text)
|
59 |
+
|
60 |
+
print(processed_text)
|
61 |
+
# `An image of a snowman warming himself by a fire.`
|
62 |
+
|
63 |
+
print(entities)
|
64 |
+
# `[('a snowman', (12, 21), [(0.390625, 0.046875, 0.984375, 0.828125)]), ('a fire', (41, 47), [(0.171875, 0.015625, 0.484375, 0.890625)])]`
|
65 |
+
```
|
66 |
+
|
67 |
+
## Draw the bounding bboxes of the entities on the image
|
68 |
+
|
69 |
+
Once you have the `entities`, you can use the following helper function to draw their bounding bboxes on the image:
|
70 |
+
|
71 |
+
```python
|
72 |
+
import cv2
|
73 |
+
import numpy as np
|
74 |
+
import os
|
75 |
+
import requests
|
76 |
+
import torch
|
77 |
+
import torchvision.transforms as T
|
78 |
+
|
79 |
+
from PIL import Image
|
80 |
+
|
81 |
+
|
82 |
+
def is_overlapping(rect1, rect2):
|
83 |
+
x1, y1, x2, y2 = rect1
|
84 |
+
x3, y3, x4, y4 = rect2
|
85 |
+
return not (x2 < x3 or x1 > x4 or y2 < y3 or y1 > y4)
|
86 |
+
|
87 |
+
|
88 |
+
def draw_entity_boxes_on_image(image, entities, show=False, save_path=None):
|
89 |
+
"""_summary_
|
90 |
+
Args:
|
91 |
+
image (_type_): image or image path
|
92 |
+
collect_entity_location (_type_): _description_
|
93 |
+
"""
|
94 |
+
if isinstance(image, Image.Image):
|
95 |
+
image_h = image.height
|
96 |
+
image_w = image.width
|
97 |
+
image = np.array(image)[:, :, [2, 1, 0]]
|
98 |
+
elif isinstance(image, str):
|
99 |
+
if os.path.exists(image):
|
100 |
+
pil_img = Image.open(image).convert("RGB")
|
101 |
+
image = np.array(pil_img)[:, :, [2, 1, 0]]
|
102 |
+
image_h = pil_img.height
|
103 |
+
image_w = pil_img.width
|
104 |
+
else:
|
105 |
+
raise ValueError(f"invaild image path, {image}")
|
106 |
+
elif isinstance(image, torch.Tensor):
|
107 |
+
# pdb.set_trace()
|
108 |
+
image_tensor = image.cpu()
|
109 |
+
reverse_norm_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073])[:, None, None]
|
110 |
+
reverse_norm_std = torch.tensor([0.26862954, 0.26130258, 0.27577711])[:, None, None]
|
111 |
+
image_tensor = image_tensor * reverse_norm_std + reverse_norm_mean
|
112 |
+
pil_img = T.ToPILImage()(image_tensor)
|
113 |
+
image_h = pil_img.height
|
114 |
+
image_w = pil_img.width
|
115 |
+
image = np.array(pil_img)[:, :, [2, 1, 0]]
|
116 |
+
else:
|
117 |
+
raise ValueError(f"invaild image format, {type(image)} for {image}")
|
118 |
+
|
119 |
+
if len(entities) == 0:
|
120 |
+
return image
|
121 |
+
|
122 |
+
new_image = image.copy()
|
123 |
+
previous_bboxes = []
|
124 |
+
# size of text
|
125 |
+
text_size = 1
|
126 |
+
# thickness of text
|
127 |
+
text_line = 1 # int(max(1 * min(image_h, image_w) / 512, 1))
|
128 |
+
box_line = 3
|
129 |
+
(c_width, text_height), _ = cv2.getTextSize("F", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
|
130 |
+
base_height = int(text_height * 0.675)
|
131 |
+
text_offset_original = text_height - base_height
|
132 |
+
text_spaces = 3
|
133 |
+
|
134 |
+
for entity_name, (start, end), bboxes in entities:
|
135 |
+
for (x1_norm, y1_norm, x2_norm, y2_norm) in bboxes:
|
136 |
+
orig_x1, orig_y1, orig_x2, orig_y2 = int(x1_norm * image_w), int(y1_norm * image_h), int(x2_norm * image_w), int(y2_norm * image_h)
|
137 |
+
# draw bbox
|
138 |
+
# random color
|
139 |
+
color = tuple(np.random.randint(0, 255, size=3).tolist())
|
140 |
+
new_image = cv2.rectangle(new_image, (orig_x1, orig_y1), (orig_x2, orig_y2), color, box_line)
|
141 |
+
|
142 |
+
l_o, r_o = box_line // 2 + box_line % 2, box_line // 2 + box_line % 2 + 1
|
143 |
+
|
144 |
+
x1 = orig_x1 - l_o
|
145 |
+
y1 = orig_y1 - l_o
|
146 |
+
|
147 |
+
if y1 < text_height + text_offset_original + 2 * text_spaces:
|
148 |
+
y1 = orig_y1 + r_o + text_height + text_offset_original + 2 * text_spaces
|
149 |
+
x1 = orig_x1 + r_o
|
150 |
+
|
151 |
+
# add text background
|
152 |
+
(text_width, text_height), _ = cv2.getTextSize(f" {entity_name}", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
|
153 |
+
text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2 = x1, y1 - (text_height + text_offset_original + 2 * text_spaces), x1 + text_width, y1
|
154 |
+
|
155 |
+
for prev_bbox in previous_bboxes:
|
156 |
+
while is_overlapping((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox):
|
157 |
+
text_bg_y1 += (text_height + text_offset_original + 2 * text_spaces)
|
158 |
+
text_bg_y2 += (text_height + text_offset_original + 2 * text_spaces)
|
159 |
+
y1 += (text_height + text_offset_original + 2 * text_spaces)
|
160 |
+
|
161 |
+
if text_bg_y2 >= image_h:
|
162 |
+
text_bg_y1 = max(0, image_h - (text_height + text_offset_original + 2 * text_spaces))
|
163 |
+
text_bg_y2 = image_h
|
164 |
+
y1 = image_h
|
165 |
+
break
|
166 |
+
|
167 |
+
alpha = 0.5
|
168 |
+
for i in range(text_bg_y1, text_bg_y2):
|
169 |
+
for j in range(text_bg_x1, text_bg_x2):
|
170 |
+
if i < image_h and j < image_w:
|
171 |
+
if j < text_bg_x1 + 1.35 * c_width:
|
172 |
+
# original color
|
173 |
+
bg_color = color
|
174 |
+
else:
|
175 |
+
# white
|
176 |
+
bg_color = [255, 255, 255]
|
177 |
+
new_image[i, j] = (alpha * new_image[i, j] + (1 - alpha) * np.array(bg_color)).astype(np.uint8)
|
178 |
+
|
179 |
+
cv2.putText(
|
180 |
+
new_image, f" {entity_name}", (x1, y1 - text_offset_original - 1 * text_spaces), cv2.FONT_HERSHEY_COMPLEX, text_size, (0, 0, 0), text_line, cv2.LINE_AA
|
181 |
+
)
|
182 |
+
# previous_locations.append((x1, y1))
|
183 |
+
previous_bboxes.append((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2))
|
184 |
+
|
185 |
+
pil_image = Image.fromarray(new_image[:, :, [2, 1, 0]])
|
186 |
+
if save_path:
|
187 |
+
pil_image.save(save_path)
|
188 |
+
if show:
|
189 |
+
pil_image.show()
|
190 |
+
|
191 |
+
return new_image
|
192 |
+
|
193 |
+
|
194 |
+
# (The same image from the previous code example)
|
195 |
+
url = "https://huggingface.co/ydshieh/kosmos-2-patch14-224/resolve/main/snowman.jpg"
|
196 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
197 |
+
|
198 |
+
# From the previous code example
|
199 |
+
entities = [('a snowman', (12, 21), [(0.390625, 0.046875, 0.984375, 0.828125)]), ('a fire', (41, 47), [(0.171875, 0.015625, 0.484375, 0.890625)])]
|
200 |
+
|
201 |
+
# Draw the bounding bboxes
|
202 |
+
draw_entity_boxes_on_image(image, entities, show=True)
|
203 |
+
```
|
204 |
+
|
205 |
+
Here is the annotated image:
|
206 |
+
|
207 |
+
<a href="https://huggingface.co/ydshieh/kosmos-2-patch14-224/resolve/main/annotated_snowman.jpg" target="_blank"><img src="https://huggingface.co/ydshieh/kosmos-2-patch14-224/resolve/main/annotated_snowman.jpg" width="500"></a>
|
added_tokens.json
ADDED
@@ -0,0 +1,1037 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</chunk>": 64005,
|
3 |
+
"</delimiter_of_multi_objects/>": 64011,
|
4 |
+
"</doc>": 64002,
|
5 |
+
"</image>": 64004,
|
6 |
+
"</line>": 64006,
|
7 |
+
"</object>": 64010,
|
8 |
+
"</phrase>": 64008,
|
9 |
+
"<grounding>": 64012,
|
10 |
+
"<image>": 64003,
|
11 |
+
"<object>": 64009,
|
12 |
+
"<patch_index_0000>": 64013,
|
13 |
+
"<patch_index_0001>": 64014,
|
14 |
+
"<patch_index_0002>": 64015,
|
15 |
+
"<patch_index_0003>": 64016,
|
16 |
+
"<patch_index_0004>": 64017,
|
17 |
+
"<patch_index_0005>": 64018,
|
18 |
+
"<patch_index_0006>": 64019,
|
19 |
+
"<patch_index_0007>": 64020,
|
20 |
+
"<patch_index_0008>": 64021,
|
21 |
+
"<patch_index_0009>": 64022,
|
22 |
+
"<patch_index_0010>": 64023,
|
23 |
+
"<patch_index_0011>": 64024,
|
24 |
+
"<patch_index_0012>": 64025,
|
25 |
+
"<patch_index_0013>": 64026,
|
26 |
+
"<patch_index_0014>": 64027,
|
27 |
+
"<patch_index_0015>": 64028,
|
28 |
+
"<patch_index_0016>": 64029,
|
29 |
+
"<patch_index_0017>": 64030,
|
30 |
+
"<patch_index_0018>": 64031,
|
31 |
+
"<patch_index_0019>": 64032,
|
32 |
+
"<patch_index_0020>": 64033,
|
33 |
+
"<patch_index_0021>": 64034,
|
34 |
+
"<patch_index_0022>": 64035,
|
35 |
+
"<patch_index_0023>": 64036,
|
36 |
+
"<patch_index_0024>": 64037,
|
37 |
+
"<patch_index_0025>": 64038,
|
38 |
+
"<patch_index_0026>": 64039,
|
39 |
+
"<patch_index_0027>": 64040,
|
40 |
+
"<patch_index_0028>": 64041,
|
41 |
+
"<patch_index_0029>": 64042,
|
42 |
+
"<patch_index_0030>": 64043,
|
43 |
+
"<patch_index_0031>": 64044,
|
44 |
+
"<patch_index_0032>": 64045,
|
45 |
+
"<patch_index_0033>": 64046,
|
46 |
+
"<patch_index_0034>": 64047,
|
47 |
+
"<patch_index_0035>": 64048,
|
48 |
+
"<patch_index_0036>": 64049,
|
49 |
+
"<patch_index_0037>": 64050,
|
50 |
+
"<patch_index_0038>": 64051,
|
51 |
+
"<patch_index_0039>": 64052,
|
52 |
+
"<patch_index_0040>": 64053,
|
53 |
+
"<patch_index_0041>": 64054,
|
54 |
+
"<patch_index_0042>": 64055,
|
55 |
+
"<patch_index_0043>": 64056,
|
56 |
+
"<patch_index_0044>": 64057,
|
57 |
+
"<patch_index_0045>": 64058,
|
58 |
+
"<patch_index_0046>": 64059,
|
59 |
+
"<patch_index_0047>": 64060,
|
60 |
+
"<patch_index_0048>": 64061,
|
61 |
+
"<patch_index_0049>": 64062,
|
62 |
+
"<patch_index_0050>": 64063,
|
63 |
+
"<patch_index_0051>": 64064,
|
64 |
+
"<patch_index_0052>": 64065,
|
65 |
+
"<patch_index_0053>": 64066,
|
66 |
+
"<patch_index_0054>": 64067,
|
67 |
+
"<patch_index_0055>": 64068,
|
68 |
+
"<patch_index_0056>": 64069,
|
69 |
+
"<patch_index_0057>": 64070,
|
70 |
+
"<patch_index_0058>": 64071,
|
71 |
+
"<patch_index_0059>": 64072,
|
72 |
+
"<patch_index_0060>": 64073,
|
73 |
+
"<patch_index_0061>": 64074,
|
74 |
+
"<patch_index_0062>": 64075,
|
75 |
+
"<patch_index_0063>": 64076,
|
76 |
+
"<patch_index_0064>": 64077,
|
77 |
+
"<patch_index_0065>": 64078,
|
78 |
+
"<patch_index_0066>": 64079,
|
79 |
+
"<patch_index_0067>": 64080,
|
80 |
+
"<patch_index_0068>": 64081,
|
81 |
+
"<patch_index_0069>": 64082,
|
82 |
+
"<patch_index_0070>": 64083,
|
83 |
+
"<patch_index_0071>": 64084,
|
84 |
+
"<patch_index_0072>": 64085,
|
85 |
+
"<patch_index_0073>": 64086,
|
86 |
+
"<patch_index_0074>": 64087,
|
87 |
+
"<patch_index_0075>": 64088,
|
88 |
+
"<patch_index_0076>": 64089,
|
89 |
+
"<patch_index_0077>": 64090,
|
90 |
+
"<patch_index_0078>": 64091,
|
91 |
+
"<patch_index_0079>": 64092,
|
92 |
+
"<patch_index_0080>": 64093,
|
93 |
+
"<patch_index_0081>": 64094,
|
94 |
+
"<patch_index_0082>": 64095,
|
95 |
+
"<patch_index_0083>": 64096,
|
96 |
+
"<patch_index_0084>": 64097,
|
97 |
+
"<patch_index_0085>": 64098,
|
98 |
+
"<patch_index_0086>": 64099,
|
99 |
+
"<patch_index_0087>": 64100,
|
100 |
+
"<patch_index_0088>": 64101,
|
101 |
+
"<patch_index_0089>": 64102,
|
102 |
+
"<patch_index_0090>": 64103,
|
103 |
+
"<patch_index_0091>": 64104,
|
104 |
+
"<patch_index_0092>": 64105,
|
105 |
+
"<patch_index_0093>": 64106,
|
106 |
+
"<patch_index_0094>": 64107,
|
107 |
+
"<patch_index_0095>": 64108,
|
108 |
+
"<patch_index_0096>": 64109,
|
109 |
+
"<patch_index_0097>": 64110,
|
110 |
+
"<patch_index_0098>": 64111,
|
111 |
+
"<patch_index_0099>": 64112,
|
112 |
+
"<patch_index_0100>": 64113,
|
113 |
+
"<patch_index_0101>": 64114,
|
114 |
+
"<patch_index_0102>": 64115,
|
115 |
+
"<patch_index_0103>": 64116,
|
116 |
+
"<patch_index_0104>": 64117,
|
117 |
+
"<patch_index_0105>": 64118,
|
118 |
+
"<patch_index_0106>": 64119,
|
119 |
+
"<patch_index_0107>": 64120,
|
120 |
+
"<patch_index_0108>": 64121,
|
121 |
+
"<patch_index_0109>": 64122,
|
122 |
+
"<patch_index_0110>": 64123,
|
123 |
+
"<patch_index_0111>": 64124,
|
124 |
+
"<patch_index_0112>": 64125,
|
125 |
+
"<patch_index_0113>": 64126,
|
126 |
+
"<patch_index_0114>": 64127,
|
127 |
+
"<patch_index_0115>": 64128,
|
128 |
+
"<patch_index_0116>": 64129,
|
129 |
+
"<patch_index_0117>": 64130,
|
130 |
+
"<patch_index_0118>": 64131,
|
131 |
+
"<patch_index_0119>": 64132,
|
132 |
+
"<patch_index_0120>": 64133,
|
133 |
+
"<patch_index_0121>": 64134,
|
134 |
+
"<patch_index_0122>": 64135,
|
135 |
+
"<patch_index_0123>": 64136,
|
136 |
+
"<patch_index_0124>": 64137,
|
137 |
+
"<patch_index_0125>": 64138,
|
138 |
+
"<patch_index_0126>": 64139,
|
139 |
+
"<patch_index_0127>": 64140,
|
140 |
+
"<patch_index_0128>": 64141,
|
141 |
+
"<patch_index_0129>": 64142,
|
142 |
+
"<patch_index_0130>": 64143,
|
143 |
+
"<patch_index_0131>": 64144,
|
144 |
+
"<patch_index_0132>": 64145,
|
145 |
+
"<patch_index_0133>": 64146,
|
146 |
+
"<patch_index_0134>": 64147,
|
147 |
+
"<patch_index_0135>": 64148,
|
148 |
+
"<patch_index_0136>": 64149,
|
149 |
+
"<patch_index_0137>": 64150,
|
150 |
+
"<patch_index_0138>": 64151,
|
151 |
+
"<patch_index_0139>": 64152,
|
152 |
+
"<patch_index_0140>": 64153,
|
153 |
+
"<patch_index_0141>": 64154,
|
154 |
+
"<patch_index_0142>": 64155,
|
155 |
+
"<patch_index_0143>": 64156,
|
156 |
+
"<patch_index_0144>": 64157,
|
157 |
+
"<patch_index_0145>": 64158,
|
158 |
+
"<patch_index_0146>": 64159,
|
159 |
+
"<patch_index_0147>": 64160,
|
160 |
+
"<patch_index_0148>": 64161,
|
161 |
+
"<patch_index_0149>": 64162,
|
162 |
+
"<patch_index_0150>": 64163,
|
163 |
+
"<patch_index_0151>": 64164,
|
164 |
+
"<patch_index_0152>": 64165,
|
165 |
+
"<patch_index_0153>": 64166,
|
166 |
+
"<patch_index_0154>": 64167,
|
167 |
+
"<patch_index_0155>": 64168,
|
168 |
+
"<patch_index_0156>": 64169,
|
169 |
+
"<patch_index_0157>": 64170,
|
170 |
+
"<patch_index_0158>": 64171,
|
171 |
+
"<patch_index_0159>": 64172,
|
172 |
+
"<patch_index_0160>": 64173,
|
173 |
+
"<patch_index_0161>": 64174,
|
174 |
+
"<patch_index_0162>": 64175,
|
175 |
+
"<patch_index_0163>": 64176,
|
176 |
+
"<patch_index_0164>": 64177,
|
177 |
+
"<patch_index_0165>": 64178,
|
178 |
+
"<patch_index_0166>": 64179,
|
179 |
+
"<patch_index_0167>": 64180,
|
180 |
+
"<patch_index_0168>": 64181,
|
181 |
+
"<patch_index_0169>": 64182,
|
182 |
+
"<patch_index_0170>": 64183,
|
183 |
+
"<patch_index_0171>": 64184,
|
184 |
+
"<patch_index_0172>": 64185,
|
185 |
+
"<patch_index_0173>": 64186,
|
186 |
+
"<patch_index_0174>": 64187,
|
187 |
+
"<patch_index_0175>": 64188,
|
188 |
+
"<patch_index_0176>": 64189,
|
189 |
+
"<patch_index_0177>": 64190,
|
190 |
+
"<patch_index_0178>": 64191,
|
191 |
+
"<patch_index_0179>": 64192,
|
192 |
+
"<patch_index_0180>": 64193,
|
193 |
+
"<patch_index_0181>": 64194,
|
194 |
+
"<patch_index_0182>": 64195,
|
195 |
+
"<patch_index_0183>": 64196,
|
196 |
+
"<patch_index_0184>": 64197,
|
197 |
+
"<patch_index_0185>": 64198,
|
198 |
+
"<patch_index_0186>": 64199,
|
199 |
+
"<patch_index_0187>": 64200,
|
200 |
+
"<patch_index_0188>": 64201,
|
201 |
+
"<patch_index_0189>": 64202,
|
202 |
+
"<patch_index_0190>": 64203,
|
203 |
+
"<patch_index_0191>": 64204,
|
204 |
+
"<patch_index_0192>": 64205,
|
205 |
+
"<patch_index_0193>": 64206,
|
206 |
+
"<patch_index_0194>": 64207,
|
207 |
+
"<patch_index_0195>": 64208,
|
208 |
+
"<patch_index_0196>": 64209,
|
209 |
+
"<patch_index_0197>": 64210,
|
210 |
+
"<patch_index_0198>": 64211,
|
211 |
+
"<patch_index_0199>": 64212,
|
212 |
+
"<patch_index_0200>": 64213,
|
213 |
+
"<patch_index_0201>": 64214,
|
214 |
+
"<patch_index_0202>": 64215,
|
215 |
+
"<patch_index_0203>": 64216,
|
216 |
+
"<patch_index_0204>": 64217,
|
217 |
+
"<patch_index_0205>": 64218,
|
218 |
+
"<patch_index_0206>": 64219,
|
219 |
+
"<patch_index_0207>": 64220,
|
220 |
+
"<patch_index_0208>": 64221,
|
221 |
+
"<patch_index_0209>": 64222,
|
222 |
+
"<patch_index_0210>": 64223,
|
223 |
+
"<patch_index_0211>": 64224,
|
224 |
+
"<patch_index_0212>": 64225,
|
225 |
+
"<patch_index_0213>": 64226,
|
226 |
+
"<patch_index_0214>": 64227,
|
227 |
+
"<patch_index_0215>": 64228,
|
228 |
+
"<patch_index_0216>": 64229,
|
229 |
+
"<patch_index_0217>": 64230,
|
230 |
+
"<patch_index_0218>": 64231,
|
231 |
+
"<patch_index_0219>": 64232,
|
232 |
+
"<patch_index_0220>": 64233,
|
233 |
+
"<patch_index_0221>": 64234,
|
234 |
+
"<patch_index_0222>": 64235,
|
235 |
+
"<patch_index_0223>": 64236,
|
236 |
+
"<patch_index_0224>": 64237,
|
237 |
+
"<patch_index_0225>": 64238,
|
238 |
+
"<patch_index_0226>": 64239,
|
239 |
+
"<patch_index_0227>": 64240,
|
240 |
+
"<patch_index_0228>": 64241,
|
241 |
+
"<patch_index_0229>": 64242,
|
242 |
+
"<patch_index_0230>": 64243,
|
243 |
+
"<patch_index_0231>": 64244,
|
244 |
+
"<patch_index_0232>": 64245,
|
245 |
+
"<patch_index_0233>": 64246,
|
246 |
+
"<patch_index_0234>": 64247,
|
247 |
+
"<patch_index_0235>": 64248,
|
248 |
+
"<patch_index_0236>": 64249,
|
249 |
+
"<patch_index_0237>": 64250,
|
250 |
+
"<patch_index_0238>": 64251,
|
251 |
+
"<patch_index_0239>": 64252,
|
252 |
+
"<patch_index_0240>": 64253,
|
253 |
+
"<patch_index_0241>": 64254,
|
254 |
+
"<patch_index_0242>": 64255,
|
255 |
+
"<patch_index_0243>": 64256,
|
256 |
+
"<patch_index_0244>": 64257,
|
257 |
+
"<patch_index_0245>": 64258,
|
258 |
+
"<patch_index_0246>": 64259,
|
259 |
+
"<patch_index_0247>": 64260,
|
260 |
+
"<patch_index_0248>": 64261,
|
261 |
+
"<patch_index_0249>": 64262,
|
262 |
+
"<patch_index_0250>": 64263,
|
263 |
+
"<patch_index_0251>": 64264,
|
264 |
+
"<patch_index_0252>": 64265,
|
265 |
+
"<patch_index_0253>": 64266,
|
266 |
+
"<patch_index_0254>": 64267,
|
267 |
+
"<patch_index_0255>": 64268,
|
268 |
+
"<patch_index_0256>": 64269,
|
269 |
+
"<patch_index_0257>": 64270,
|
270 |
+
"<patch_index_0258>": 64271,
|
271 |
+
"<patch_index_0259>": 64272,
|
272 |
+
"<patch_index_0260>": 64273,
|
273 |
+
"<patch_index_0261>": 64274,
|
274 |
+
"<patch_index_0262>": 64275,
|
275 |
+
"<patch_index_0263>": 64276,
|
276 |
+
"<patch_index_0264>": 64277,
|
277 |
+
"<patch_index_0265>": 64278,
|
278 |
+
"<patch_index_0266>": 64279,
|
279 |
+
"<patch_index_0267>": 64280,
|
280 |
+
"<patch_index_0268>": 64281,
|
281 |
+
"<patch_index_0269>": 64282,
|
282 |
+
"<patch_index_0270>": 64283,
|
283 |
+
"<patch_index_0271>": 64284,
|
284 |
+
"<patch_index_0272>": 64285,
|
285 |
+
"<patch_index_0273>": 64286,
|
286 |
+
"<patch_index_0274>": 64287,
|
287 |
+
"<patch_index_0275>": 64288,
|
288 |
+
"<patch_index_0276>": 64289,
|
289 |
+
"<patch_index_0277>": 64290,
|
290 |
+
"<patch_index_0278>": 64291,
|
291 |
+
"<patch_index_0279>": 64292,
|
292 |
+
"<patch_index_0280>": 64293,
|
293 |
+
"<patch_index_0281>": 64294,
|
294 |
+
"<patch_index_0282>": 64295,
|
295 |
+
"<patch_index_0283>": 64296,
|
296 |
+
"<patch_index_0284>": 64297,
|
297 |
+
"<patch_index_0285>": 64298,
|
298 |
+
"<patch_index_0286>": 64299,
|
299 |
+
"<patch_index_0287>": 64300,
|
300 |
+
"<patch_index_0288>": 64301,
|
301 |
+
"<patch_index_0289>": 64302,
|
302 |
+
"<patch_index_0290>": 64303,
|
303 |
+
"<patch_index_0291>": 64304,
|
304 |
+
"<patch_index_0292>": 64305,
|
305 |
+
"<patch_index_0293>": 64306,
|
306 |
+
"<patch_index_0294>": 64307,
|
307 |
+
"<patch_index_0295>": 64308,
|
308 |
+
"<patch_index_0296>": 64309,
|
309 |
+
"<patch_index_0297>": 64310,
|
310 |
+
"<patch_index_0298>": 64311,
|
311 |
+
"<patch_index_0299>": 64312,
|
312 |
+
"<patch_index_0300>": 64313,
|
313 |
+
"<patch_index_0301>": 64314,
|
314 |
+
"<patch_index_0302>": 64315,
|
315 |
+
"<patch_index_0303>": 64316,
|
316 |
+
"<patch_index_0304>": 64317,
|
317 |
+
"<patch_index_0305>": 64318,
|
318 |
+
"<patch_index_0306>": 64319,
|
319 |
+
"<patch_index_0307>": 64320,
|
320 |
+
"<patch_index_0308>": 64321,
|
321 |
+
"<patch_index_0309>": 64322,
|
322 |
+
"<patch_index_0310>": 64323,
|
323 |
+
"<patch_index_0311>": 64324,
|
324 |
+
"<patch_index_0312>": 64325,
|
325 |
+
"<patch_index_0313>": 64326,
|
326 |
+
"<patch_index_0314>": 64327,
|
327 |
+
"<patch_index_0315>": 64328,
|
328 |
+
"<patch_index_0316>": 64329,
|
329 |
+
"<patch_index_0317>": 64330,
|
330 |
+
"<patch_index_0318>": 64331,
|
331 |
+
"<patch_index_0319>": 64332,
|
332 |
+
"<patch_index_0320>": 64333,
|
333 |
+
"<patch_index_0321>": 64334,
|
334 |
+
"<patch_index_0322>": 64335,
|
335 |
+
"<patch_index_0323>": 64336,
|
336 |
+
"<patch_index_0324>": 64337,
|
337 |
+
"<patch_index_0325>": 64338,
|
338 |
+
"<patch_index_0326>": 64339,
|
339 |
+
"<patch_index_0327>": 64340,
|
340 |
+
"<patch_index_0328>": 64341,
|
341 |
+
"<patch_index_0329>": 64342,
|
342 |
+
"<patch_index_0330>": 64343,
|
343 |
+
"<patch_index_0331>": 64344,
|
344 |
+
"<patch_index_0332>": 64345,
|
345 |
+
"<patch_index_0333>": 64346,
|
346 |
+
"<patch_index_0334>": 64347,
|
347 |
+
"<patch_index_0335>": 64348,
|
348 |
+
"<patch_index_0336>": 64349,
|
349 |
+
"<patch_index_0337>": 64350,
|
350 |
+
"<patch_index_0338>": 64351,
|
351 |
+
"<patch_index_0339>": 64352,
|
352 |
+
"<patch_index_0340>": 64353,
|
353 |
+
"<patch_index_0341>": 64354,
|
354 |
+
"<patch_index_0342>": 64355,
|
355 |
+
"<patch_index_0343>": 64356,
|
356 |
+
"<patch_index_0344>": 64357,
|
357 |
+
"<patch_index_0345>": 64358,
|
358 |
+
"<patch_index_0346>": 64359,
|
359 |
+
"<patch_index_0347>": 64360,
|
360 |
+
"<patch_index_0348>": 64361,
|
361 |
+
"<patch_index_0349>": 64362,
|
362 |
+
"<patch_index_0350>": 64363,
|
363 |
+
"<patch_index_0351>": 64364,
|
364 |
+
"<patch_index_0352>": 64365,
|
365 |
+
"<patch_index_0353>": 64366,
|
366 |
+
"<patch_index_0354>": 64367,
|
367 |
+
"<patch_index_0355>": 64368,
|
368 |
+
"<patch_index_0356>": 64369,
|
369 |
+
"<patch_index_0357>": 64370,
|
370 |
+
"<patch_index_0358>": 64371,
|
371 |
+
"<patch_index_0359>": 64372,
|
372 |
+
"<patch_index_0360>": 64373,
|
373 |
+
"<patch_index_0361>": 64374,
|
374 |
+
"<patch_index_0362>": 64375,
|
375 |
+
"<patch_index_0363>": 64376,
|
376 |
+
"<patch_index_0364>": 64377,
|
377 |
+
"<patch_index_0365>": 64378,
|
378 |
+
"<patch_index_0366>": 64379,
|
379 |
+
"<patch_index_0367>": 64380,
|
380 |
+
"<patch_index_0368>": 64381,
|
381 |
+
"<patch_index_0369>": 64382,
|
382 |
+
"<patch_index_0370>": 64383,
|
383 |
+
"<patch_index_0371>": 64384,
|
384 |
+
"<patch_index_0372>": 64385,
|
385 |
+
"<patch_index_0373>": 64386,
|
386 |
+
"<patch_index_0374>": 64387,
|
387 |
+
"<patch_index_0375>": 64388,
|
388 |
+
"<patch_index_0376>": 64389,
|
389 |
+
"<patch_index_0377>": 64390,
|
390 |
+
"<patch_index_0378>": 64391,
|
391 |
+
"<patch_index_0379>": 64392,
|
392 |
+
"<patch_index_0380>": 64393,
|
393 |
+
"<patch_index_0381>": 64394,
|
394 |
+
"<patch_index_0382>": 64395,
|
395 |
+
"<patch_index_0383>": 64396,
|
396 |
+
"<patch_index_0384>": 64397,
|
397 |
+
"<patch_index_0385>": 64398,
|
398 |
+
"<patch_index_0386>": 64399,
|
399 |
+
"<patch_index_0387>": 64400,
|
400 |
+
"<patch_index_0388>": 64401,
|
401 |
+
"<patch_index_0389>": 64402,
|
402 |
+
"<patch_index_0390>": 64403,
|
403 |
+
"<patch_index_0391>": 64404,
|
404 |
+
"<patch_index_0392>": 64405,
|
405 |
+
"<patch_index_0393>": 64406,
|
406 |
+
"<patch_index_0394>": 64407,
|
407 |
+
"<patch_index_0395>": 64408,
|
408 |
+
"<patch_index_0396>": 64409,
|
409 |
+
"<patch_index_0397>": 64410,
|
410 |
+
"<patch_index_0398>": 64411,
|
411 |
+
"<patch_index_0399>": 64412,
|
412 |
+
"<patch_index_0400>": 64413,
|
413 |
+
"<patch_index_0401>": 64414,
|
414 |
+
"<patch_index_0402>": 64415,
|
415 |
+
"<patch_index_0403>": 64416,
|
416 |
+
"<patch_index_0404>": 64417,
|
417 |
+
"<patch_index_0405>": 64418,
|
418 |
+
"<patch_index_0406>": 64419,
|
419 |
+
"<patch_index_0407>": 64420,
|
420 |
+
"<patch_index_0408>": 64421,
|
421 |
+
"<patch_index_0409>": 64422,
|
422 |
+
"<patch_index_0410>": 64423,
|
423 |
+
"<patch_index_0411>": 64424,
|
424 |
+
"<patch_index_0412>": 64425,
|
425 |
+
"<patch_index_0413>": 64426,
|
426 |
+
"<patch_index_0414>": 64427,
|
427 |
+
"<patch_index_0415>": 64428,
|
428 |
+
"<patch_index_0416>": 64429,
|
429 |
+
"<patch_index_0417>": 64430,
|
430 |
+
"<patch_index_0418>": 64431,
|
431 |
+
"<patch_index_0419>": 64432,
|
432 |
+
"<patch_index_0420>": 64433,
|
433 |
+
"<patch_index_0421>": 64434,
|
434 |
+
"<patch_index_0422>": 64435,
|
435 |
+
"<patch_index_0423>": 64436,
|
436 |
+
"<patch_index_0424>": 64437,
|
437 |
+
"<patch_index_0425>": 64438,
|
438 |
+
"<patch_index_0426>": 64439,
|
439 |
+
"<patch_index_0427>": 64440,
|
440 |
+
"<patch_index_0428>": 64441,
|
441 |
+
"<patch_index_0429>": 64442,
|
442 |
+
"<patch_index_0430>": 64443,
|
443 |
+
"<patch_index_0431>": 64444,
|
444 |
+
"<patch_index_0432>": 64445,
|
445 |
+
"<patch_index_0433>": 64446,
|
446 |
+
"<patch_index_0434>": 64447,
|
447 |
+
"<patch_index_0435>": 64448,
|
448 |
+
"<patch_index_0436>": 64449,
|
449 |
+
"<patch_index_0437>": 64450,
|
450 |
+
"<patch_index_0438>": 64451,
|
451 |
+
"<patch_index_0439>": 64452,
|
452 |
+
"<patch_index_0440>": 64453,
|
453 |
+
"<patch_index_0441>": 64454,
|
454 |
+
"<patch_index_0442>": 64455,
|
455 |
+
"<patch_index_0443>": 64456,
|
456 |
+
"<patch_index_0444>": 64457,
|
457 |
+
"<patch_index_0445>": 64458,
|
458 |
+
"<patch_index_0446>": 64459,
|
459 |
+
"<patch_index_0447>": 64460,
|
460 |
+
"<patch_index_0448>": 64461,
|
461 |
+
"<patch_index_0449>": 64462,
|
462 |
+
"<patch_index_0450>": 64463,
|
463 |
+
"<patch_index_0451>": 64464,
|
464 |
+
"<patch_index_0452>": 64465,
|
465 |
+
"<patch_index_0453>": 64466,
|
466 |
+
"<patch_index_0454>": 64467,
|
467 |
+
"<patch_index_0455>": 64468,
|
468 |
+
"<patch_index_0456>": 64469,
|
469 |
+
"<patch_index_0457>": 64470,
|
470 |
+
"<patch_index_0458>": 64471,
|
471 |
+
"<patch_index_0459>": 64472,
|
472 |
+
"<patch_index_0460>": 64473,
|
473 |
+
"<patch_index_0461>": 64474,
|
474 |
+
"<patch_index_0462>": 64475,
|
475 |
+
"<patch_index_0463>": 64476,
|
476 |
+
"<patch_index_0464>": 64477,
|
477 |
+
"<patch_index_0465>": 64478,
|
478 |
+
"<patch_index_0466>": 64479,
|
479 |
+
"<patch_index_0467>": 64480,
|
480 |
+
"<patch_index_0468>": 64481,
|
481 |
+
"<patch_index_0469>": 64482,
|
482 |
+
"<patch_index_0470>": 64483,
|
483 |
+
"<patch_index_0471>": 64484,
|
484 |
+
"<patch_index_0472>": 64485,
|
485 |
+
"<patch_index_0473>": 64486,
|
486 |
+
"<patch_index_0474>": 64487,
|
487 |
+
"<patch_index_0475>": 64488,
|
488 |
+
"<patch_index_0476>": 64489,
|
489 |
+
"<patch_index_0477>": 64490,
|
490 |
+
"<patch_index_0478>": 64491,
|
491 |
+
"<patch_index_0479>": 64492,
|
492 |
+
"<patch_index_0480>": 64493,
|
493 |
+
"<patch_index_0481>": 64494,
|
494 |
+
"<patch_index_0482>": 64495,
|
495 |
+
"<patch_index_0483>": 64496,
|
496 |
+
"<patch_index_0484>": 64497,
|
497 |
+
"<patch_index_0485>": 64498,
|
498 |
+
"<patch_index_0486>": 64499,
|
499 |
+
"<patch_index_0487>": 64500,
|
500 |
+
"<patch_index_0488>": 64501,
|
501 |
+
"<patch_index_0489>": 64502,
|
502 |
+
"<patch_index_0490>": 64503,
|
503 |
+
"<patch_index_0491>": 64504,
|
504 |
+
"<patch_index_0492>": 64505,
|
505 |
+
"<patch_index_0493>": 64506,
|
506 |
+
"<patch_index_0494>": 64507,
|
507 |
+
"<patch_index_0495>": 64508,
|
508 |
+
"<patch_index_0496>": 64509,
|
509 |
+
"<patch_index_0497>": 64510,
|
510 |
+
"<patch_index_0498>": 64511,
|
511 |
+
"<patch_index_0499>": 64512,
|
512 |
+
"<patch_index_0500>": 64513,
|
513 |
+
"<patch_index_0501>": 64514,
|
514 |
+
"<patch_index_0502>": 64515,
|
515 |
+
"<patch_index_0503>": 64516,
|
516 |
+
"<patch_index_0504>": 64517,
|
517 |
+
"<patch_index_0505>": 64518,
|
518 |
+
"<patch_index_0506>": 64519,
|
519 |
+
"<patch_index_0507>": 64520,
|
520 |
+
"<patch_index_0508>": 64521,
|
521 |
+
"<patch_index_0509>": 64522,
|
522 |
+
"<patch_index_0510>": 64523,
|
523 |
+
"<patch_index_0511>": 64524,
|
524 |
+
"<patch_index_0512>": 64525,
|
525 |
+
"<patch_index_0513>": 64526,
|
526 |
+
"<patch_index_0514>": 64527,
|
527 |
+
"<patch_index_0515>": 64528,
|
528 |
+
"<patch_index_0516>": 64529,
|
529 |
+
"<patch_index_0517>": 64530,
|
530 |
+
"<patch_index_0518>": 64531,
|
531 |
+
"<patch_index_0519>": 64532,
|
532 |
+
"<patch_index_0520>": 64533,
|
533 |
+
"<patch_index_0521>": 64534,
|
534 |
+
"<patch_index_0522>": 64535,
|
535 |
+
"<patch_index_0523>": 64536,
|
536 |
+
"<patch_index_0524>": 64537,
|
537 |
+
"<patch_index_0525>": 64538,
|
538 |
+
"<patch_index_0526>": 64539,
|
539 |
+
"<patch_index_0527>": 64540,
|
540 |
+
"<patch_index_0528>": 64541,
|
541 |
+
"<patch_index_0529>": 64542,
|
542 |
+
"<patch_index_0530>": 64543,
|
543 |
+
"<patch_index_0531>": 64544,
|
544 |
+
"<patch_index_0532>": 64545,
|
545 |
+
"<patch_index_0533>": 64546,
|
546 |
+
"<patch_index_0534>": 64547,
|
547 |
+
"<patch_index_0535>": 64548,
|
548 |
+
"<patch_index_0536>": 64549,
|
549 |
+
"<patch_index_0537>": 64550,
|
550 |
+
"<patch_index_0538>": 64551,
|
551 |
+
"<patch_index_0539>": 64552,
|
552 |
+
"<patch_index_0540>": 64553,
|
553 |
+
"<patch_index_0541>": 64554,
|
554 |
+
"<patch_index_0542>": 64555,
|
555 |
+
"<patch_index_0543>": 64556,
|
556 |
+
"<patch_index_0544>": 64557,
|
557 |
+
"<patch_index_0545>": 64558,
|
558 |
+
"<patch_index_0546>": 64559,
|
559 |
+
"<patch_index_0547>": 64560,
|
560 |
+
"<patch_index_0548>": 64561,
|
561 |
+
"<patch_index_0549>": 64562,
|
562 |
+
"<patch_index_0550>": 64563,
|
563 |
+
"<patch_index_0551>": 64564,
|
564 |
+
"<patch_index_0552>": 64565,
|
565 |
+
"<patch_index_0553>": 64566,
|
566 |
+
"<patch_index_0554>": 64567,
|
567 |
+
"<patch_index_0555>": 64568,
|
568 |
+
"<patch_index_0556>": 64569,
|
569 |
+
"<patch_index_0557>": 64570,
|
570 |
+
"<patch_index_0558>": 64571,
|
571 |
+
"<patch_index_0559>": 64572,
|
572 |
+
"<patch_index_0560>": 64573,
|
573 |
+
"<patch_index_0561>": 64574,
|
574 |
+
"<patch_index_0562>": 64575,
|
575 |
+
"<patch_index_0563>": 64576,
|
576 |
+
"<patch_index_0564>": 64577,
|
577 |
+
"<patch_index_0565>": 64578,
|
578 |
+
"<patch_index_0566>": 64579,
|
579 |
+
"<patch_index_0567>": 64580,
|
580 |
+
"<patch_index_0568>": 64581,
|
581 |
+
"<patch_index_0569>": 64582,
|
582 |
+
"<patch_index_0570>": 64583,
|
583 |
+
"<patch_index_0571>": 64584,
|
584 |
+
"<patch_index_0572>": 64585,
|
585 |
+
"<patch_index_0573>": 64586,
|
586 |
+
"<patch_index_0574>": 64587,
|
587 |
+
"<patch_index_0575>": 64588,
|
588 |
+
"<patch_index_0576>": 64589,
|
589 |
+
"<patch_index_0577>": 64590,
|
590 |
+
"<patch_index_0578>": 64591,
|
591 |
+
"<patch_index_0579>": 64592,
|
592 |
+
"<patch_index_0580>": 64593,
|
593 |
+
"<patch_index_0581>": 64594,
|
594 |
+
"<patch_index_0582>": 64595,
|
595 |
+
"<patch_index_0583>": 64596,
|
596 |
+
"<patch_index_0584>": 64597,
|
597 |
+
"<patch_index_0585>": 64598,
|
598 |
+
"<patch_index_0586>": 64599,
|
599 |
+
"<patch_index_0587>": 64600,
|
600 |
+
"<patch_index_0588>": 64601,
|
601 |
+
"<patch_index_0589>": 64602,
|
602 |
+
"<patch_index_0590>": 64603,
|
603 |
+
"<patch_index_0591>": 64604,
|
604 |
+
"<patch_index_0592>": 64605,
|
605 |
+
"<patch_index_0593>": 64606,
|
606 |
+
"<patch_index_0594>": 64607,
|
607 |
+
"<patch_index_0595>": 64608,
|
608 |
+
"<patch_index_0596>": 64609,
|
609 |
+
"<patch_index_0597>": 64610,
|
610 |
+
"<patch_index_0598>": 64611,
|
611 |
+
"<patch_index_0599>": 64612,
|
612 |
+
"<patch_index_0600>": 64613,
|
613 |
+
"<patch_index_0601>": 64614,
|
614 |
+
"<patch_index_0602>": 64615,
|
615 |
+
"<patch_index_0603>": 64616,
|
616 |
+
"<patch_index_0604>": 64617,
|
617 |
+
"<patch_index_0605>": 64618,
|
618 |
+
"<patch_index_0606>": 64619,
|
619 |
+
"<patch_index_0607>": 64620,
|
620 |
+
"<patch_index_0608>": 64621,
|
621 |
+
"<patch_index_0609>": 64622,
|
622 |
+
"<patch_index_0610>": 64623,
|
623 |
+
"<patch_index_0611>": 64624,
|
624 |
+
"<patch_index_0612>": 64625,
|
625 |
+
"<patch_index_0613>": 64626,
|
626 |
+
"<patch_index_0614>": 64627,
|
627 |
+
"<patch_index_0615>": 64628,
|
628 |
+
"<patch_index_0616>": 64629,
|
629 |
+
"<patch_index_0617>": 64630,
|
630 |
+
"<patch_index_0618>": 64631,
|
631 |
+
"<patch_index_0619>": 64632,
|
632 |
+
"<patch_index_0620>": 64633,
|
633 |
+
"<patch_index_0621>": 64634,
|
634 |
+
"<patch_index_0622>": 64635,
|
635 |
+
"<patch_index_0623>": 64636,
|
636 |
+
"<patch_index_0624>": 64637,
|
637 |
+
"<patch_index_0625>": 64638,
|
638 |
+
"<patch_index_0626>": 64639,
|
639 |
+
"<patch_index_0627>": 64640,
|
640 |
+
"<patch_index_0628>": 64641,
|
641 |
+
"<patch_index_0629>": 64642,
|
642 |
+
"<patch_index_0630>": 64643,
|
643 |
+
"<patch_index_0631>": 64644,
|
644 |
+
"<patch_index_0632>": 64645,
|
645 |
+
"<patch_index_0633>": 64646,
|
646 |
+
"<patch_index_0634>": 64647,
|
647 |
+
"<patch_index_0635>": 64648,
|
648 |
+
"<patch_index_0636>": 64649,
|
649 |
+
"<patch_index_0637>": 64650,
|
650 |
+
"<patch_index_0638>": 64651,
|
651 |
+
"<patch_index_0639>": 64652,
|
652 |
+
"<patch_index_0640>": 64653,
|
653 |
+
"<patch_index_0641>": 64654,
|
654 |
+
"<patch_index_0642>": 64655,
|
655 |
+
"<patch_index_0643>": 64656,
|
656 |
+
"<patch_index_0644>": 64657,
|
657 |
+
"<patch_index_0645>": 64658,
|
658 |
+
"<patch_index_0646>": 64659,
|
659 |
+
"<patch_index_0647>": 64660,
|
660 |
+
"<patch_index_0648>": 64661,
|
661 |
+
"<patch_index_0649>": 64662,
|
662 |
+
"<patch_index_0650>": 64663,
|
663 |
+
"<patch_index_0651>": 64664,
|
664 |
+
"<patch_index_0652>": 64665,
|
665 |
+
"<patch_index_0653>": 64666,
|
666 |
+
"<patch_index_0654>": 64667,
|
667 |
+
"<patch_index_0655>": 64668,
|
668 |
+
"<patch_index_0656>": 64669,
|
669 |
+
"<patch_index_0657>": 64670,
|
670 |
+
"<patch_index_0658>": 64671,
|
671 |
+
"<patch_index_0659>": 64672,
|
672 |
+
"<patch_index_0660>": 64673,
|
673 |
+
"<patch_index_0661>": 64674,
|
674 |
+
"<patch_index_0662>": 64675,
|
675 |
+
"<patch_index_0663>": 64676,
|
676 |
+
"<patch_index_0664>": 64677,
|
677 |
+
"<patch_index_0665>": 64678,
|
678 |
+
"<patch_index_0666>": 64679,
|
679 |
+
"<patch_index_0667>": 64680,
|
680 |
+
"<patch_index_0668>": 64681,
|
681 |
+
"<patch_index_0669>": 64682,
|
682 |
+
"<patch_index_0670>": 64683,
|
683 |
+
"<patch_index_0671>": 64684,
|
684 |
+
"<patch_index_0672>": 64685,
|
685 |
+
"<patch_index_0673>": 64686,
|
686 |
+
"<patch_index_0674>": 64687,
|
687 |
+
"<patch_index_0675>": 64688,
|
688 |
+
"<patch_index_0676>": 64689,
|
689 |
+
"<patch_index_0677>": 64690,
|
690 |
+
"<patch_index_0678>": 64691,
|
691 |
+
"<patch_index_0679>": 64692,
|
692 |
+
"<patch_index_0680>": 64693,
|
693 |
+
"<patch_index_0681>": 64694,
|
694 |
+
"<patch_index_0682>": 64695,
|
695 |
+
"<patch_index_0683>": 64696,
|
696 |
+
"<patch_index_0684>": 64697,
|
697 |
+
"<patch_index_0685>": 64698,
|
698 |
+
"<patch_index_0686>": 64699,
|
699 |
+
"<patch_index_0687>": 64700,
|
700 |
+
"<patch_index_0688>": 64701,
|
701 |
+
"<patch_index_0689>": 64702,
|
702 |
+
"<patch_index_0690>": 64703,
|
703 |
+
"<patch_index_0691>": 64704,
|
704 |
+
"<patch_index_0692>": 64705,
|
705 |
+
"<patch_index_0693>": 64706,
|
706 |
+
"<patch_index_0694>": 64707,
|
707 |
+
"<patch_index_0695>": 64708,
|
708 |
+
"<patch_index_0696>": 64709,
|
709 |
+
"<patch_index_0697>": 64710,
|
710 |
+
"<patch_index_0698>": 64711,
|
711 |
+
"<patch_index_0699>": 64712,
|
712 |
+
"<patch_index_0700>": 64713,
|
713 |
+
"<patch_index_0701>": 64714,
|
714 |
+
"<patch_index_0702>": 64715,
|
715 |
+
"<patch_index_0703>": 64716,
|
716 |
+
"<patch_index_0704>": 64717,
|
717 |
+
"<patch_index_0705>": 64718,
|
718 |
+
"<patch_index_0706>": 64719,
|
719 |
+
"<patch_index_0707>": 64720,
|
720 |
+
"<patch_index_0708>": 64721,
|
721 |
+
"<patch_index_0709>": 64722,
|
722 |
+
"<patch_index_0710>": 64723,
|
723 |
+
"<patch_index_0711>": 64724,
|
724 |
+
"<patch_index_0712>": 64725,
|
725 |
+
"<patch_index_0713>": 64726,
|
726 |
+
"<patch_index_0714>": 64727,
|
727 |
+
"<patch_index_0715>": 64728,
|
728 |
+
"<patch_index_0716>": 64729,
|
729 |
+
"<patch_index_0717>": 64730,
|
730 |
+
"<patch_index_0718>": 64731,
|
731 |
+
"<patch_index_0719>": 64732,
|
732 |
+
"<patch_index_0720>": 64733,
|
733 |
+
"<patch_index_0721>": 64734,
|
734 |
+
"<patch_index_0722>": 64735,
|
735 |
+
"<patch_index_0723>": 64736,
|
736 |
+
"<patch_index_0724>": 64737,
|
737 |
+
"<patch_index_0725>": 64738,
|
738 |
+
"<patch_index_0726>": 64739,
|
739 |
+
"<patch_index_0727>": 64740,
|
740 |
+
"<patch_index_0728>": 64741,
|
741 |
+
"<patch_index_0729>": 64742,
|
742 |
+
"<patch_index_0730>": 64743,
|
743 |
+
"<patch_index_0731>": 64744,
|
744 |
+
"<patch_index_0732>": 64745,
|
745 |
+
"<patch_index_0733>": 64746,
|
746 |
+
"<patch_index_0734>": 64747,
|
747 |
+
"<patch_index_0735>": 64748,
|
748 |
+
"<patch_index_0736>": 64749,
|
749 |
+
"<patch_index_0737>": 64750,
|
750 |
+
"<patch_index_0738>": 64751,
|
751 |
+
"<patch_index_0739>": 64752,
|
752 |
+
"<patch_index_0740>": 64753,
|
753 |
+
"<patch_index_0741>": 64754,
|
754 |
+
"<patch_index_0742>": 64755,
|
755 |
+
"<patch_index_0743>": 64756,
|
756 |
+
"<patch_index_0744>": 64757,
|
757 |
+
"<patch_index_0745>": 64758,
|
758 |
+
"<patch_index_0746>": 64759,
|
759 |
+
"<patch_index_0747>": 64760,
|
760 |
+
"<patch_index_0748>": 64761,
|
761 |
+
"<patch_index_0749>": 64762,
|
762 |
+
"<patch_index_0750>": 64763,
|
763 |
+
"<patch_index_0751>": 64764,
|
764 |
+
"<patch_index_0752>": 64765,
|
765 |
+
"<patch_index_0753>": 64766,
|
766 |
+
"<patch_index_0754>": 64767,
|
767 |
+
"<patch_index_0755>": 64768,
|
768 |
+
"<patch_index_0756>": 64769,
|
769 |
+
"<patch_index_0757>": 64770,
|
770 |
+
"<patch_index_0758>": 64771,
|
771 |
+
"<patch_index_0759>": 64772,
|
772 |
+
"<patch_index_0760>": 64773,
|
773 |
+
"<patch_index_0761>": 64774,
|
774 |
+
"<patch_index_0762>": 64775,
|
775 |
+
"<patch_index_0763>": 64776,
|
776 |
+
"<patch_index_0764>": 64777,
|
777 |
+
"<patch_index_0765>": 64778,
|
778 |
+
"<patch_index_0766>": 64779,
|
779 |
+
"<patch_index_0767>": 64780,
|
780 |
+
"<patch_index_0768>": 64781,
|
781 |
+
"<patch_index_0769>": 64782,
|
782 |
+
"<patch_index_0770>": 64783,
|
783 |
+
"<patch_index_0771>": 64784,
|
784 |
+
"<patch_index_0772>": 64785,
|
785 |
+
"<patch_index_0773>": 64786,
|
786 |
+
"<patch_index_0774>": 64787,
|
787 |
+
"<patch_index_0775>": 64788,
|
788 |
+
"<patch_index_0776>": 64789,
|
789 |
+
"<patch_index_0777>": 64790,
|
790 |
+
"<patch_index_0778>": 64791,
|
791 |
+
"<patch_index_0779>": 64792,
|
792 |
+
"<patch_index_0780>": 64793,
|
793 |
+
"<patch_index_0781>": 64794,
|
794 |
+
"<patch_index_0782>": 64795,
|
795 |
+
"<patch_index_0783>": 64796,
|
796 |
+
"<patch_index_0784>": 64797,
|
797 |
+
"<patch_index_0785>": 64798,
|
798 |
+
"<patch_index_0786>": 64799,
|
799 |
+
"<patch_index_0787>": 64800,
|
800 |
+
"<patch_index_0788>": 64801,
|
801 |
+
"<patch_index_0789>": 64802,
|
802 |
+
"<patch_index_0790>": 64803,
|
803 |
+
"<patch_index_0791>": 64804,
|
804 |
+
"<patch_index_0792>": 64805,
|
805 |
+
"<patch_index_0793>": 64806,
|
806 |
+
"<patch_index_0794>": 64807,
|
807 |
+
"<patch_index_0795>": 64808,
|
808 |
+
"<patch_index_0796>": 64809,
|
809 |
+
"<patch_index_0797>": 64810,
|
810 |
+
"<patch_index_0798>": 64811,
|
811 |
+
"<patch_index_0799>": 64812,
|
812 |
+
"<patch_index_0800>": 64813,
|
813 |
+
"<patch_index_0801>": 64814,
|
814 |
+
"<patch_index_0802>": 64815,
|
815 |
+
"<patch_index_0803>": 64816,
|
816 |
+
"<patch_index_0804>": 64817,
|
817 |
+
"<patch_index_0805>": 64818,
|
818 |
+
"<patch_index_0806>": 64819,
|
819 |
+
"<patch_index_0807>": 64820,
|
820 |
+
"<patch_index_0808>": 64821,
|
821 |
+
"<patch_index_0809>": 64822,
|
822 |
+
"<patch_index_0810>": 64823,
|
823 |
+
"<patch_index_0811>": 64824,
|
824 |
+
"<patch_index_0812>": 64825,
|
825 |
+
"<patch_index_0813>": 64826,
|
826 |
+
"<patch_index_0814>": 64827,
|
827 |
+
"<patch_index_0815>": 64828,
|
828 |
+
"<patch_index_0816>": 64829,
|
829 |
+
"<patch_index_0817>": 64830,
|
830 |
+
"<patch_index_0818>": 64831,
|
831 |
+
"<patch_index_0819>": 64832,
|
832 |
+
"<patch_index_0820>": 64833,
|
833 |
+
"<patch_index_0821>": 64834,
|
834 |
+
"<patch_index_0822>": 64835,
|
835 |
+
"<patch_index_0823>": 64836,
|
836 |
+
"<patch_index_0824>": 64837,
|
837 |
+
"<patch_index_0825>": 64838,
|
838 |
+
"<patch_index_0826>": 64839,
|
839 |
+
"<patch_index_0827>": 64840,
|
840 |
+
"<patch_index_0828>": 64841,
|
841 |
+
"<patch_index_0829>": 64842,
|
842 |
+
"<patch_index_0830>": 64843,
|
843 |
+
"<patch_index_0831>": 64844,
|
844 |
+
"<patch_index_0832>": 64845,
|
845 |
+
"<patch_index_0833>": 64846,
|
846 |
+
"<patch_index_0834>": 64847,
|
847 |
+
"<patch_index_0835>": 64848,
|
848 |
+
"<patch_index_0836>": 64849,
|
849 |
+
"<patch_index_0837>": 64850,
|
850 |
+
"<patch_index_0838>": 64851,
|
851 |
+
"<patch_index_0839>": 64852,
|
852 |
+
"<patch_index_0840>": 64853,
|
853 |
+
"<patch_index_0841>": 64854,
|
854 |
+
"<patch_index_0842>": 64855,
|
855 |
+
"<patch_index_0843>": 64856,
|
856 |
+
"<patch_index_0844>": 64857,
|
857 |
+
"<patch_index_0845>": 64858,
|
858 |
+
"<patch_index_0846>": 64859,
|
859 |
+
"<patch_index_0847>": 64860,
|
860 |
+
"<patch_index_0848>": 64861,
|
861 |
+
"<patch_index_0849>": 64862,
|
862 |
+
"<patch_index_0850>": 64863,
|
863 |
+
"<patch_index_0851>": 64864,
|
864 |
+
"<patch_index_0852>": 64865,
|
865 |
+
"<patch_index_0853>": 64866,
|
866 |
+
"<patch_index_0854>": 64867,
|
867 |
+
"<patch_index_0855>": 64868,
|
868 |
+
"<patch_index_0856>": 64869,
|
869 |
+
"<patch_index_0857>": 64870,
|
870 |
+
"<patch_index_0858>": 64871,
|
871 |
+
"<patch_index_0859>": 64872,
|
872 |
+
"<patch_index_0860>": 64873,
|
873 |
+
"<patch_index_0861>": 64874,
|
874 |
+
"<patch_index_0862>": 64875,
|
875 |
+
"<patch_index_0863>": 64876,
|
876 |
+
"<patch_index_0864>": 64877,
|
877 |
+
"<patch_index_0865>": 64878,
|
878 |
+
"<patch_index_0866>": 64879,
|
879 |
+
"<patch_index_0867>": 64880,
|
880 |
+
"<patch_index_0868>": 64881,
|
881 |
+
"<patch_index_0869>": 64882,
|
882 |
+
"<patch_index_0870>": 64883,
|
883 |
+
"<patch_index_0871>": 64884,
|
884 |
+
"<patch_index_0872>": 64885,
|
885 |
+
"<patch_index_0873>": 64886,
|
886 |
+
"<patch_index_0874>": 64887,
|
887 |
+
"<patch_index_0875>": 64888,
|
888 |
+
"<patch_index_0876>": 64889,
|
889 |
+
"<patch_index_0877>": 64890,
|
890 |
+
"<patch_index_0878>": 64891,
|
891 |
+
"<patch_index_0879>": 64892,
|
892 |
+
"<patch_index_0880>": 64893,
|
893 |
+
"<patch_index_0881>": 64894,
|
894 |
+
"<patch_index_0882>": 64895,
|
895 |
+
"<patch_index_0883>": 64896,
|
896 |
+
"<patch_index_0884>": 64897,
|
897 |
+
"<patch_index_0885>": 64898,
|
898 |
+
"<patch_index_0886>": 64899,
|
899 |
+
"<patch_index_0887>": 64900,
|
900 |
+
"<patch_index_0888>": 64901,
|
901 |
+
"<patch_index_0889>": 64902,
|
902 |
+
"<patch_index_0890>": 64903,
|
903 |
+
"<patch_index_0891>": 64904,
|
904 |
+
"<patch_index_0892>": 64905,
|
905 |
+
"<patch_index_0893>": 64906,
|
906 |
+
"<patch_index_0894>": 64907,
|
907 |
+
"<patch_index_0895>": 64908,
|
908 |
+
"<patch_index_0896>": 64909,
|
909 |
+
"<patch_index_0897>": 64910,
|
910 |
+
"<patch_index_0898>": 64911,
|
911 |
+
"<patch_index_0899>": 64912,
|
912 |
+
"<patch_index_0900>": 64913,
|
913 |
+
"<patch_index_0901>": 64914,
|
914 |
+
"<patch_index_0902>": 64915,
|
915 |
+
"<patch_index_0903>": 64916,
|
916 |
+
"<patch_index_0904>": 64917,
|
917 |
+
"<patch_index_0905>": 64918,
|
918 |
+
"<patch_index_0906>": 64919,
|
919 |
+
"<patch_index_0907>": 64920,
|
920 |
+
"<patch_index_0908>": 64921,
|
921 |
+
"<patch_index_0909>": 64922,
|
922 |
+
"<patch_index_0910>": 64923,
|
923 |
+
"<patch_index_0911>": 64924,
|
924 |
+
"<patch_index_0912>": 64925,
|
925 |
+
"<patch_index_0913>": 64926,
|
926 |
+
"<patch_index_0914>": 64927,
|
927 |
+
"<patch_index_0915>": 64928,
|
928 |
+
"<patch_index_0916>": 64929,
|
929 |
+
"<patch_index_0917>": 64930,
|
930 |
+
"<patch_index_0918>": 64931,
|
931 |
+
"<patch_index_0919>": 64932,
|
932 |
+
"<patch_index_0920>": 64933,
|
933 |
+
"<patch_index_0921>": 64934,
|
934 |
+
"<patch_index_0922>": 64935,
|
935 |
+
"<patch_index_0923>": 64936,
|
936 |
+
"<patch_index_0924>": 64937,
|
937 |
+
"<patch_index_0925>": 64938,
|
938 |
+
"<patch_index_0926>": 64939,
|
939 |
+
"<patch_index_0927>": 64940,
|
940 |
+
"<patch_index_0928>": 64941,
|
941 |
+
"<patch_index_0929>": 64942,
|
942 |
+
"<patch_index_0930>": 64943,
|
943 |
+
"<patch_index_0931>": 64944,
|
944 |
+
"<patch_index_0932>": 64945,
|
945 |
+
"<patch_index_0933>": 64946,
|
946 |
+
"<patch_index_0934>": 64947,
|
947 |
+
"<patch_index_0935>": 64948,
|
948 |
+
"<patch_index_0936>": 64949,
|
949 |
+
"<patch_index_0937>": 64950,
|
950 |
+
"<patch_index_0938>": 64951,
|
951 |
+
"<patch_index_0939>": 64952,
|
952 |
+
"<patch_index_0940>": 64953,
|
953 |
+
"<patch_index_0941>": 64954,
|
954 |
+
"<patch_index_0942>": 64955,
|
955 |
+
"<patch_index_0943>": 64956,
|
956 |
+
"<patch_index_0944>": 64957,
|
957 |
+
"<patch_index_0945>": 64958,
|
958 |
+
"<patch_index_0946>": 64959,
|
959 |
+
"<patch_index_0947>": 64960,
|
960 |
+
"<patch_index_0948>": 64961,
|
961 |
+
"<patch_index_0949>": 64962,
|
962 |
+
"<patch_index_0950>": 64963,
|
963 |
+
"<patch_index_0951>": 64964,
|
964 |
+
"<patch_index_0952>": 64965,
|
965 |
+
"<patch_index_0953>": 64966,
|
966 |
+
"<patch_index_0954>": 64967,
|
967 |
+
"<patch_index_0955>": 64968,
|
968 |
+
"<patch_index_0956>": 64969,
|
969 |
+
"<patch_index_0957>": 64970,
|
970 |
+
"<patch_index_0958>": 64971,
|
971 |
+
"<patch_index_0959>": 64972,
|
972 |
+
"<patch_index_0960>": 64973,
|
973 |
+
"<patch_index_0961>": 64974,
|
974 |
+
"<patch_index_0962>": 64975,
|
975 |
+
"<patch_index_0963>": 64976,
|
976 |
+
"<patch_index_0964>": 64977,
|
977 |
+
"<patch_index_0965>": 64978,
|
978 |
+
"<patch_index_0966>": 64979,
|
979 |
+
"<patch_index_0967>": 64980,
|
980 |
+
"<patch_index_0968>": 64981,
|
981 |
+
"<patch_index_0969>": 64982,
|
982 |
+
"<patch_index_0970>": 64983,
|
983 |
+
"<patch_index_0971>": 64984,
|
984 |
+
"<patch_index_0972>": 64985,
|
985 |
+
"<patch_index_0973>": 64986,
|
986 |
+
"<patch_index_0974>": 64987,
|
987 |
+
"<patch_index_0975>": 64988,
|
988 |
+
"<patch_index_0976>": 64989,
|
989 |
+
"<patch_index_0977>": 64990,
|
990 |
+
"<patch_index_0978>": 64991,
|
991 |
+
"<patch_index_0979>": 64992,
|
992 |
+
"<patch_index_0980>": 64993,
|
993 |
+
"<patch_index_0981>": 64994,
|
994 |
+
"<patch_index_0982>": 64995,
|
995 |
+
"<patch_index_0983>": 64996,
|
996 |
+
"<patch_index_0984>": 64997,
|
997 |
+
"<patch_index_0985>": 64998,
|
998 |
+
"<patch_index_0986>": 64999,
|
999 |
+
"<patch_index_0987>": 65000,
|
1000 |
+
"<patch_index_0988>": 65001,
|
1001 |
+
"<patch_index_0989>": 65002,
|
1002 |
+
"<patch_index_0990>": 65003,
|
1003 |
+
"<patch_index_0991>": 65004,
|
1004 |
+
"<patch_index_0992>": 65005,
|
1005 |
+
"<patch_index_0993>": 65006,
|
1006 |
+
"<patch_index_0994>": 65007,
|
1007 |
+
"<patch_index_0995>": 65008,
|
1008 |
+
"<patch_index_0996>": 65009,
|
1009 |
+
"<patch_index_0997>": 65010,
|
1010 |
+
"<patch_index_0998>": 65011,
|
1011 |
+
"<patch_index_0999>": 65012,
|
1012 |
+
"<patch_index_1000>": 65013,
|
1013 |
+
"<patch_index_1001>": 65014,
|
1014 |
+
"<patch_index_1002>": 65015,
|
1015 |
+
"<patch_index_1003>": 65016,
|
1016 |
+
"<patch_index_1004>": 65017,
|
1017 |
+
"<patch_index_1005>": 65018,
|
1018 |
+
"<patch_index_1006>": 65019,
|
1019 |
+
"<patch_index_1007>": 65020,
|
1020 |
+
"<patch_index_1008>": 65021,
|
1021 |
+
"<patch_index_1009>": 65022,
|
1022 |
+
"<patch_index_1010>": 65023,
|
1023 |
+
"<patch_index_1011>": 65024,
|
1024 |
+
"<patch_index_1012>": 65025,
|
1025 |
+
"<patch_index_1013>": 65026,
|
1026 |
+
"<patch_index_1014>": 65027,
|
1027 |
+
"<patch_index_1015>": 65028,
|
1028 |
+
"<patch_index_1016>": 65029,
|
1029 |
+
"<patch_index_1017>": 65030,
|
1030 |
+
"<patch_index_1018>": 65031,
|
1031 |
+
"<patch_index_1019>": 65032,
|
1032 |
+
"<patch_index_1020>": 65033,
|
1033 |
+
"<patch_index_1021>": 65034,
|
1034 |
+
"<patch_index_1022>": 65035,
|
1035 |
+
"<patch_index_1023>": 65036,
|
1036 |
+
"<phrase>": 64007
|
1037 |
+
}
|
annotated_snowman.jpg
ADDED
config.json
ADDED
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_commit_hash": null,
|
3 |
+
"_name_or_path": "HF_Kosmos2",
|
4 |
+
"architectures": [
|
5 |
+
"Kosmos2ForConditionalGeneration"
|
6 |
+
],
|
7 |
+
"latent_query_num": 64,
|
8 |
+
"model_type": "kosmos-2",
|
9 |
+
"auto_map": {
|
10 |
+
"AutoConfig": "configuration_kosmos2.Kosmos2Config",
|
11 |
+
"AutoModel": "modeling_kosmos2.Kosmos2Model",
|
12 |
+
"AutoModelForVision2Seq": "modeling_kosmos2.Kosmos2ForConditionalGeneration",
|
13 |
+
"AutoProcessor": "processing_kosmos2.Kosmos2Processor"
|
14 |
+
},
|
15 |
+
"text_config": {
|
16 |
+
"_name_or_path": "",
|
17 |
+
"activation_dropout": 0.0,
|
18 |
+
"activation_function": "gelu",
|
19 |
+
"add_cross_attention": false,
|
20 |
+
"architectures": null,
|
21 |
+
"attention_dropout": 0.1,
|
22 |
+
"attention_heads": 32,
|
23 |
+
"bad_words_ids": null,
|
24 |
+
"begin_suppress_tokens": null,
|
25 |
+
"bos_token_id": 0,
|
26 |
+
"chunk_size_feed_forward": 0,
|
27 |
+
"cross_attention_hidden_size": null,
|
28 |
+
"decoder_start_token_id": null,
|
29 |
+
"diversity_penalty": 0.0,
|
30 |
+
"do_sample": false,
|
31 |
+
"dropout": 0.1,
|
32 |
+
"early_stopping": false,
|
33 |
+
"embed_dim": 2048,
|
34 |
+
"encoder_no_repeat_ngram_size": 0,
|
35 |
+
"eos_token_id": 2,
|
36 |
+
"exponential_decay_length_penalty": null,
|
37 |
+
"ffn_dim": 8192,
|
38 |
+
"finetuning_task": null,
|
39 |
+
"forced_bos_token_id": null,
|
40 |
+
"forced_eos_token_id": null,
|
41 |
+
"gradient_checkpointing": false,
|
42 |
+
"id2label": {
|
43 |
+
"0": "LABEL_0",
|
44 |
+
"1": "LABEL_1"
|
45 |
+
},
|
46 |
+
"is_decoder": false,
|
47 |
+
"is_encoder_decoder": false,
|
48 |
+
"label2id": {
|
49 |
+
"LABEL_0": 0,
|
50 |
+
"LABEL_1": 1
|
51 |
+
},
|
52 |
+
"layer_norm_eps": 1e-05,
|
53 |
+
"layerdrop": 0.0,
|
54 |
+
"layers": 24,
|
55 |
+
"length_penalty": 1.0,
|
56 |
+
"max_length": 20,
|
57 |
+
"max_position_embeddings": 2048,
|
58 |
+
"min_length": 0,
|
59 |
+
"model_type": "kosmos_2_text_model",
|
60 |
+
"no_repeat_ngram_size": 3,
|
61 |
+
"num_beam_groups": 1,
|
62 |
+
"num_beams": 1,
|
63 |
+
"num_return_sequences": 1,
|
64 |
+
"output_attentions": false,
|
65 |
+
"output_hidden_states": false,
|
66 |
+
"output_scores": false,
|
67 |
+
"pad_token_id": 1,
|
68 |
+
"prefix": null,
|
69 |
+
"problem_type": null,
|
70 |
+
"pruned_heads": {},
|
71 |
+
"remove_invalid_values": false,
|
72 |
+
"repetition_penalty": 1.0,
|
73 |
+
"return_dict": true,
|
74 |
+
"return_dict_in_generate": false,
|
75 |
+
"scale_embedding": true,
|
76 |
+
"sep_token_id": null,
|
77 |
+
"suppress_tokens": null,
|
78 |
+
"task_specific_params": null,
|
79 |
+
"temperature": 1.0,
|
80 |
+
"tf_legacy_loss": false,
|
81 |
+
"tie_encoder_decoder": false,
|
82 |
+
"tie_word_embeddings": true,
|
83 |
+
"tokenizer_class": null,
|
84 |
+
"top_k": 50,
|
85 |
+
"top_p": 1.0,
|
86 |
+
"torch_dtype": null,
|
87 |
+
"torchscript": false,
|
88 |
+
"transformers_version": "4.31.0.dev0",
|
89 |
+
"typical_p": 1.0,
|
90 |
+
"use_bfloat16": false,
|
91 |
+
"use_cache": true,
|
92 |
+
"vocab_size": 65037
|
93 |
+
},
|
94 |
+
"torch_dtype": "float32",
|
95 |
+
"transformers_version": null,
|
96 |
+
"vision_config": {
|
97 |
+
"_name_or_path": "",
|
98 |
+
"add_cross_attention": false,
|
99 |
+
"architectures": null,
|
100 |
+
"attention_dropout": 0.0,
|
101 |
+
"bad_words_ids": null,
|
102 |
+
"begin_suppress_tokens": null,
|
103 |
+
"bos_token_id": null,
|
104 |
+
"chunk_size_feed_forward": 0,
|
105 |
+
"cross_attention_hidden_size": null,
|
106 |
+
"decoder_start_token_id": null,
|
107 |
+
"diversity_penalty": 0.0,
|
108 |
+
"do_sample": false,
|
109 |
+
"early_stopping": false,
|
110 |
+
"encoder_no_repeat_ngram_size": 0,
|
111 |
+
"eos_token_id": null,
|
112 |
+
"exponential_decay_length_penalty": null,
|
113 |
+
"finetuning_task": null,
|
114 |
+
"forced_bos_token_id": null,
|
115 |
+
"forced_eos_token_id": null,
|
116 |
+
"hidden_act": "quick_gelu",
|
117 |
+
"hidden_size": 1024,
|
118 |
+
"id2label": {
|
119 |
+
"0": "LABEL_0",
|
120 |
+
"1": "LABEL_1"
|
121 |
+
},
|
122 |
+
"image_size": 224,
|
123 |
+
"initializer_factor": 1.0,
|
124 |
+
"initializer_range": 0.02,
|
125 |
+
"intermediate_size": 4096,
|
126 |
+
"is_decoder": false,
|
127 |
+
"is_encoder_decoder": false,
|
128 |
+
"label2id": {
|
129 |
+
"LABEL_0": 0,
|
130 |
+
"LABEL_1": 1
|
131 |
+
},
|
132 |
+
"layer_norm_eps": 1e-05,
|
133 |
+
"length_penalty": 1.0,
|
134 |
+
"max_length": 20,
|
135 |
+
"min_length": 0,
|
136 |
+
"model_type": "kosmos_2_vision_model",
|
137 |
+
"no_repeat_ngram_size": 0,
|
138 |
+
"num_attention_heads": 16,
|
139 |
+
"num_beam_groups": 1,
|
140 |
+
"num_beams": 1,
|
141 |
+
"num_channels": 3,
|
142 |
+
"num_hidden_layers": 24,
|
143 |
+
"num_return_sequences": 1,
|
144 |
+
"output_attentions": false,
|
145 |
+
"output_hidden_states": false,
|
146 |
+
"output_scores": false,
|
147 |
+
"pad_token_id": null,
|
148 |
+
"patch_size": 14,
|
149 |
+
"prefix": null,
|
150 |
+
"problem_type": null,
|
151 |
+
"projection_dim": 512,
|
152 |
+
"pruned_heads": {},
|
153 |
+
"remove_invalid_values": false,
|
154 |
+
"repetition_penalty": 1.0,
|
155 |
+
"return_dict": true,
|
156 |
+
"return_dict_in_generate": false,
|
157 |
+
"sep_token_id": null,
|
158 |
+
"suppress_tokens": null,
|
159 |
+
"task_specific_params": null,
|
160 |
+
"temperature": 1.0,
|
161 |
+
"tf_legacy_loss": false,
|
162 |
+
"tie_encoder_decoder": false,
|
163 |
+
"tie_word_embeddings": true,
|
164 |
+
"tokenizer_class": null,
|
165 |
+
"top_k": 50,
|
166 |
+
"top_p": 1.0,
|
167 |
+
"torch_dtype": null,
|
168 |
+
"torchscript": false,
|
169 |
+
"transformers_version": "4.31.0.dev0",
|
170 |
+
"typical_p": 1.0,
|
171 |
+
"use_bfloat16": false
|
172 |
+
}
|
173 |
+
}
|
configuration_kosmos2.py
ADDED
@@ -0,0 +1,331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" KOSMOS-2 model configuration"""
|
16 |
+
|
17 |
+
import copy
|
18 |
+
import os
|
19 |
+
from typing import Union
|
20 |
+
|
21 |
+
from transformers.configuration_utils import PretrainedConfig
|
22 |
+
from transformers.utils import logging
|
23 |
+
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
28 |
+
"microsoft/kosmos-2-patch14-224": (
|
29 |
+
"https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/config.json"
|
30 |
+
),
|
31 |
+
# See all KOSMOS-2 models at https://huggingface.co/models?filter=kosmos-2
|
32 |
+
}
|
33 |
+
|
34 |
+
|
35 |
+
class Kosmos2TextConfig(PretrainedConfig):
|
36 |
+
r"""
|
37 |
+
This is the configuration class to store the configuration of a [`Kosmos2TextModel`]. It is used to instantiate a KOSMOS-2 text decoder
|
38 |
+
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
39 |
+
defaults will yield a similar configuration to that of the text decoder of the KOSMOS-2
|
40 |
+
[microsoft/kosmos-2-patch14-224](https://huggingface.co/microsoft/kosmos-2-patch14-224) architecture.
|
41 |
+
|
42 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
43 |
+
documentation from [`PretrainedConfig`] for more information.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
vocab_size (`int`, *optional*, defaults to 65037):
|
47 |
+
Vocabulary size of the Kosmos2 model. Defines the number of different tokens that can be represented by the
|
48 |
+
`inputs_ids` passed when calling [`Kosmos2Model`].
|
49 |
+
embed_dim (`int`, *optional*, defaults to 2048):
|
50 |
+
Dimensionality of the layers and the pooler layer.
|
51 |
+
layers (`int`, *optional*, defaults to 24):
|
52 |
+
Number of hidden layers in the Transformer encoder.
|
53 |
+
attention_heads (`int`, *optional*, defaults to 32):
|
54 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
55 |
+
ffn_dim (`int`, *optional*, defaults to 8192):
|
56 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
57 |
+
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
|
58 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
59 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
60 |
+
dropout (`float`, *optional*, defaults to 0.1):
|
61 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
62 |
+
attention_dropout (`float`, *optional*, defaults to 0.1):
|
63 |
+
The dropout ratio for the attention probabilities.
|
64 |
+
activation_dropout (`float`, *optional*, defaults to 0.0):
|
65 |
+
The dropout ratio for activations inside the fully connected layer.
|
66 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
67 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
68 |
+
just in case (e.g., 512 or 1024 or 2048).
|
69 |
+
layerdrop (`float`, *optional*, defaults to 0.0):
|
70 |
+
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
71 |
+
for more details.
|
72 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
|
73 |
+
The epsilon used by the layer normalization layers.
|
74 |
+
scale_embedding (`bool`, *optional*, defaults to `True`):
|
75 |
+
Scale embeddings by diving by sqrt(embed_dim).
|
76 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
77 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
78 |
+
|
79 |
+
Example:
|
80 |
+
|
81 |
+
```python
|
82 |
+
>>> from transformers import Kosmos2TextConfig, Kosmos2TextModel
|
83 |
+
|
84 |
+
>>> # Initializing a Kosmos2TextConfig microsoft/kosmos-2-patch14-224 style configuration
|
85 |
+
>>> configuration = Kosmos2TextConfig()
|
86 |
+
|
87 |
+
>>> # Initializing a Kosmos2TextModel (with random weights) from the microsoft/kosmos-2-patch14-224 style configuration
|
88 |
+
>>> model = Kosmos2TextModel(configuration)
|
89 |
+
|
90 |
+
>>> # Accessing the model configuration
|
91 |
+
>>> configuration = model.config
|
92 |
+
```"""
|
93 |
+
model_type = "kosmos_2_text_model"
|
94 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
95 |
+
attribute_map = {"num_attention_heads": "attention_heads", "hidden_size": "embed_dim"}
|
96 |
+
|
97 |
+
def __init__(
|
98 |
+
self,
|
99 |
+
vocab_size=65037,
|
100 |
+
max_position_embeddings=2048,
|
101 |
+
embed_dim=2048,
|
102 |
+
layers=24,
|
103 |
+
ffn_dim=8192,
|
104 |
+
attention_heads=32,
|
105 |
+
activation_function="gelu",
|
106 |
+
dropout=0.1,
|
107 |
+
attention_dropout=0.1,
|
108 |
+
activation_dropout=0.0,
|
109 |
+
layerdrop=0.0,
|
110 |
+
layer_norm_eps=1e-5,
|
111 |
+
scale_embedding=True,
|
112 |
+
use_cache=True,
|
113 |
+
pad_token_id=1,
|
114 |
+
bos_token_id=0,
|
115 |
+
eos_token_id=2,
|
116 |
+
**kwargs,
|
117 |
+
):
|
118 |
+
super().__init__(
|
119 |
+
pad_token_id=pad_token_id,
|
120 |
+
bos_token_id=bos_token_id,
|
121 |
+
eos_token_id=eos_token_id,
|
122 |
+
**kwargs,
|
123 |
+
)
|
124 |
+
|
125 |
+
self.vocab_size = vocab_size
|
126 |
+
self.max_position_embeddings = max_position_embeddings
|
127 |
+
self.embed_dim = embed_dim
|
128 |
+
self.layers = layers
|
129 |
+
self.ffn_dim = ffn_dim
|
130 |
+
self.attention_heads = attention_heads
|
131 |
+
self.activation_function = activation_function
|
132 |
+
self.dropout = dropout
|
133 |
+
self.attention_dropout = attention_dropout
|
134 |
+
self.activation_dropout = activation_dropout
|
135 |
+
self.layerdrop = layerdrop
|
136 |
+
self.layer_norm_eps = layer_norm_eps
|
137 |
+
self.scale_embedding = scale_embedding
|
138 |
+
self.use_cache = use_cache
|
139 |
+
|
140 |
+
@classmethod
|
141 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
142 |
+
cls._set_token_in_kwargs(kwargs)
|
143 |
+
|
144 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
145 |
+
|
146 |
+
# get the text config dict if we are loading from Kosmos2Config
|
147 |
+
if config_dict.get("model_type") == "kosmos-2":
|
148 |
+
config_dict = config_dict["text_config"]
|
149 |
+
|
150 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
151 |
+
logger.warning(
|
152 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
153 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
154 |
+
)
|
155 |
+
|
156 |
+
return cls.from_dict(config_dict, **kwargs)
|
157 |
+
|
158 |
+
|
159 |
+
class Kosmos2VisionConfig(PretrainedConfig):
|
160 |
+
r"""
|
161 |
+
This is the configuration class to store the configuration of a [`Kosmos2VisionModel`]. It is used to instantiate a
|
162 |
+
KOSMOS-2 vision encoder according to the specified arguments, defining the model architecture. Instantiating a
|
163 |
+
configuration with the defaults will yield a similar configuration to that of the vision encoder of the KOSMOS-2
|
164 |
+
[microsoft/kosmos-2-patch14-224](https://huggingface.co/microsoft/kosmos-2-patch14-224) architecture.
|
165 |
+
|
166 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
167 |
+
documentation from [`PretrainedConfig`] for more information.
|
168 |
+
|
169 |
+
Args:
|
170 |
+
hidden_size (`int`, *optional*, defaults to 1024):
|
171 |
+
Dimensionality of the encoder layers and the pooler layer.
|
172 |
+
intermediate_size (`int`, *optional*, defaults to 4096):
|
173 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
174 |
+
num_hidden_layers (`int`, *optional*, defaults to 24):
|
175 |
+
Number of hidden layers in the Transformer encoder.
|
176 |
+
num_attention_heads (`int`, *optional*, defaults to 16):
|
177 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
178 |
+
image_size (`int`, *optional*, defaults to 224):
|
179 |
+
The size (resolution) of each image.
|
180 |
+
patch_size (`int`, *optional*, defaults to 14):
|
181 |
+
The size (resolution) of each patch.
|
182 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
|
183 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
184 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
|
185 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
|
186 |
+
The epsilon used by the layer normalization layers.
|
187 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
188 |
+
The dropout ratio for the attention probabilities.
|
189 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
190 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
191 |
+
initializer_factor (`float`, *optional*, defaults to 1):
|
192 |
+
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
|
193 |
+
testing).
|
194 |
+
|
195 |
+
Example:
|
196 |
+
|
197 |
+
```python
|
198 |
+
>>> from transformers import Kosmos2VisionConfig, Kosmos2VisionModel
|
199 |
+
|
200 |
+
>>> # Initializing a Kosmos2VisionConfig with microsoft/kosmos-2-patch14-224 style configuration
|
201 |
+
>>> configuration = Kosmos2VisionConfig()
|
202 |
+
|
203 |
+
>>> # Initializing a Kosmos2VisionModel (with random weights) from the microsoft/kosmos-2-patch14-224 style configuration
|
204 |
+
>>> model = Kosmos2VisionModel(configuration)
|
205 |
+
|
206 |
+
>>> # Accessing the model configuration
|
207 |
+
>>> configuration = model.config
|
208 |
+
```"""
|
209 |
+
|
210 |
+
model_type = "kosmos_2_vision_model"
|
211 |
+
|
212 |
+
def __init__(
|
213 |
+
self,
|
214 |
+
hidden_size=1024,
|
215 |
+
intermediate_size=4096,
|
216 |
+
projection_dim=512,
|
217 |
+
num_hidden_layers=24,
|
218 |
+
num_attention_heads=16,
|
219 |
+
num_channels=3,
|
220 |
+
image_size=224,
|
221 |
+
patch_size=14,
|
222 |
+
hidden_act="quick_gelu",
|
223 |
+
layer_norm_eps=1e-5,
|
224 |
+
attention_dropout=0.0,
|
225 |
+
initializer_range=0.02,
|
226 |
+
initializer_factor=1.0,
|
227 |
+
**kwargs,
|
228 |
+
):
|
229 |
+
super().__init__(**kwargs)
|
230 |
+
|
231 |
+
self.hidden_size = hidden_size
|
232 |
+
self.intermediate_size = intermediate_size
|
233 |
+
self.projection_dim = projection_dim
|
234 |
+
self.num_hidden_layers = num_hidden_layers
|
235 |
+
self.num_attention_heads = num_attention_heads
|
236 |
+
self.num_channels = num_channels
|
237 |
+
self.patch_size = patch_size
|
238 |
+
self.image_size = image_size
|
239 |
+
self.initializer_range = initializer_range
|
240 |
+
self.initializer_factor = initializer_factor
|
241 |
+
self.attention_dropout = attention_dropout
|
242 |
+
self.layer_norm_eps = layer_norm_eps
|
243 |
+
self.hidden_act = hidden_act
|
244 |
+
|
245 |
+
@classmethod
|
246 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
247 |
+
cls._set_token_in_kwargs(kwargs)
|
248 |
+
|
249 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
250 |
+
|
251 |
+
# get the vision config dict if we are loading from Kosmos2Config
|
252 |
+
if config_dict.get("model_type") == "kosmos-2":
|
253 |
+
config_dict = config_dict["vision_config"]
|
254 |
+
|
255 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
256 |
+
logger.warning(
|
257 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
258 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
259 |
+
)
|
260 |
+
|
261 |
+
return cls.from_dict(config_dict, **kwargs)
|
262 |
+
|
263 |
+
|
264 |
+
class Kosmos2Config(PretrainedConfig):
|
265 |
+
r"""
|
266 |
+
This is the configuration class to store the configuration of a [`Kosmos2Model`]. It is used to instantiate a KOSMOS-2
|
267 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
268 |
+
defaults will yield a similar configuration to that of the KOSMOS-2
|
269 |
+
[microsoft/kosmos-2-patch14-224](https://huggingface.co/microsoft/kosmos-2-patch14-224) architecture.
|
270 |
+
|
271 |
+
Args:
|
272 |
+
text_config (`dict`, *optional*):
|
273 |
+
Dictionary of configuration options used to initialize [`Kosmos2TextConfig`].
|
274 |
+
vision_config (`dict`, *optional*):
|
275 |
+
Dictionary of configuration options used to initialize [`Kosmos2VisionConfig`].
|
276 |
+
latent_query_num (`int`, *optional*, defaults to 64):
|
277 |
+
The number of latent query tokens that represent the image features used in the text decoder component.
|
278 |
+
kwargs (*optional*):
|
279 |
+
Dictionary of keyword arguments.
|
280 |
+
|
281 |
+
Example:
|
282 |
+
|
283 |
+
```python
|
284 |
+
>>> from transformers import Kosmos2Config, Kosmos2Model
|
285 |
+
|
286 |
+
>>> # Initializing a Kosmos-2 kosmos-2-patch14-224 style configuration
|
287 |
+
>>> configuration = Kosmos2Config()
|
288 |
+
|
289 |
+
>>> # Initializing a model (with random weights) from the kosmos-2-patch14-224 style configuration
|
290 |
+
>>> model = Kosmos2Model(configuration)
|
291 |
+
|
292 |
+
>>> # Accessing the model configuration
|
293 |
+
>>> configuration = model.config
|
294 |
+
```"""
|
295 |
+
model_type = "kosmos-2"
|
296 |
+
is_composition = True
|
297 |
+
|
298 |
+
def __init__(
|
299 |
+
self,
|
300 |
+
text_config=None,
|
301 |
+
vision_config=None,
|
302 |
+
latent_query_num=64,
|
303 |
+
**kwargs,
|
304 |
+
):
|
305 |
+
super().__init__(**kwargs)
|
306 |
+
|
307 |
+
if text_config is None:
|
308 |
+
text_config = {}
|
309 |
+
logger.info("`text_config` is `None`. Initializing the `Kosmos2TextConfig` with default values.")
|
310 |
+
|
311 |
+
if vision_config is None:
|
312 |
+
vision_config = {}
|
313 |
+
logger.info("`vision_config` is `None`. Initializing the `Kosmos2VisionConfig` with default values.")
|
314 |
+
|
315 |
+
self.text_config = Kosmos2TextConfig(**text_config)
|
316 |
+
self.vision_config = Kosmos2VisionConfig(**vision_config)
|
317 |
+
|
318 |
+
self.latent_query_num = latent_query_num
|
319 |
+
|
320 |
+
def to_dict(self):
|
321 |
+
"""
|
322 |
+
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
|
323 |
+
|
324 |
+
Returns:
|
325 |
+
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
326 |
+
"""
|
327 |
+
output = copy.deepcopy(self.__dict__)
|
328 |
+
output["text_config"] = self.text_config.to_dict()
|
329 |
+
output["vision_config"] = self.vision_config.to_dict()
|
330 |
+
output["model_type"] = self.__class__.model_type
|
331 |
+
return output
|
draw_bboxes.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
import torchvision.transforms as T
|
6 |
+
import cv2
|
7 |
+
import requests
|
8 |
+
|
9 |
+
|
10 |
+
def is_overlapping(rect1, rect2):
|
11 |
+
x1, y1, x2, y2 = rect1
|
12 |
+
x3, y3, x4, y4 = rect2
|
13 |
+
return not (x2 < x3 or x1 > x4 or y2 < y3 or y1 > y4)
|
14 |
+
|
15 |
+
|
16 |
+
def draw_entity_boxes_on_image(image, entities, show=False, save_path=None):
|
17 |
+
"""_summary_
|
18 |
+
Args:
|
19 |
+
image (_type_): image or image path
|
20 |
+
collect_entity_location (_type_): _description_
|
21 |
+
"""
|
22 |
+
if isinstance(image, Image.Image):
|
23 |
+
image_h = image.height
|
24 |
+
image_w = image.width
|
25 |
+
image = np.array(image)[:, :, [2, 1, 0]]
|
26 |
+
elif isinstance(image, str):
|
27 |
+
if os.path.exists(image):
|
28 |
+
pil_img = Image.open(image).convert("RGB")
|
29 |
+
image = np.array(pil_img)[:, :, [2, 1, 0]]
|
30 |
+
image_h = pil_img.height
|
31 |
+
image_w = pil_img.width
|
32 |
+
else:
|
33 |
+
raise ValueError(f"invaild image path, {image}")
|
34 |
+
elif isinstance(image, torch.Tensor):
|
35 |
+
# pdb.set_trace()
|
36 |
+
image_tensor = image.cpu()
|
37 |
+
reverse_norm_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073])[:, None, None]
|
38 |
+
reverse_norm_std = torch.tensor([0.26862954, 0.26130258, 0.27577711])[:, None, None]
|
39 |
+
image_tensor = image_tensor * reverse_norm_std + reverse_norm_mean
|
40 |
+
pil_img = T.ToPILImage()(image_tensor)
|
41 |
+
image_h = pil_img.height
|
42 |
+
image_w = pil_img.width
|
43 |
+
image = np.array(pil_img)[:, :, [2, 1, 0]]
|
44 |
+
else:
|
45 |
+
raise ValueError(f"invaild image format, {type(image)} for {image}")
|
46 |
+
|
47 |
+
if len(entities) == 0:
|
48 |
+
return image
|
49 |
+
|
50 |
+
new_image = image.copy()
|
51 |
+
previous_bboxes = []
|
52 |
+
# size of text
|
53 |
+
text_size = 2
|
54 |
+
# thickness of text
|
55 |
+
text_line = 1 # int(max(1 * min(image_h, image_w) / 512, 1))
|
56 |
+
box_line = 3
|
57 |
+
(c_width, text_height), _ = cv2.getTextSize("F", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
|
58 |
+
base_height = int(text_height * 0.675)
|
59 |
+
text_offset_original = text_height - base_height
|
60 |
+
text_spaces = 3
|
61 |
+
|
62 |
+
for entity_name, (start, end), bboxes in entities:
|
63 |
+
for (x1_norm, y1_norm, x2_norm, y2_norm) in bboxes:
|
64 |
+
orig_x1, orig_y1, orig_x2, orig_y2 = int(x1_norm * image_w), int(y1_norm * image_h), int(x2_norm * image_w), int(y2_norm * image_h)
|
65 |
+
# draw bbox
|
66 |
+
# random color
|
67 |
+
color = tuple(np.random.randint(0, 255, size=3).tolist())
|
68 |
+
new_image = cv2.rectangle(new_image, (orig_x1, orig_y1), (orig_x2, orig_y2), color, box_line)
|
69 |
+
|
70 |
+
l_o, r_o = box_line // 2 + box_line % 2, box_line // 2 + box_line % 2 + 1
|
71 |
+
|
72 |
+
x1 = orig_x1 - l_o
|
73 |
+
y1 = orig_y1 - l_o
|
74 |
+
|
75 |
+
if y1 < text_height + text_offset_original + 2 * text_spaces:
|
76 |
+
y1 = orig_y1 + r_o + text_height + text_offset_original + 2 * text_spaces
|
77 |
+
x1 = orig_x1 + r_o
|
78 |
+
|
79 |
+
# add text background
|
80 |
+
(text_width, text_height), _ = cv2.getTextSize(f" {entity_name}", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
|
81 |
+
text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2 = x1, y1 - (text_height + text_offset_original + 2 * text_spaces), x1 + text_width, y1
|
82 |
+
|
83 |
+
for prev_bbox in previous_bboxes:
|
84 |
+
while is_overlapping((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox):
|
85 |
+
text_bg_y1 += (text_height + text_offset_original + 2 * text_spaces)
|
86 |
+
text_bg_y2 += (text_height + text_offset_original + 2 * text_spaces)
|
87 |
+
y1 += (text_height + text_offset_original + 2 * text_spaces)
|
88 |
+
|
89 |
+
if text_bg_y2 >= image_h:
|
90 |
+
text_bg_y1 = max(0, image_h - (text_height + text_offset_original + 2 * text_spaces))
|
91 |
+
text_bg_y2 = image_h
|
92 |
+
y1 = image_h
|
93 |
+
break
|
94 |
+
|
95 |
+
alpha = 0.5
|
96 |
+
for i in range(text_bg_y1, text_bg_y2):
|
97 |
+
for j in range(text_bg_x1, text_bg_x2):
|
98 |
+
if i < image_h and j < image_w:
|
99 |
+
if j < text_bg_x1 + 1.35 * c_width:
|
100 |
+
# original color
|
101 |
+
bg_color = color
|
102 |
+
else:
|
103 |
+
# white
|
104 |
+
bg_color = [255, 255, 255]
|
105 |
+
new_image[i, j] = (alpha * new_image[i, j] + (1 - alpha) * np.array(bg_color)).astype(np.uint8)
|
106 |
+
|
107 |
+
cv2.putText(
|
108 |
+
new_image, f" {entity_name}", (x1, y1 - text_offset_original - 1 * text_spaces), cv2.FONT_HERSHEY_COMPLEX, text_size, (0, 0, 0), text_line, cv2.LINE_AA
|
109 |
+
)
|
110 |
+
# previous_locations.append((x1, y1))
|
111 |
+
previous_bboxes.append((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2))
|
112 |
+
|
113 |
+
pil_image = Image.fromarray(new_image[:, :, [2, 1, 0]])
|
114 |
+
if save_path:
|
115 |
+
pil_image.save(save_path)
|
116 |
+
if show:
|
117 |
+
pil_image.show()
|
118 |
+
|
119 |
+
return new_image
|
generation_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 0,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"no_repeat_ngram_size": 3,
|
6 |
+
"pad_token_id": 1,
|
7 |
+
"transformers_version": "4.32.0.dev0",
|
8 |
+
"use_cache": true
|
9 |
+
}
|
image_processing_kosmos2.py
ADDED
@@ -0,0 +1,304 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Image processor class for Kosmos2."""
|
16 |
+
|
17 |
+
from typing import Dict, List, Optional, Union
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
|
21 |
+
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
22 |
+
from transformers.image_transforms import (
|
23 |
+
convert_to_rgb,
|
24 |
+
get_resize_output_image_size,
|
25 |
+
resize,
|
26 |
+
to_channel_dimension_format,
|
27 |
+
)
|
28 |
+
from transformers.image_utils import (
|
29 |
+
OPENAI_CLIP_MEAN,
|
30 |
+
OPENAI_CLIP_STD,
|
31 |
+
ChannelDimension,
|
32 |
+
ImageInput,
|
33 |
+
PILImageResampling,
|
34 |
+
infer_channel_dimension_format,
|
35 |
+
make_list_of_images,
|
36 |
+
to_numpy_array,
|
37 |
+
valid_images,
|
38 |
+
)
|
39 |
+
from transformers.utils import TensorType, is_vision_available, logging
|
40 |
+
|
41 |
+
|
42 |
+
logger = logging.get_logger(__name__)
|
43 |
+
|
44 |
+
|
45 |
+
if is_vision_available():
|
46 |
+
import PIL
|
47 |
+
|
48 |
+
|
49 |
+
class Kosmos2ImageProcessor(BaseImageProcessor):
|
50 |
+
r"""
|
51 |
+
Constructs a CLIP image processor.
|
52 |
+
|
53 |
+
Args:
|
54 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
55 |
+
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
|
56 |
+
`do_resize` in the `preprocess` method.
|
57 |
+
size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 224}`):
|
58 |
+
Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with
|
59 |
+
the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess`
|
60 |
+
method.
|
61 |
+
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
|
62 |
+
Resampling filter to use if resizing the image. Can be overridden by `resample` in the `preprocess` method.
|
63 |
+
do_center_crop (`bool`, *optional*, defaults to `True`):
|
64 |
+
Whether to center crop the image to the specified `crop_size`. Can be overridden by `do_center_crop` in the
|
65 |
+
`preprocess` method.
|
66 |
+
crop_size (`Dict[str, int]` *optional*, defaults to 224):
|
67 |
+
Size of the output image after applying `center_crop`. Can be overridden by `crop_size` in the `preprocess`
|
68 |
+
method.
|
69 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
70 |
+
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by `do_rescale` in
|
71 |
+
the `preprocess` method.
|
72 |
+
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
73 |
+
Scale factor to use if rescaling the image. Can be overridden by `rescale_factor` in the `preprocess`
|
74 |
+
method.
|
75 |
+
do_normalize:
|
76 |
+
Whether to normalize the image. Can be overridden by `do_normalize` in the `preprocess` method.
|
77 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
|
78 |
+
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
|
79 |
+
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
|
80 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
|
81 |
+
Image standard deviation.
|
82 |
+
do_convert_rgb (`bool`, *optional*, defaults to `True`):
|
83 |
+
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
|
84 |
+
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
|
85 |
+
"""
|
86 |
+
|
87 |
+
model_input_names = ["pixel_values"]
|
88 |
+
|
89 |
+
def __init__(
|
90 |
+
self,
|
91 |
+
do_resize: bool = True,
|
92 |
+
size: Dict[str, int] = None,
|
93 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
94 |
+
do_center_crop: bool = True,
|
95 |
+
crop_size: Dict[str, int] = None,
|
96 |
+
do_rescale: bool = True,
|
97 |
+
rescale_factor: Union[int, float] = 1 / 255,
|
98 |
+
do_normalize: bool = True,
|
99 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
100 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
101 |
+
do_convert_rgb: bool = True,
|
102 |
+
**kwargs,
|
103 |
+
) -> None:
|
104 |
+
super().__init__(**kwargs)
|
105 |
+
size = size if size is not None else {"shortest_edge": 224}
|
106 |
+
size = get_size_dict(size, default_to_square=False)
|
107 |
+
crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
|
108 |
+
crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size")
|
109 |
+
|
110 |
+
self.do_resize = do_resize
|
111 |
+
self.size = size
|
112 |
+
self.resample = resample
|
113 |
+
self.do_center_crop = do_center_crop
|
114 |
+
self.crop_size = crop_size
|
115 |
+
self.do_rescale = do_rescale
|
116 |
+
self.rescale_factor = rescale_factor
|
117 |
+
self.do_normalize = do_normalize
|
118 |
+
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
|
119 |
+
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
|
120 |
+
self.do_convert_rgb = do_convert_rgb
|
121 |
+
|
122 |
+
def resize(
|
123 |
+
self,
|
124 |
+
image: np.ndarray,
|
125 |
+
size: Dict[str, int],
|
126 |
+
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
127 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
128 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
129 |
+
**kwargs,
|
130 |
+
) -> np.ndarray:
|
131 |
+
"""
|
132 |
+
Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge
|
133 |
+
resized to keep the input aspect ratio.
|
134 |
+
|
135 |
+
Args:
|
136 |
+
image (`np.ndarray`):
|
137 |
+
Image to resize.
|
138 |
+
size (`Dict[str, int]`):
|
139 |
+
Size of the output image.
|
140 |
+
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
|
141 |
+
Resampling filter to use when resiizing the image.
|
142 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
143 |
+
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
144 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
145 |
+
The channel dimension format of the input image. If not provided, it will be inferred.
|
146 |
+
"""
|
147 |
+
size = get_size_dict(size)
|
148 |
+
if "shortest_edge" not in size:
|
149 |
+
raise ValueError(f"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}")
|
150 |
+
output_size = get_resize_output_image_size(
|
151 |
+
image, size=size["shortest_edge"], input_data_format=input_data_format
|
152 |
+
)
|
153 |
+
return resize(
|
154 |
+
image,
|
155 |
+
size=output_size,
|
156 |
+
resample=resample,
|
157 |
+
data_format=data_format,
|
158 |
+
input_data_format=input_data_format,
|
159 |
+
**kwargs,
|
160 |
+
)
|
161 |
+
|
162 |
+
def preprocess(
|
163 |
+
self,
|
164 |
+
images: ImageInput,
|
165 |
+
do_resize: bool = None,
|
166 |
+
size: Dict[str, int] = None,
|
167 |
+
resample: PILImageResampling = None,
|
168 |
+
do_center_crop: bool = None,
|
169 |
+
crop_size: int = None,
|
170 |
+
do_rescale: bool = None,
|
171 |
+
rescale_factor: float = None,
|
172 |
+
do_normalize: bool = None,
|
173 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
174 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
175 |
+
do_convert_rgb: bool = None,
|
176 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
177 |
+
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
178 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
179 |
+
**kwargs,
|
180 |
+
) -> PIL.Image.Image:
|
181 |
+
"""
|
182 |
+
Preprocess an image or batch of images.
|
183 |
+
|
184 |
+
Args:
|
185 |
+
images (`ImageInput`):
|
186 |
+
Image to preprocess.
|
187 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
188 |
+
Whether to resize the image.
|
189 |
+
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
190 |
+
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
|
191 |
+
the longest edge resized to keep the input aspect ratio.
|
192 |
+
resample (`int`, *optional*, defaults to `self.resample`):
|
193 |
+
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
|
194 |
+
has an effect if `do_resize` is set to `True`.
|
195 |
+
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
|
196 |
+
Whether to center crop the image.
|
197 |
+
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
|
198 |
+
Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
|
199 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
200 |
+
Whether to rescale the image.
|
201 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
202 |
+
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
203 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
204 |
+
Whether to normalize the image.
|
205 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
206 |
+
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
|
207 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
208 |
+
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
|
209 |
+
`True`.
|
210 |
+
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
211 |
+
Whether to convert the image to RGB.
|
212 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
213 |
+
The type of tensors to return. Can be one of:
|
214 |
+
- Unset: Return a list of `np.ndarray`.
|
215 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
216 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
217 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
218 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
219 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
220 |
+
The channel dimension format for the output image. Can be one of:
|
221 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
222 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
223 |
+
- Unset: Use the channel dimension format of the input image.
|
224 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
225 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
226 |
+
from the input image. Can be one of:
|
227 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
228 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
229 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
230 |
+
"""
|
231 |
+
do_resize = do_resize if do_resize is not None else self.do_resize
|
232 |
+
size = size if size is not None else self.size
|
233 |
+
size = get_size_dict(size, param_name="size", default_to_square=False)
|
234 |
+
resample = resample if resample is not None else self.resample
|
235 |
+
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
|
236 |
+
crop_size = crop_size if crop_size is not None else self.crop_size
|
237 |
+
crop_size = get_size_dict(crop_size, param_name="crop_size", default_to_square=True)
|
238 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
239 |
+
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
240 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
241 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
242 |
+
image_std = image_std if image_std is not None else self.image_std
|
243 |
+
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
|
244 |
+
|
245 |
+
images = make_list_of_images(images)
|
246 |
+
|
247 |
+
if not valid_images(images):
|
248 |
+
raise ValueError(
|
249 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
250 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
251 |
+
)
|
252 |
+
|
253 |
+
if do_resize and size is None:
|
254 |
+
raise ValueError("Size must be specified if do_resize is True.")
|
255 |
+
|
256 |
+
if do_center_crop and crop_size is None:
|
257 |
+
raise ValueError("Crop size must be specified if do_center_crop is True.")
|
258 |
+
|
259 |
+
if do_rescale and rescale_factor is None:
|
260 |
+
raise ValueError("Rescale factor must be specified if do_rescale is True.")
|
261 |
+
|
262 |
+
if do_normalize and (image_mean is None or image_std is None):
|
263 |
+
raise ValueError("Image mean and std must be specified if do_normalize is True.")
|
264 |
+
|
265 |
+
# PIL RGBA images are converted to RGB
|
266 |
+
if do_convert_rgb:
|
267 |
+
images = [convert_to_rgb(image) for image in images]
|
268 |
+
|
269 |
+
# All transformations expect numpy arrays.
|
270 |
+
images = [to_numpy_array(image) for image in images]
|
271 |
+
|
272 |
+
if input_data_format is None:
|
273 |
+
# We assume that all images have the same channel dimension format.
|
274 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
275 |
+
|
276 |
+
if do_resize:
|
277 |
+
images = [
|
278 |
+
self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
|
279 |
+
for image in images
|
280 |
+
]
|
281 |
+
|
282 |
+
if do_center_crop:
|
283 |
+
images = [
|
284 |
+
self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images
|
285 |
+
]
|
286 |
+
|
287 |
+
if do_rescale:
|
288 |
+
images = [
|
289 |
+
self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
|
290 |
+
for image in images
|
291 |
+
]
|
292 |
+
|
293 |
+
if do_normalize:
|
294 |
+
images = [
|
295 |
+
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
|
296 |
+
for image in images
|
297 |
+
]
|
298 |
+
|
299 |
+
images = [
|
300 |
+
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
|
301 |
+
]
|
302 |
+
|
303 |
+
data = {"pixel_values": images}
|
304 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
modeling_kosmos2.py
ADDED
@@ -0,0 +1,1747 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch KOSMOS-2 model."""
|
16 |
+
|
17 |
+
|
18 |
+
import math
|
19 |
+
from dataclasses import dataclass
|
20 |
+
from typing import List, Optional, Tuple, Union
|
21 |
+
|
22 |
+
import torch
|
23 |
+
import torch.utils.checkpoint
|
24 |
+
from torch import nn
|
25 |
+
|
26 |
+
from transformers.activations import ACT2FN
|
27 |
+
from transformers.modeling_outputs import (
|
28 |
+
BaseModelOutput,
|
29 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
30 |
+
BaseModelOutputWithPooling,
|
31 |
+
CausalLMOutputWithCrossAttentions,
|
32 |
+
)
|
33 |
+
from transformers.modeling_utils import PreTrainedModel
|
34 |
+
from transformers.utils import (
|
35 |
+
ModelOutput,
|
36 |
+
add_start_docstrings,
|
37 |
+
add_start_docstrings_to_model_forward,
|
38 |
+
logging,
|
39 |
+
replace_return_docstrings,
|
40 |
+
)
|
41 |
+
from .configuration_kosmos2 import Kosmos2Config, Kosmos2TextConfig, Kosmos2VisionConfig
|
42 |
+
|
43 |
+
|
44 |
+
logger = logging.get_logger(__name__)
|
45 |
+
|
46 |
+
_CHECKPOINT_FOR_DOC = "microsoft/kosmos-2-patch14-224"
|
47 |
+
_CONFIG_FOR_DOC = Kosmos2Config
|
48 |
+
_EXPECTED_OUTPUT_SHAPE = None
|
49 |
+
|
50 |
+
|
51 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
52 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
53 |
+
"""
|
54 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
55 |
+
"""
|
56 |
+
bsz, src_len = mask.size()
|
57 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
58 |
+
|
59 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
60 |
+
|
61 |
+
inverted_mask = 1.0 - expanded_mask
|
62 |
+
|
63 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
64 |
+
|
65 |
+
|
66 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
67 |
+
def _make_causal_mask(
|
68 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
69 |
+
):
|
70 |
+
"""
|
71 |
+
Make causal mask used for bi-directional self-attention.
|
72 |
+
"""
|
73 |
+
bsz, tgt_len = input_ids_shape
|
74 |
+
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
|
75 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
76 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
77 |
+
mask = mask.to(dtype)
|
78 |
+
|
79 |
+
if past_key_values_length > 0:
|
80 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
81 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
82 |
+
|
83 |
+
|
84 |
+
# Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids
|
85 |
+
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
|
86 |
+
"""
|
87 |
+
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
|
88 |
+
are ignored. This is modified from fairseq's `utils.make_positions`.
|
89 |
+
|
90 |
+
Args:
|
91 |
+
x: torch.Tensor x:
|
92 |
+
|
93 |
+
Returns: torch.Tensor
|
94 |
+
"""
|
95 |
+
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
|
96 |
+
mask = input_ids.ne(padding_idx).int()
|
97 |
+
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
|
98 |
+
return incremental_indices.long() + padding_idx
|
99 |
+
|
100 |
+
|
101 |
+
KOSMOS2_START_DOCSTRING = r"""Kosmos-2"""
|
102 |
+
KOSMOS2_VISION_INPUTS_DOCSTRING = r"""Kosmos-2"""
|
103 |
+
KOSMOS2_TEXT_INPUTS_DOCSTRING = r"""Kosmos-2"""
|
104 |
+
KOSMOS2_INPUTS_DOCSTRING = r"""Kosmos-2"""
|
105 |
+
|
106 |
+
|
107 |
+
@dataclass
|
108 |
+
class Kosmos2ModelOutput(ModelOutput):
|
109 |
+
"""
|
110 |
+
Base class for text model's outputs that also contains a pooling of the last hidden states.
|
111 |
+
|
112 |
+
Args:
|
113 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
114 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
115 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
116 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
117 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
118 |
+
|
119 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
120 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
121 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
122 |
+
sequence_length)`.
|
123 |
+
|
124 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
125 |
+
heads.
|
126 |
+
image_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*, returned when being computed by the model):
|
127 |
+
Sequence of hidden-states at the output of `Kosmos2ImageToTextConnector`.
|
128 |
+
image_connector_attention (`tuple(torch.FloatTensor)`, *optional, returned when being computed by the model):
|
129 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
130 |
+
sequence_length)`.
|
131 |
+
|
132 |
+
Attentions weights given by `Kosmos2ImageToTextConnector`, after the attention softmax, used to compute the weighted average in the self-attention
|
133 |
+
heads.
|
134 |
+
vision_model_output(`BaseModelOutputWithPooling`, *optional*, returned when being computed by the model):
|
135 |
+
The output of the [`Kosmos2VisionModel`].
|
136 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
137 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
138 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
|
139 |
+
`config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
|
140 |
+
encoder_sequence_length, embed_size_per_head)`.
|
141 |
+
|
142 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
|
143 |
+
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values`
|
144 |
+
input) to speed up sequential decoding.
|
145 |
+
"""
|
146 |
+
|
147 |
+
last_hidden_states: torch.FloatTensor = None
|
148 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
149 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
150 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
151 |
+
image_features: Optional[torch.FloatTensor] = None
|
152 |
+
image_connector_attention: Optional[Tuple[torch.FloatTensor]] = None
|
153 |
+
vision_model_output: BaseModelOutputWithPooling = None
|
154 |
+
|
155 |
+
|
156 |
+
@dataclass
|
157 |
+
class Kosmos2ForConditionalGenerationModelOutput(ModelOutput):
|
158 |
+
"""
|
159 |
+
Model output class for `Kosmos2ForConditionalGeneration`.
|
160 |
+
|
161 |
+
Args:
|
162 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
163 |
+
Language modeling loss (for next-token prediction).
|
164 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
165 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
166 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
167 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
168 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
169 |
+
|
170 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
171 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
172 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
173 |
+
sequence_length)`.
|
174 |
+
|
175 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
176 |
+
heads.
|
177 |
+
image_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*, returned when being computed by the model):
|
178 |
+
Sequence of hidden-states at the output of `Kosmos2ImageToTextConnector`.
|
179 |
+
image_connector_attention (`tuple(torch.FloatTensor)`, *optional, returned when being computed by the model):
|
180 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
181 |
+
sequence_length)`.
|
182 |
+
|
183 |
+
Attentions weights given by `Kosmos2ImageToTextConnector`, after the attention softmax, used to compute the weighted average in the self-attention
|
184 |
+
heads.
|
185 |
+
vision_model_output(`BaseModelOutputWithPooling`, *optional*, returned when being computed by the model):
|
186 |
+
The output of the [`Kosmos2VisionModel`].
|
187 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
188 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
189 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and optionally if
|
190 |
+
`config.is_encoder_decoder=True` 2 additional tensors of shape `(batch_size, num_heads,
|
191 |
+
encoder_sequence_length, embed_size_per_head)`.
|
192 |
+
|
193 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
|
194 |
+
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values`
|
195 |
+
input) to speed up sequential decoding.
|
196 |
+
"""
|
197 |
+
|
198 |
+
loss: Optional[torch.FloatTensor] = None
|
199 |
+
logits: torch.FloatTensor = None
|
200 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
201 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
202 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
203 |
+
image_features: Optional[torch.FloatTensor] = None
|
204 |
+
image_connector_attention: Optional[Tuple[torch.FloatTensor]] = None
|
205 |
+
vision_model_output: BaseModelOutputWithPooling = None
|
206 |
+
|
207 |
+
|
208 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings with CLIP->Kosmos2
|
209 |
+
class Kosmos2VisionEmbeddings(nn.Module):
|
210 |
+
def __init__(self, config: Kosmos2VisionConfig):
|
211 |
+
super().__init__()
|
212 |
+
self.config = config
|
213 |
+
self.embed_dim = config.hidden_size
|
214 |
+
self.image_size = config.image_size
|
215 |
+
self.patch_size = config.patch_size
|
216 |
+
|
217 |
+
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
|
218 |
+
|
219 |
+
self.patch_embedding = nn.Conv2d(
|
220 |
+
in_channels=config.num_channels,
|
221 |
+
out_channels=self.embed_dim,
|
222 |
+
kernel_size=self.patch_size,
|
223 |
+
stride=self.patch_size,
|
224 |
+
bias=False,
|
225 |
+
)
|
226 |
+
|
227 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
228 |
+
self.num_positions = self.num_patches + 1
|
229 |
+
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
230 |
+
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
|
231 |
+
|
232 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
233 |
+
batch_size = pixel_values.shape[0]
|
234 |
+
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
|
235 |
+
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
236 |
+
|
237 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
|
238 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
239 |
+
embeddings = embeddings + self.position_embedding(self.position_ids)
|
240 |
+
return embeddings
|
241 |
+
|
242 |
+
|
243 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPAttention with CLIP->Kosmos2Vision
|
244 |
+
class Kosmos2VisionAttention(nn.Module):
|
245 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
246 |
+
|
247 |
+
def __init__(self, config):
|
248 |
+
super().__init__()
|
249 |
+
self.config = config
|
250 |
+
self.embed_dim = config.hidden_size
|
251 |
+
self.num_heads = config.num_attention_heads
|
252 |
+
self.head_dim = self.embed_dim // self.num_heads
|
253 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
254 |
+
raise ValueError(
|
255 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
256 |
+
f" {self.num_heads})."
|
257 |
+
)
|
258 |
+
self.scale = self.head_dim**-0.5
|
259 |
+
self.dropout = config.attention_dropout
|
260 |
+
|
261 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
262 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
263 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
264 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
265 |
+
|
266 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
267 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
268 |
+
|
269 |
+
def forward(
|
270 |
+
self,
|
271 |
+
hidden_states: torch.Tensor,
|
272 |
+
attention_mask: Optional[torch.Tensor] = None,
|
273 |
+
causal_attention_mask: Optional[torch.Tensor] = None,
|
274 |
+
output_attentions: Optional[bool] = False,
|
275 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
276 |
+
"""Input shape: Batch x Time x Channel"""
|
277 |
+
|
278 |
+
bsz, tgt_len, embed_dim = hidden_states.size()
|
279 |
+
|
280 |
+
# get query proj
|
281 |
+
query_states = self.q_proj(hidden_states) * self.scale
|
282 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
283 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
284 |
+
|
285 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
286 |
+
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
287 |
+
key_states = key_states.view(*proj_shape)
|
288 |
+
value_states = value_states.view(*proj_shape)
|
289 |
+
|
290 |
+
src_len = key_states.size(1)
|
291 |
+
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
292 |
+
|
293 |
+
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
294 |
+
raise ValueError(
|
295 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
296 |
+
f" {attn_weights.size()}"
|
297 |
+
)
|
298 |
+
|
299 |
+
# apply the causal_attention_mask first
|
300 |
+
if causal_attention_mask is not None:
|
301 |
+
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
302 |
+
raise ValueError(
|
303 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
|
304 |
+
f" {causal_attention_mask.size()}"
|
305 |
+
)
|
306 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
|
307 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
308 |
+
|
309 |
+
if attention_mask is not None:
|
310 |
+
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
311 |
+
raise ValueError(
|
312 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
313 |
+
)
|
314 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
315 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
316 |
+
|
317 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
318 |
+
|
319 |
+
if output_attentions:
|
320 |
+
# this operation is a bit akward, but it's required to
|
321 |
+
# make sure that attn_weights keeps its gradient.
|
322 |
+
# In order to do so, attn_weights have to reshaped
|
323 |
+
# twice and have to be reused in the following
|
324 |
+
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
325 |
+
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
326 |
+
else:
|
327 |
+
attn_weights_reshaped = None
|
328 |
+
|
329 |
+
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
330 |
+
|
331 |
+
attn_output = torch.bmm(attn_probs, value_states)
|
332 |
+
|
333 |
+
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
334 |
+
raise ValueError(
|
335 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
336 |
+
f" {attn_output.size()}"
|
337 |
+
)
|
338 |
+
|
339 |
+
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
340 |
+
attn_output = attn_output.transpose(1, 2)
|
341 |
+
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
|
342 |
+
|
343 |
+
attn_output = self.out_proj(attn_output)
|
344 |
+
|
345 |
+
return attn_output, attn_weights_reshaped
|
346 |
+
|
347 |
+
|
348 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->Kosmos2Vision
|
349 |
+
class Kosmos2VisionMLP(nn.Module):
|
350 |
+
def __init__(self, config):
|
351 |
+
super().__init__()
|
352 |
+
self.config = config
|
353 |
+
self.activation_fn = ACT2FN[config.hidden_act]
|
354 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
355 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
356 |
+
|
357 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
358 |
+
hidden_states = self.fc1(hidden_states)
|
359 |
+
hidden_states = self.activation_fn(hidden_states)
|
360 |
+
hidden_states = self.fc2(hidden_states)
|
361 |
+
return hidden_states
|
362 |
+
|
363 |
+
|
364 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPEncoderLayer with CLIP->Kosmos2Vision
|
365 |
+
class Kosmos2VisionEncoderLayer(nn.Module):
|
366 |
+
def __init__(self, config: Kosmos2VisionConfig):
|
367 |
+
super().__init__()
|
368 |
+
self.embed_dim = config.hidden_size
|
369 |
+
self.self_attn = Kosmos2VisionAttention(config)
|
370 |
+
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
371 |
+
self.mlp = Kosmos2VisionMLP(config)
|
372 |
+
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
373 |
+
|
374 |
+
def forward(
|
375 |
+
self,
|
376 |
+
hidden_states: torch.Tensor,
|
377 |
+
attention_mask: torch.Tensor,
|
378 |
+
causal_attention_mask: torch.Tensor,
|
379 |
+
output_attentions: Optional[bool] = False,
|
380 |
+
) -> Tuple[torch.FloatTensor]:
|
381 |
+
"""
|
382 |
+
Args:
|
383 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
384 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
385 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
386 |
+
`(config.encoder_attention_heads,)`.
|
387 |
+
output_attentions (`bool`, *optional*):
|
388 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
389 |
+
returned tensors for more detail.
|
390 |
+
"""
|
391 |
+
residual = hidden_states
|
392 |
+
|
393 |
+
hidden_states = self.layer_norm1(hidden_states)
|
394 |
+
hidden_states, attn_weights = self.self_attn(
|
395 |
+
hidden_states=hidden_states,
|
396 |
+
attention_mask=attention_mask,
|
397 |
+
causal_attention_mask=causal_attention_mask,
|
398 |
+
output_attentions=output_attentions,
|
399 |
+
)
|
400 |
+
hidden_states = residual + hidden_states
|
401 |
+
|
402 |
+
residual = hidden_states
|
403 |
+
hidden_states = self.layer_norm2(hidden_states)
|
404 |
+
hidden_states = self.mlp(hidden_states)
|
405 |
+
hidden_states = residual + hidden_states
|
406 |
+
|
407 |
+
outputs = (hidden_states,)
|
408 |
+
|
409 |
+
if output_attentions:
|
410 |
+
outputs += (attn_weights,)
|
411 |
+
|
412 |
+
return outputs
|
413 |
+
|
414 |
+
|
415 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPEncoder with CLIP->Kosmos2Vision
|
416 |
+
class Kosmos2VisionEncoder(nn.Module):
|
417 |
+
"""
|
418 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
419 |
+
[`Kosmos2VisionEncoderLayer`].
|
420 |
+
|
421 |
+
Args:
|
422 |
+
config: Kosmos2VisionConfig
|
423 |
+
"""
|
424 |
+
|
425 |
+
def __init__(self, config: Kosmos2VisionConfig):
|
426 |
+
super().__init__()
|
427 |
+
self.config = config
|
428 |
+
self.layers = nn.ModuleList([Kosmos2VisionEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
429 |
+
self.gradient_checkpointing = False
|
430 |
+
|
431 |
+
def forward(
|
432 |
+
self,
|
433 |
+
inputs_embeds,
|
434 |
+
attention_mask: Optional[torch.Tensor] = None,
|
435 |
+
causal_attention_mask: Optional[torch.Tensor] = None,
|
436 |
+
output_attentions: Optional[bool] = None,
|
437 |
+
output_hidden_states: Optional[bool] = None,
|
438 |
+
return_dict: Optional[bool] = None,
|
439 |
+
) -> Union[Tuple, BaseModelOutput]:
|
440 |
+
r"""
|
441 |
+
Args:
|
442 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
443 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
444 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
445 |
+
than the model's internal embedding lookup matrix.
|
446 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
447 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
448 |
+
|
449 |
+
- 1 for tokens that are **not masked**,
|
450 |
+
- 0 for tokens that are **masked**.
|
451 |
+
|
452 |
+
[What are attention masks?](../glossary#attention-mask)
|
453 |
+
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
454 |
+
Causal mask for the text model. Mask values selected in `[0, 1]`:
|
455 |
+
|
456 |
+
- 1 for tokens that are **not masked**,
|
457 |
+
- 0 for tokens that are **masked**.
|
458 |
+
|
459 |
+
[What are attention masks?](../glossary#attention-mask)
|
460 |
+
output_attentions (`bool`, *optional*):
|
461 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
462 |
+
returned tensors for more detail.
|
463 |
+
output_hidden_states (`bool`, *optional*):
|
464 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
465 |
+
for more detail.
|
466 |
+
return_dict (`bool`, *optional*):
|
467 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
468 |
+
"""
|
469 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
470 |
+
output_hidden_states = (
|
471 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
472 |
+
)
|
473 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
474 |
+
|
475 |
+
encoder_states = () if output_hidden_states else None
|
476 |
+
all_attentions = () if output_attentions else None
|
477 |
+
|
478 |
+
hidden_states = inputs_embeds
|
479 |
+
for idx, encoder_layer in enumerate(self.layers):
|
480 |
+
if output_hidden_states:
|
481 |
+
encoder_states = encoder_states + (hidden_states,)
|
482 |
+
if self.gradient_checkpointing and self.training:
|
483 |
+
|
484 |
+
def create_custom_forward(module):
|
485 |
+
def custom_forward(*inputs):
|
486 |
+
return module(*inputs, output_attentions)
|
487 |
+
|
488 |
+
return custom_forward
|
489 |
+
|
490 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
491 |
+
create_custom_forward(encoder_layer),
|
492 |
+
hidden_states,
|
493 |
+
attention_mask,
|
494 |
+
causal_attention_mask,
|
495 |
+
)
|
496 |
+
else:
|
497 |
+
layer_outputs = encoder_layer(
|
498 |
+
hidden_states,
|
499 |
+
attention_mask,
|
500 |
+
causal_attention_mask,
|
501 |
+
output_attentions=output_attentions,
|
502 |
+
)
|
503 |
+
|
504 |
+
hidden_states = layer_outputs[0]
|
505 |
+
|
506 |
+
if output_attentions:
|
507 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
508 |
+
|
509 |
+
if output_hidden_states:
|
510 |
+
encoder_states = encoder_states + (hidden_states,)
|
511 |
+
|
512 |
+
if not return_dict:
|
513 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
514 |
+
return BaseModelOutput(
|
515 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
516 |
+
)
|
517 |
+
|
518 |
+
|
519 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPVisionTransformer with CLIPVision->Kosmos2Vision,CLIP_VISION->KOSMOS2_VISION,CLIP->Kosmos2Vision
|
520 |
+
class Kosmos2VisionTransformer(nn.Module):
|
521 |
+
def __init__(self, config: Kosmos2VisionConfig):
|
522 |
+
super().__init__()
|
523 |
+
self.config = config
|
524 |
+
embed_dim = config.hidden_size
|
525 |
+
|
526 |
+
self.embeddings = Kosmos2VisionEmbeddings(config)
|
527 |
+
self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
528 |
+
self.encoder = Kosmos2VisionEncoder(config)
|
529 |
+
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
530 |
+
|
531 |
+
@add_start_docstrings_to_model_forward(KOSMOS2_VISION_INPUTS_DOCSTRING)
|
532 |
+
def forward(
|
533 |
+
self,
|
534 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
535 |
+
output_attentions: Optional[bool] = None,
|
536 |
+
output_hidden_states: Optional[bool] = None,
|
537 |
+
return_dict: Optional[bool] = None,
|
538 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
539 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
540 |
+
output_hidden_states = (
|
541 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
542 |
+
)
|
543 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
544 |
+
|
545 |
+
if pixel_values is None:
|
546 |
+
raise ValueError("You have to specify pixel_values")
|
547 |
+
|
548 |
+
hidden_states = self.embeddings(pixel_values)
|
549 |
+
hidden_states = self.pre_layrnorm(hidden_states)
|
550 |
+
|
551 |
+
encoder_outputs = self.encoder(
|
552 |
+
inputs_embeds=hidden_states,
|
553 |
+
output_attentions=output_attentions,
|
554 |
+
output_hidden_states=output_hidden_states,
|
555 |
+
return_dict=return_dict,
|
556 |
+
)
|
557 |
+
|
558 |
+
last_hidden_state = encoder_outputs[0]
|
559 |
+
pooled_output = last_hidden_state[:, 0, :]
|
560 |
+
pooled_output = self.post_layernorm(pooled_output)
|
561 |
+
|
562 |
+
if not return_dict:
|
563 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
564 |
+
|
565 |
+
return BaseModelOutputWithPooling(
|
566 |
+
last_hidden_state=last_hidden_state,
|
567 |
+
pooler_output=pooled_output,
|
568 |
+
hidden_states=encoder_outputs.hidden_states,
|
569 |
+
attentions=encoder_outputs.attentions,
|
570 |
+
)
|
571 |
+
|
572 |
+
|
573 |
+
# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100SinusoidalPositionalEmbedding with M2M100->Kosmos2
|
574 |
+
class Kosmos2TextSinusoidalPositionalEmbedding(nn.Module):
|
575 |
+
"""This module produces sinusoidal positional embeddings of any length."""
|
576 |
+
|
577 |
+
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None):
|
578 |
+
super().__init__()
|
579 |
+
self.offset = 2
|
580 |
+
self.embedding_dim = embedding_dim
|
581 |
+
self.padding_idx = padding_idx
|
582 |
+
self.make_weights(num_positions + self.offset, embedding_dim, padding_idx)
|
583 |
+
|
584 |
+
def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
|
585 |
+
emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx)
|
586 |
+
if hasattr(self, "weights"):
|
587 |
+
# in forward put the weights on the correct dtype and device of the param
|
588 |
+
emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device)
|
589 |
+
|
590 |
+
self.register_buffer("weights", emb_weights, persistent=False)
|
591 |
+
|
592 |
+
@staticmethod
|
593 |
+
def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
|
594 |
+
"""
|
595 |
+
Build sinusoidal embeddings.
|
596 |
+
|
597 |
+
This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of
|
598 |
+
"Attention Is All You Need".
|
599 |
+
"""
|
600 |
+
half_dim = embedding_dim // 2
|
601 |
+
emb = math.log(10000) / (half_dim - 1)
|
602 |
+
emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb)
|
603 |
+
emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0)
|
604 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
|
605 |
+
if embedding_dim % 2 == 1:
|
606 |
+
# zero pad
|
607 |
+
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
|
608 |
+
if padding_idx is not None:
|
609 |
+
emb[padding_idx, :] = 0
|
610 |
+
|
611 |
+
return emb.to(torch.get_default_dtype())
|
612 |
+
|
613 |
+
@torch.no_grad()
|
614 |
+
def forward(
|
615 |
+
self, input_ids: torch.Tensor = None, inputs_embeds: torch.Tensor = None, past_key_values_length: int = 0
|
616 |
+
):
|
617 |
+
if input_ids is not None:
|
618 |
+
bsz, seq_len = input_ids.size()
|
619 |
+
# Create the position ids from the input token ids. Any padded tokens remain padded.
|
620 |
+
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length).to(
|
621 |
+
input_ids.device
|
622 |
+
)
|
623 |
+
else:
|
624 |
+
bsz, seq_len = inputs_embeds.size()[:-1]
|
625 |
+
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds, past_key_values_length)
|
626 |
+
|
627 |
+
# expand embeddings if needed
|
628 |
+
max_pos = self.padding_idx + 1 + seq_len + past_key_values_length
|
629 |
+
if max_pos > self.weights.size(0):
|
630 |
+
self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx)
|
631 |
+
|
632 |
+
return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, self.weights.shape[-1]).detach()
|
633 |
+
|
634 |
+
def create_position_ids_from_inputs_embeds(self, inputs_embeds, past_key_values_length):
|
635 |
+
"""
|
636 |
+
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
|
637 |
+
|
638 |
+
Args:
|
639 |
+
inputs_embeds: torch.Tensor
|
640 |
+
|
641 |
+
Returns: torch.Tensor
|
642 |
+
"""
|
643 |
+
input_shape = inputs_embeds.size()[:-1]
|
644 |
+
sequence_length = input_shape[1]
|
645 |
+
|
646 |
+
position_ids = torch.arange(
|
647 |
+
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
|
648 |
+
)
|
649 |
+
return position_ids.unsqueeze(0).expand(input_shape).contiguous() + past_key_values_length
|
650 |
+
|
651 |
+
|
652 |
+
# Similar to transformers.models.bart.modeling_bart.BartAttention with an additional `inner_attn_ln`.
|
653 |
+
class KosmosTextAttention(nn.Module):
|
654 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
655 |
+
|
656 |
+
def __init__(
|
657 |
+
self,
|
658 |
+
config,
|
659 |
+
embed_dim: int,
|
660 |
+
num_heads: int,
|
661 |
+
dropout: float = 0.0,
|
662 |
+
is_decoder: bool = False,
|
663 |
+
add_inner_attn_layernorm: bool = False,
|
664 |
+
bias: bool = True,
|
665 |
+
):
|
666 |
+
super().__init__()
|
667 |
+
self.embed_dim = embed_dim
|
668 |
+
self.num_heads = num_heads
|
669 |
+
self.dropout = dropout
|
670 |
+
self.head_dim = embed_dim // num_heads
|
671 |
+
|
672 |
+
if (self.head_dim * num_heads) != self.embed_dim:
|
673 |
+
raise ValueError(
|
674 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
675 |
+
f" and `num_heads`: {num_heads})."
|
676 |
+
)
|
677 |
+
self.scaling = self.head_dim**-0.5
|
678 |
+
self.is_decoder = is_decoder
|
679 |
+
|
680 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
681 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
682 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
683 |
+
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
684 |
+
|
685 |
+
self.inner_attn_ln = None
|
686 |
+
if add_inner_attn_layernorm:
|
687 |
+
self.inner_attn_ln = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
688 |
+
|
689 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
690 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
691 |
+
|
692 |
+
def forward(
|
693 |
+
self,
|
694 |
+
hidden_states: torch.Tensor,
|
695 |
+
key_value_states: Optional[torch.Tensor] = None,
|
696 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
697 |
+
attention_mask: Optional[torch.Tensor] = None,
|
698 |
+
layer_head_mask: Optional[torch.Tensor] = None,
|
699 |
+
output_attentions: bool = False,
|
700 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
701 |
+
"""Input shape: Batch x Time x Channel"""
|
702 |
+
|
703 |
+
# if key_value_states are provided this layer is used as a cross-attention layer
|
704 |
+
# for the decoder
|
705 |
+
is_cross_attention = key_value_states is not None
|
706 |
+
|
707 |
+
bsz, tgt_len, _ = hidden_states.size()
|
708 |
+
|
709 |
+
# get query proj
|
710 |
+
query_states = self.q_proj(hidden_states) * self.scaling
|
711 |
+
# get key, value proj
|
712 |
+
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
|
713 |
+
# is checking that the `sequence_length` of the `past_key_value` is the same as
|
714 |
+
# the provided `key_value_states` to support prefix tuning
|
715 |
+
if (
|
716 |
+
is_cross_attention
|
717 |
+
and past_key_value is not None
|
718 |
+
and past_key_value[0].shape[2] == key_value_states.shape[1]
|
719 |
+
):
|
720 |
+
# reuse k,v, cross_attentions
|
721 |
+
key_states = past_key_value[0]
|
722 |
+
value_states = past_key_value[1]
|
723 |
+
elif is_cross_attention:
|
724 |
+
# cross_attentions
|
725 |
+
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
|
726 |
+
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
|
727 |
+
elif past_key_value is not None:
|
728 |
+
# reuse k, v, self_attention
|
729 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
730 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
731 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
732 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
733 |
+
else:
|
734 |
+
# self_attention
|
735 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
736 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
737 |
+
|
738 |
+
if self.is_decoder:
|
739 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
740 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
741 |
+
# key/value_states (first "if" case)
|
742 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
743 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
744 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
745 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
746 |
+
past_key_value = (key_states, value_states)
|
747 |
+
|
748 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
749 |
+
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
750 |
+
key_states = key_states.reshape(*proj_shape)
|
751 |
+
value_states = value_states.reshape(*proj_shape)
|
752 |
+
|
753 |
+
src_len = key_states.size(1)
|
754 |
+
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
755 |
+
|
756 |
+
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
757 |
+
raise ValueError(
|
758 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
759 |
+
f" {attn_weights.size()}"
|
760 |
+
)
|
761 |
+
|
762 |
+
if attention_mask is not None:
|
763 |
+
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
764 |
+
raise ValueError(
|
765 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
766 |
+
)
|
767 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
768 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
769 |
+
|
770 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
771 |
+
|
772 |
+
if layer_head_mask is not None:
|
773 |
+
if layer_head_mask.size() != (self.num_heads,):
|
774 |
+
raise ValueError(
|
775 |
+
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
|
776 |
+
f" {layer_head_mask.size()}"
|
777 |
+
)
|
778 |
+
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
779 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
780 |
+
|
781 |
+
if output_attentions:
|
782 |
+
# this operation is a bit awkward, but it's required to
|
783 |
+
# make sure that attn_weights keeps its gradient.
|
784 |
+
# In order to do so, attn_weights have to be reshaped
|
785 |
+
# twice and have to be reused in the following
|
786 |
+
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
787 |
+
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
788 |
+
else:
|
789 |
+
attn_weights_reshaped = None
|
790 |
+
|
791 |
+
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
792 |
+
|
793 |
+
attn_output = torch.bmm(attn_probs, value_states)
|
794 |
+
|
795 |
+
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
796 |
+
raise ValueError(
|
797 |
+
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
|
798 |
+
f" {attn_output.size()}"
|
799 |
+
)
|
800 |
+
|
801 |
+
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
802 |
+
attn_output = attn_output.transpose(1, 2)
|
803 |
+
|
804 |
+
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
|
805 |
+
# partitioned across GPUs when using tensor-parallelism.
|
806 |
+
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
|
807 |
+
|
808 |
+
if self.inner_attn_ln is not None:
|
809 |
+
attn_output = self.inner_attn_ln(attn_output)
|
810 |
+
|
811 |
+
attn_output = self.out_proj(attn_output)
|
812 |
+
|
813 |
+
return attn_output, attn_weights_reshaped, past_key_value
|
814 |
+
|
815 |
+
|
816 |
+
class Kosmos2TextFFN(nn.Module):
|
817 |
+
def __init__(self, config: Kosmos2TextConfig):
|
818 |
+
super().__init__()
|
819 |
+
|
820 |
+
self.dropout = config.dropout
|
821 |
+
self.activation_fn = ACT2FN[config.activation_function]
|
822 |
+
self.activation_dropout = config.activation_dropout
|
823 |
+
|
824 |
+
self.fc1 = nn.Linear(config.embed_dim, config.ffn_dim)
|
825 |
+
self.fc2 = nn.Linear(config.ffn_dim, config.embed_dim)
|
826 |
+
|
827 |
+
self.ffn_layernorm = nn.LayerNorm(config.ffn_dim, eps=config.layer_norm_eps)
|
828 |
+
|
829 |
+
def forward(self, hidden_states):
|
830 |
+
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
831 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
|
832 |
+
hidden_states = self.ffn_layernorm(hidden_states)
|
833 |
+
hidden_states = self.fc2(hidden_states)
|
834 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
835 |
+
|
836 |
+
return hidden_states
|
837 |
+
|
838 |
+
|
839 |
+
class Kosmos2TextBlock(nn.Module):
|
840 |
+
def __init__(self, config: Kosmos2TextConfig):
|
841 |
+
super().__init__()
|
842 |
+
self.embed_dim = config.embed_dim
|
843 |
+
|
844 |
+
self.self_attn = KosmosTextAttention(
|
845 |
+
config,
|
846 |
+
embed_dim=self.embed_dim,
|
847 |
+
num_heads=config.attention_heads,
|
848 |
+
dropout=config.attention_dropout,
|
849 |
+
is_decoder=True,
|
850 |
+
add_inner_attn_layernorm=True,
|
851 |
+
)
|
852 |
+
self.dropout = config.dropout
|
853 |
+
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
854 |
+
|
855 |
+
if config.add_cross_attention:
|
856 |
+
self.encoder_attn = KosmosTextAttention(
|
857 |
+
config,
|
858 |
+
embed_dim=self.embed_dim,
|
859 |
+
num_heads=config.attention_heads,
|
860 |
+
dropout=config.attention_dropout,
|
861 |
+
is_decoder=True,
|
862 |
+
add_inner_attn_layernorm=False,
|
863 |
+
)
|
864 |
+
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
865 |
+
|
866 |
+
self.ffn = Kosmos2TextFFN(config)
|
867 |
+
self.final_layer_norm = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
|
868 |
+
|
869 |
+
def forward(
|
870 |
+
self,
|
871 |
+
hidden_states: torch.Tensor,
|
872 |
+
attention_mask: Optional[torch.Tensor] = None,
|
873 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
874 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
875 |
+
layer_head_mask: Optional[torch.Tensor] = None,
|
876 |
+
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
|
877 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
878 |
+
output_attentions: Optional[bool] = False,
|
879 |
+
use_cache: Optional[bool] = True,
|
880 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
881 |
+
residual = hidden_states
|
882 |
+
|
883 |
+
# Self Attention
|
884 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
885 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
886 |
+
|
887 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
888 |
+
|
889 |
+
# add present self-attn cache to positions 1,2 of present_key_value tuple
|
890 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
891 |
+
hidden_states=hidden_states,
|
892 |
+
past_key_value=self_attn_past_key_value,
|
893 |
+
attention_mask=attention_mask,
|
894 |
+
layer_head_mask=layer_head_mask,
|
895 |
+
output_attentions=output_attentions,
|
896 |
+
)
|
897 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
898 |
+
hidden_states = residual + hidden_states
|
899 |
+
|
900 |
+
# Cross-Attention Block
|
901 |
+
cross_attn_present_key_value = None
|
902 |
+
cross_attn_weights = None
|
903 |
+
if encoder_hidden_states is not None:
|
904 |
+
if not hasattr(self, "encoder_attn"):
|
905 |
+
raise ValueError(
|
906 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers"
|
907 |
+
" by setting `config.add_cross_attention=True`"
|
908 |
+
)
|
909 |
+
|
910 |
+
residual = hidden_states
|
911 |
+
|
912 |
+
hidden_states = self.encoder_attn_layer_norm(hidden_states)
|
913 |
+
|
914 |
+
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
|
915 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
916 |
+
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
|
917 |
+
hidden_states=hidden_states,
|
918 |
+
key_value_states=encoder_hidden_states,
|
919 |
+
attention_mask=encoder_attention_mask,
|
920 |
+
layer_head_mask=cross_attn_layer_head_mask,
|
921 |
+
past_key_value=cross_attn_past_key_value,
|
922 |
+
output_attentions=output_attentions,
|
923 |
+
)
|
924 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
925 |
+
hidden_states = residual + hidden_states
|
926 |
+
|
927 |
+
# add cross-attn to positions 3,4 of present_key_value tuple
|
928 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
929 |
+
|
930 |
+
# Fully Connected
|
931 |
+
residual = hidden_states
|
932 |
+
|
933 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
934 |
+
|
935 |
+
# FFN
|
936 |
+
hidden_states = self.ffn(hidden_states)
|
937 |
+
hidden_states = residual + hidden_states
|
938 |
+
|
939 |
+
outputs = (hidden_states,)
|
940 |
+
|
941 |
+
if output_attentions:
|
942 |
+
outputs += (self_attn_weights, cross_attn_weights)
|
943 |
+
|
944 |
+
if use_cache:
|
945 |
+
outputs += (present_key_value,)
|
946 |
+
|
947 |
+
return outputs
|
948 |
+
|
949 |
+
|
950 |
+
class Kosmos2TextTransformer(nn.Module):
|
951 |
+
"""
|
952 |
+
Transformer decoder consisting of `config.layers` layers. Each layer is a [`Kosmos2TextBlock`].
|
953 |
+
|
954 |
+
Args:
|
955 |
+
config: Kosmos2TextConfig
|
956 |
+
"""
|
957 |
+
|
958 |
+
def __init__(self, config: Kosmos2TextConfig):
|
959 |
+
super().__init__()
|
960 |
+
self.config = config
|
961 |
+
self.dropout = config.dropout
|
962 |
+
self.layerdrop = config.layerdrop
|
963 |
+
|
964 |
+
self.embed_scale = math.sqrt(config.embed_dim) if config.scale_embedding else 1.0
|
965 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.embed_dim, padding_idx=config.pad_token_id)
|
966 |
+
|
967 |
+
self.embed_positions = Kosmos2TextSinusoidalPositionalEmbedding(
|
968 |
+
num_positions=config.max_position_embeddings,
|
969 |
+
embedding_dim=config.embed_dim,
|
970 |
+
padding_idx=config.pad_token_id,
|
971 |
+
)
|
972 |
+
|
973 |
+
self.layers = nn.ModuleList([Kosmos2TextBlock(config) for _ in range(config.layers)])
|
974 |
+
self.layer_norm = nn.LayerNorm(config.embed_dim, config.layer_norm_eps)
|
975 |
+
|
976 |
+
self.gradient_checkpointing = False
|
977 |
+
|
978 |
+
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
979 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
980 |
+
# create causal mask
|
981 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
982 |
+
combined_attention_mask = None
|
983 |
+
if input_shape[-1] > 1:
|
984 |
+
combined_attention_mask = _make_causal_mask(
|
985 |
+
input_shape,
|
986 |
+
inputs_embeds.dtype,
|
987 |
+
device=inputs_embeds.device,
|
988 |
+
past_key_values_length=past_key_values_length,
|
989 |
+
)
|
990 |
+
|
991 |
+
if attention_mask is not None:
|
992 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
993 |
+
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
994 |
+
inputs_embeds.device
|
995 |
+
)
|
996 |
+
combined_attention_mask = (
|
997 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
998 |
+
)
|
999 |
+
|
1000 |
+
return combined_attention_mask
|
1001 |
+
|
1002 |
+
def forward_embedding(
|
1003 |
+
self, input_ids, inputs_embeds=None, img_features=None, img_input_mask=None, past_key_values_length: int = 0
|
1004 |
+
):
|
1005 |
+
# The argument `inputs_embeds` should be the one without being multiplied by `self.embed_scale`.
|
1006 |
+
if inputs_embeds is None:
|
1007 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
1008 |
+
|
1009 |
+
if img_features is not None:
|
1010 |
+
inputs_embeds[img_input_mask.to(dtype=torch.bool)] = img_features
|
1011 |
+
|
1012 |
+
inputs_embeds = inputs_embeds * self.embed_scale
|
1013 |
+
|
1014 |
+
# embed positions
|
1015 |
+
positions = self.embed_positions(
|
1016 |
+
input_ids=input_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length
|
1017 |
+
)
|
1018 |
+
positions = positions.to(inputs_embeds.device)
|
1019 |
+
|
1020 |
+
hidden_states = inputs_embeds + positions
|
1021 |
+
|
1022 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
1023 |
+
|
1024 |
+
return hidden_states
|
1025 |
+
|
1026 |
+
def forward(
|
1027 |
+
self,
|
1028 |
+
input_ids: Optional[torch.Tensor] = None,
|
1029 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1030 |
+
img_features: Optional[torch.Tensor] = None,
|
1031 |
+
img_attn_mask: Optional[torch.Tensor] = None,
|
1032 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
1033 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
1034 |
+
head_mask: Optional[torch.Tensor] = None,
|
1035 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
1036 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1037 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1038 |
+
use_cache: Optional[bool] = None,
|
1039 |
+
output_attentions: Optional[bool] = None,
|
1040 |
+
output_hidden_states: Optional[bool] = None,
|
1041 |
+
return_dict: Optional[bool] = None,
|
1042 |
+
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
1043 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1044 |
+
output_hidden_states = (
|
1045 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1046 |
+
)
|
1047 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1048 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1049 |
+
|
1050 |
+
if input_ids is not None and inputs_embeds is not None:
|
1051 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
1052 |
+
elif input_ids is not None:
|
1053 |
+
input_shape = input_ids.shape
|
1054 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
1055 |
+
elif inputs_embeds is not None:
|
1056 |
+
input_shape = inputs_embeds.size()[:-1]
|
1057 |
+
else:
|
1058 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
1059 |
+
|
1060 |
+
# past_key_values_length
|
1061 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
1062 |
+
|
1063 |
+
# We don't need img info. when `past_key_values_length` > 0
|
1064 |
+
if past_key_values_length > 0:
|
1065 |
+
img_features = None
|
1066 |
+
img_attn_mask = None
|
1067 |
+
|
1068 |
+
hidden_states = self.forward_embedding(
|
1069 |
+
input_ids=input_ids,
|
1070 |
+
inputs_embeds=inputs_embeds,
|
1071 |
+
img_features=img_features,
|
1072 |
+
img_input_mask=img_attn_mask,
|
1073 |
+
past_key_values_length=past_key_values_length,
|
1074 |
+
)
|
1075 |
+
|
1076 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
1077 |
+
attention_mask, input_shape, hidden_states, past_key_values_length
|
1078 |
+
)
|
1079 |
+
|
1080 |
+
# expand encoder attention mask
|
1081 |
+
if encoder_hidden_states is not None and encoder_attention_mask is not None:
|
1082 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1083 |
+
encoder_attention_mask = _expand_mask(encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1])
|
1084 |
+
|
1085 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
1086 |
+
|
1087 |
+
if self.gradient_checkpointing and self.training:
|
1088 |
+
if use_cache:
|
1089 |
+
logger.warning_once(
|
1090 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
1091 |
+
)
|
1092 |
+
use_cache = False
|
1093 |
+
|
1094 |
+
# decoder layers
|
1095 |
+
all_hidden_states = () if output_hidden_states else None
|
1096 |
+
all_self_attns = () if output_attentions else None
|
1097 |
+
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
|
1098 |
+
next_decoder_cache = () if use_cache else None
|
1099 |
+
|
1100 |
+
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
|
1101 |
+
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
|
1102 |
+
if attn_mask is not None:
|
1103 |
+
if attn_mask.size()[0] != (len(self.layers)):
|
1104 |
+
raise ValueError(
|
1105 |
+
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
|
1106 |
+
f" {head_mask.size()[0]}."
|
1107 |
+
)
|
1108 |
+
|
1109 |
+
for idx, decoder_layer in enumerate(self.layers):
|
1110 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
1111 |
+
if output_hidden_states:
|
1112 |
+
all_hidden_states += (hidden_states,)
|
1113 |
+
if self.training:
|
1114 |
+
dropout_probability = torch.rand([])
|
1115 |
+
if dropout_probability < self.layerdrop:
|
1116 |
+
continue
|
1117 |
+
|
1118 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
1119 |
+
|
1120 |
+
if self.gradient_checkpointing and self.training:
|
1121 |
+
|
1122 |
+
def create_custom_forward(module):
|
1123 |
+
def custom_forward(*inputs):
|
1124 |
+
# None for past_key_value
|
1125 |
+
return module(*inputs, output_attentions, use_cache)
|
1126 |
+
|
1127 |
+
return custom_forward
|
1128 |
+
|
1129 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
1130 |
+
create_custom_forward(decoder_layer),
|
1131 |
+
hidden_states,
|
1132 |
+
attention_mask,
|
1133 |
+
encoder_hidden_states,
|
1134 |
+
encoder_attention_mask,
|
1135 |
+
head_mask[idx] if head_mask is not None else None,
|
1136 |
+
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
|
1137 |
+
None,
|
1138 |
+
)
|
1139 |
+
else:
|
1140 |
+
layer_outputs = decoder_layer(
|
1141 |
+
hidden_states,
|
1142 |
+
attention_mask=attention_mask,
|
1143 |
+
encoder_hidden_states=encoder_hidden_states,
|
1144 |
+
encoder_attention_mask=encoder_attention_mask,
|
1145 |
+
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
|
1146 |
+
cross_attn_layer_head_mask=(
|
1147 |
+
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
|
1148 |
+
),
|
1149 |
+
past_key_value=past_key_value,
|
1150 |
+
output_attentions=output_attentions,
|
1151 |
+
use_cache=use_cache,
|
1152 |
+
)
|
1153 |
+
hidden_states = layer_outputs[0]
|
1154 |
+
|
1155 |
+
if use_cache:
|
1156 |
+
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
|
1157 |
+
|
1158 |
+
if output_attentions:
|
1159 |
+
all_self_attns += (layer_outputs[1],)
|
1160 |
+
|
1161 |
+
if encoder_hidden_states is not None:
|
1162 |
+
all_cross_attentions += (layer_outputs[2],)
|
1163 |
+
|
1164 |
+
# add final layer norm
|
1165 |
+
hidden_states = self.layer_norm(hidden_states)
|
1166 |
+
|
1167 |
+
# add hidden states from the last decoder layer
|
1168 |
+
if output_hidden_states:
|
1169 |
+
all_hidden_states += (hidden_states,)
|
1170 |
+
|
1171 |
+
next_cache = next_decoder_cache if use_cache else None
|
1172 |
+
if not return_dict:
|
1173 |
+
return tuple(
|
1174 |
+
v
|
1175 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
|
1176 |
+
if v is not None
|
1177 |
+
)
|
1178 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
1179 |
+
last_hidden_state=hidden_states,
|
1180 |
+
past_key_values=next_cache,
|
1181 |
+
hidden_states=all_hidden_states,
|
1182 |
+
attentions=all_self_attns,
|
1183 |
+
cross_attentions=all_cross_attentions,
|
1184 |
+
)
|
1185 |
+
|
1186 |
+
|
1187 |
+
class Kosmos2PreTrainedModel(PreTrainedModel):
|
1188 |
+
"""
|
1189 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
1190 |
+
models.
|
1191 |
+
"""
|
1192 |
+
|
1193 |
+
config_class = Kosmos2Config
|
1194 |
+
supports_gradient_checkpointing = True
|
1195 |
+
|
1196 |
+
|
1197 |
+
@add_start_docstrings(
|
1198 |
+
"""The vision model from KOSMOS-2 without any head or projection on top.""",
|
1199 |
+
KOSMOS2_START_DOCSTRING,
|
1200 |
+
)
|
1201 |
+
class Kosmos2VisionModel(Kosmos2PreTrainedModel):
|
1202 |
+
config_class = Kosmos2VisionConfig
|
1203 |
+
main_input_name = "pixel_values"
|
1204 |
+
|
1205 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPVisionModel.__init__ with CLIP_VISION->KOSMOS2_VISION,CLIP->Kosmos2
|
1206 |
+
def __init__(self, config: Kosmos2VisionConfig):
|
1207 |
+
super().__init__(config)
|
1208 |
+
self.model = Kosmos2VisionTransformer(config)
|
1209 |
+
# Initialize weights and apply final processing
|
1210 |
+
self.post_init()
|
1211 |
+
|
1212 |
+
# Copied from transformers.models.clip.modeling_clip.CLIPVisionModel.get_input_embeddings with CLIP_VISION->KOSMOS2_VISION,CLIP->Kosmos2
|
1213 |
+
def get_input_embeddings(self) -> nn.Module:
|
1214 |
+
return self.model.embeddings.patch_embedding
|
1215 |
+
|
1216 |
+
@add_start_docstrings_to_model_forward(KOSMOS2_VISION_INPUTS_DOCSTRING)
|
1217 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=Kosmos2VisionConfig)
|
1218 |
+
def forward(
|
1219 |
+
self,
|
1220 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
1221 |
+
output_attentions: Optional[bool] = None,
|
1222 |
+
output_hidden_states: Optional[bool] = None,
|
1223 |
+
return_dict: Optional[bool] = None,
|
1224 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
1225 |
+
r"""
|
1226 |
+
Returns:
|
1227 |
+
|
1228 |
+
"""
|
1229 |
+
return self.model(
|
1230 |
+
pixel_values=pixel_values,
|
1231 |
+
output_attentions=output_attentions,
|
1232 |
+
output_hidden_states=output_hidden_states,
|
1233 |
+
return_dict=return_dict,
|
1234 |
+
)
|
1235 |
+
|
1236 |
+
|
1237 |
+
@add_start_docstrings(
|
1238 |
+
"""The text model from KOSMOS-2 without any head or projection on top.""",
|
1239 |
+
KOSMOS2_START_DOCSTRING,
|
1240 |
+
)
|
1241 |
+
class Kosmos2TextModel(Kosmos2PreTrainedModel):
|
1242 |
+
config_class = Kosmos2TextConfig
|
1243 |
+
|
1244 |
+
_no_split_modules = ["Kosmos2TextBlock"]
|
1245 |
+
|
1246 |
+
def __init__(self, config: Kosmos2TextConfig):
|
1247 |
+
super().__init__(config)
|
1248 |
+
self.model = Kosmos2TextTransformer(config)
|
1249 |
+
# Initialize weights and apply final processing
|
1250 |
+
self.post_init()
|
1251 |
+
|
1252 |
+
def get_input_embeddings(self) -> nn.Module:
|
1253 |
+
return self.model.embed_tokens
|
1254 |
+
|
1255 |
+
def set_input_embeddings(self, value):
|
1256 |
+
self.model.embed_tokens = value
|
1257 |
+
|
1258 |
+
@add_start_docstrings_to_model_forward(KOSMOS2_TEXT_INPUTS_DOCSTRING)
|
1259 |
+
@replace_return_docstrings(output_type=BaseModelOutputWithPastAndCrossAttentions, config_class=Kosmos2TextConfig)
|
1260 |
+
def forward(
|
1261 |
+
self,
|
1262 |
+
input_ids: Optional[torch.Tensor] = None,
|
1263 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1264 |
+
img_features: Optional[torch.Tensor] = None,
|
1265 |
+
img_attn_mask: Optional[torch.Tensor] = None,
|
1266 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
1267 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
1268 |
+
head_mask: Optional[torch.Tensor] = None,
|
1269 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
1270 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1271 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1272 |
+
use_cache: Optional[bool] = None,
|
1273 |
+
output_attentions: Optional[bool] = None,
|
1274 |
+
output_hidden_states: Optional[bool] = None,
|
1275 |
+
return_dict: Optional[bool] = None,
|
1276 |
+
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
1277 |
+
r"""
|
1278 |
+
Returns:
|
1279 |
+
|
1280 |
+
"""
|
1281 |
+
return self.model(
|
1282 |
+
input_ids=input_ids,
|
1283 |
+
attention_mask=attention_mask,
|
1284 |
+
img_features=img_features,
|
1285 |
+
img_attn_mask=img_attn_mask,
|
1286 |
+
encoder_hidden_states=encoder_hidden_states,
|
1287 |
+
encoder_attention_mask=encoder_attention_mask,
|
1288 |
+
head_mask=head_mask,
|
1289 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1290 |
+
past_key_values=past_key_values,
|
1291 |
+
inputs_embeds=inputs_embeds,
|
1292 |
+
use_cache=use_cache,
|
1293 |
+
output_attentions=output_attentions,
|
1294 |
+
output_hidden_states=output_hidden_states,
|
1295 |
+
return_dict=return_dict,
|
1296 |
+
)
|
1297 |
+
|
1298 |
+
|
1299 |
+
@add_start_docstrings(
|
1300 |
+
"""
|
1301 |
+
The text model from KOSMOS-2 with a language modeling head on top (linear layer with weights tied to the input
|
1302 |
+
embeddings).
|
1303 |
+
""",
|
1304 |
+
KOSMOS2_START_DOCSTRING,
|
1305 |
+
)
|
1306 |
+
class Kosmos2TextForCausalLM(Kosmos2PreTrainedModel):
|
1307 |
+
config_class = Kosmos2TextConfig
|
1308 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1309 |
+
|
1310 |
+
def __init__(self, config: Kosmos2TextConfig):
|
1311 |
+
super().__init__(config)
|
1312 |
+
|
1313 |
+
self.model = Kosmos2TextTransformer(config)
|
1314 |
+
self.lm_head = nn.Linear(in_features=config.embed_dim, out_features=config.vocab_size, bias=False)
|
1315 |
+
|
1316 |
+
# Initialize weights and apply final processing
|
1317 |
+
self.post_init()
|
1318 |
+
|
1319 |
+
def get_input_embeddings(self) -> nn.Module:
|
1320 |
+
return self.model.embed_tokens
|
1321 |
+
|
1322 |
+
def set_input_embeddings(self, value):
|
1323 |
+
self.model.embed_tokens = value
|
1324 |
+
|
1325 |
+
def get_output_embeddings(self) -> nn.Module:
|
1326 |
+
return self.lm_head
|
1327 |
+
|
1328 |
+
def set_output_embeddings(self, new_embeddings):
|
1329 |
+
self.lm_head = new_embeddings
|
1330 |
+
|
1331 |
+
@add_start_docstrings_to_model_forward(KOSMOS2_TEXT_INPUTS_DOCSTRING)
|
1332 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=Kosmos2TextConfig)
|
1333 |
+
def forward(
|
1334 |
+
self,
|
1335 |
+
input_ids: Optional[torch.Tensor] = None,
|
1336 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1337 |
+
img_features: Optional[torch.Tensor] = None,
|
1338 |
+
img_attn_mask: Optional[torch.Tensor] = None,
|
1339 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
1340 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
1341 |
+
head_mask: Optional[torch.Tensor] = None,
|
1342 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
1343 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1344 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1345 |
+
labels: Optional[torch.LongTensor] = None,
|
1346 |
+
use_cache: Optional[bool] = None,
|
1347 |
+
output_attentions: Optional[bool] = None,
|
1348 |
+
output_hidden_states: Optional[bool] = None,
|
1349 |
+
return_dict: Optional[bool] = None,
|
1350 |
+
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
|
1351 |
+
r"""
|
1352 |
+
Returns:
|
1353 |
+
|
1354 |
+
"""
|
1355 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1356 |
+
|
1357 |
+
if labels is not None:
|
1358 |
+
if use_cache:
|
1359 |
+
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
|
1360 |
+
use_cache = False
|
1361 |
+
|
1362 |
+
outputs = self.model(
|
1363 |
+
input_ids=input_ids,
|
1364 |
+
attention_mask=attention_mask,
|
1365 |
+
img_features=img_features,
|
1366 |
+
img_attn_mask=img_attn_mask,
|
1367 |
+
encoder_hidden_states=encoder_hidden_states,
|
1368 |
+
encoder_attention_mask=encoder_attention_mask,
|
1369 |
+
head_mask=head_mask,
|
1370 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1371 |
+
past_key_values=past_key_values,
|
1372 |
+
inputs_embeds=inputs_embeds,
|
1373 |
+
use_cache=use_cache,
|
1374 |
+
output_attentions=output_attentions,
|
1375 |
+
output_hidden_states=output_hidden_states,
|
1376 |
+
return_dict=return_dict,
|
1377 |
+
)
|
1378 |
+
logits = self.lm_head(outputs[0])
|
1379 |
+
|
1380 |
+
loss = None
|
1381 |
+
if labels is not None:
|
1382 |
+
# Shift so that tokens < n predict n
|
1383 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1384 |
+
shift_labels = labels[..., 1:].contiguous()
|
1385 |
+
# Flatten the tokens
|
1386 |
+
loss_fct = CrossEntropyLoss()
|
1387 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1388 |
+
shift_labels = shift_labels.view(-1)
|
1389 |
+
# Enable model parallelism
|
1390 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1391 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1392 |
+
|
1393 |
+
if not return_dict:
|
1394 |
+
output = (logits,) + outputs[1:]
|
1395 |
+
return (loss,) + output if loss is not None else output
|
1396 |
+
|
1397 |
+
return CausalLMOutputWithCrossAttentions(
|
1398 |
+
loss=loss,
|
1399 |
+
logits=logits,
|
1400 |
+
past_key_values=outputs.past_key_values,
|
1401 |
+
hidden_states=outputs.hidden_states,
|
1402 |
+
attentions=outputs.attentions,
|
1403 |
+
cross_attentions=outputs.cross_attentions,
|
1404 |
+
)
|
1405 |
+
|
1406 |
+
def prepare_inputs_for_generation(
|
1407 |
+
self,
|
1408 |
+
input_ids,
|
1409 |
+
img_features,
|
1410 |
+
img_attn_mask,
|
1411 |
+
past_key_values=None,
|
1412 |
+
attention_mask=None,
|
1413 |
+
use_cache=None,
|
1414 |
+
**model_kwargs,
|
1415 |
+
):
|
1416 |
+
input_shape = input_ids.shape
|
1417 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
1418 |
+
if attention_mask is None:
|
1419 |
+
attention_mask = input_ids.new_ones(input_shape)
|
1420 |
+
|
1421 |
+
# cut input_ids if past_key_values is used
|
1422 |
+
if past_key_values is not None:
|
1423 |
+
input_ids = input_ids[:, -1:]
|
1424 |
+
# the image info. is already encoded into the past keys/values
|
1425 |
+
img_features = None
|
1426 |
+
img_attn_mask = None
|
1427 |
+
elif img_attn_mask is not None:
|
1428 |
+
# appending `False` to `img_attn_mask` (because `input_ids` grows during generation)
|
1429 |
+
batch_size, seq_len = input_ids.size()
|
1430 |
+
mask_len = img_attn_mask.size()[-1]
|
1431 |
+
img_attn_mask = torch.cat(
|
1432 |
+
(img_attn_mask, torch.zeros(size=(batch_size, seq_len - mask_len), dtype=torch.bool)), dim=1
|
1433 |
+
)
|
1434 |
+
|
1435 |
+
return {
|
1436 |
+
"input_ids": input_ids,
|
1437 |
+
"img_features": img_features,
|
1438 |
+
"img_attn_mask": img_attn_mask,
|
1439 |
+
"past_key_values": past_key_values,
|
1440 |
+
"attention_mask": attention_mask,
|
1441 |
+
"use_cache": use_cache,
|
1442 |
+
}
|
1443 |
+
|
1444 |
+
|
1445 |
+
class Kosmos2ImageToTextConnector(nn.Module):
|
1446 |
+
"""The layer that transforms the image model's output to part of the text model's input (namely, image features)"""
|
1447 |
+
|
1448 |
+
def __init__(self, config: Kosmos2Config):
|
1449 |
+
super().__init__()
|
1450 |
+
self.dense = nn.Linear(config.vision_config.hidden_size, config.text_config.embed_dim)
|
1451 |
+
self.latent_query = nn.Parameter(torch.randn(config.latent_query_num, config.text_config.embed_dim))
|
1452 |
+
|
1453 |
+
self.x_attn = KosmosTextAttention(
|
1454 |
+
config.text_config,
|
1455 |
+
config.text_config.embed_dim,
|
1456 |
+
config.text_config.attention_heads,
|
1457 |
+
dropout=config.text_config.attention_dropout,
|
1458 |
+
is_decoder=False,
|
1459 |
+
add_inner_attn_layernorm=False,
|
1460 |
+
)
|
1461 |
+
|
1462 |
+
def forward(self, features):
|
1463 |
+
hidden_states = self.dense(features)
|
1464 |
+
|
1465 |
+
# shape = [batch, latent_query_num, h_dim]
|
1466 |
+
latent_query = self.latent_query.unsqueeze(0).expand(hidden_states.size(0), -1, -1)
|
1467 |
+
key_value_states = torch.cat([hidden_states, latent_query], dim=1)
|
1468 |
+
|
1469 |
+
hidden_states, attn_weights, _ = self.x_attn(
|
1470 |
+
hidden_states=latent_query,
|
1471 |
+
key_value_states=key_value_states,
|
1472 |
+
past_key_value=None,
|
1473 |
+
attention_mask=None,
|
1474 |
+
output_attentions=None,
|
1475 |
+
)
|
1476 |
+
|
1477 |
+
return hidden_states, attn_weights
|
1478 |
+
|
1479 |
+
|
1480 |
+
@add_start_docstrings(
|
1481 |
+
"""
|
1482 |
+
KOSMOS-2 Model for generating text and image features. The model consists of a vision encoder (CLIP) and a language
|
1483 |
+
model.
|
1484 |
+
""",
|
1485 |
+
KOSMOS2_START_DOCSTRING,
|
1486 |
+
)
|
1487 |
+
class Kosmos2Model(Kosmos2PreTrainedModel):
|
1488 |
+
config_class = Kosmos2Config
|
1489 |
+
|
1490 |
+
def __init__(self, config: Kosmos2Config):
|
1491 |
+
super().__init__(config)
|
1492 |
+
|
1493 |
+
self.text_model = Kosmos2TextModel(config.text_config)
|
1494 |
+
self.vision_model = Kosmos2VisionModel(config.vision_config)
|
1495 |
+
self.image_to_text_connector = Kosmos2ImageToTextConnector(config)
|
1496 |
+
|
1497 |
+
# Initialize weights and apply final processing
|
1498 |
+
self.post_init()
|
1499 |
+
|
1500 |
+
def get_input_embeddings(self) -> nn.Module:
|
1501 |
+
return self.text_model.model.embed_tokens
|
1502 |
+
|
1503 |
+
def set_input_embeddings(self, value):
|
1504 |
+
self.text_model.model.embed_tokens = value
|
1505 |
+
|
1506 |
+
@add_start_docstrings_to_model_forward(KOSMOS2_INPUTS_DOCSTRING)
|
1507 |
+
@replace_return_docstrings(output_type=Kosmos2ModelOutput, config_class=Kosmos2Config)
|
1508 |
+
def forward(
|
1509 |
+
self,
|
1510 |
+
pixel_values: Optional[torch.Tensor] = None,
|
1511 |
+
input_ids: Optional[torch.Tensor] = None,
|
1512 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1513 |
+
img_attn_mask: Optional[torch.Tensor] = None,
|
1514 |
+
head_mask: Optional[torch.Tensor] = None,
|
1515 |
+
img_features: Optional[torch.Tensor] = None,
|
1516 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1517 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1518 |
+
use_cache: Optional[bool] = None,
|
1519 |
+
output_attentions: Optional[bool] = None,
|
1520 |
+
output_hidden_states: Optional[bool] = None,
|
1521 |
+
return_dict: Optional[bool] = None,
|
1522 |
+
) -> Union[Tuple, Kosmos2ModelOutput]:
|
1523 |
+
# TODO: Add this
|
1524 |
+
r"""
|
1525 |
+
Returns:
|
1526 |
+
|
1527 |
+
```"""
|
1528 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1529 |
+
output_hidden_states = (
|
1530 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1531 |
+
)
|
1532 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1533 |
+
|
1534 |
+
vision_model_output = None
|
1535 |
+
image_connector_attention = None
|
1536 |
+
if img_features is None:
|
1537 |
+
if pixel_values is None:
|
1538 |
+
raise ValueError("You have to specify either `pixel_values` or `img_features`.")
|
1539 |
+
|
1540 |
+
vision_model_output = self.vision_model(pixel_values)
|
1541 |
+
# HF's CLIP has `last_hidden_state` without going through `post_layernorm`.
|
1542 |
+
# Here we need the whole `last_hidden_state` through `post_layernorm` instead of just `pooled_output`.
|
1543 |
+
img_features = self.vision_model.model.post_layernorm(vision_model_output.last_hidden_state)
|
1544 |
+
# normalized features
|
1545 |
+
img_features = nn.functional.normalize(img_features, dim=-1)
|
1546 |
+
img_features, image_connector_attention = self.image_to_text_connector(img_features)
|
1547 |
+
|
1548 |
+
outputs = self.text_model(
|
1549 |
+
input_ids=input_ids,
|
1550 |
+
attention_mask=attention_mask,
|
1551 |
+
img_features=img_features,
|
1552 |
+
img_attn_mask=img_attn_mask,
|
1553 |
+
head_mask=head_mask,
|
1554 |
+
past_key_values=past_key_values,
|
1555 |
+
inputs_embeds=inputs_embeds,
|
1556 |
+
use_cache=use_cache,
|
1557 |
+
output_attentions=output_attentions,
|
1558 |
+
output_hidden_states=output_hidden_states,
|
1559 |
+
return_dict=return_dict,
|
1560 |
+
)
|
1561 |
+
|
1562 |
+
if not return_dict:
|
1563 |
+
outputs = outputs + (img_features, image_connector_attention, vision_model_output)
|
1564 |
+
return tuple(output for output in outputs if output is not None)
|
1565 |
+
|
1566 |
+
return Kosmos2ModelOutput(
|
1567 |
+
last_hidden_states=outputs.last_hidden_state,
|
1568 |
+
past_key_values=outputs.past_key_values,
|
1569 |
+
hidden_states=outputs.hidden_states,
|
1570 |
+
attentions=outputs.attentions,
|
1571 |
+
image_features=img_features,
|
1572 |
+
image_connector_attention=image_connector_attention,
|
1573 |
+
vision_model_output=vision_model_output,
|
1574 |
+
)
|
1575 |
+
|
1576 |
+
|
1577 |
+
@add_start_docstrings(
|
1578 |
+
"""
|
1579 |
+
KOSMOS-2 Model for generating text and bounding boxes given an image. The model consists of a vision encoder (CLIP)
|
1580 |
+
and a language model.
|
1581 |
+
""",
|
1582 |
+
KOSMOS2_START_DOCSTRING,
|
1583 |
+
)
|
1584 |
+
class Kosmos2ForConditionalGeneration(Kosmos2PreTrainedModel):
|
1585 |
+
config_class = Kosmos2Config
|
1586 |
+
_tied_weights_keys = ["text_model.lm_head.weight"]
|
1587 |
+
|
1588 |
+
def __init__(self, config: Kosmos2Config):
|
1589 |
+
super().__init__(config)
|
1590 |
+
|
1591 |
+
self.text_model = Kosmos2TextForCausalLM(config.text_config)
|
1592 |
+
self.vision_model = Kosmos2VisionModel(config.vision_config)
|
1593 |
+
|
1594 |
+
self.image_to_text_connector = Kosmos2ImageToTextConnector(config)
|
1595 |
+
|
1596 |
+
# Initialize weights and apply final processing
|
1597 |
+
self.post_init()
|
1598 |
+
|
1599 |
+
def get_input_embeddings(self) -> nn.Module:
|
1600 |
+
return self.text_model.model.embed_tokens
|
1601 |
+
|
1602 |
+
def set_input_embeddings(self, value):
|
1603 |
+
self.text_model.model.embed_tokens = value
|
1604 |
+
|
1605 |
+
def get_output_embeddings(self) -> nn.Module:
|
1606 |
+
return self.text_model.get_output_embeddings()
|
1607 |
+
|
1608 |
+
def set_output_embeddings(self, new_embeddings):
|
1609 |
+
self.text_model.set_output_embeddings(new_embeddings)
|
1610 |
+
|
1611 |
+
@add_start_docstrings_to_model_forward(KOSMOS2_INPUTS_DOCSTRING)
|
1612 |
+
@replace_return_docstrings(output_type=Kosmos2ForConditionalGenerationModelOutput, config_class=Kosmos2Config)
|
1613 |
+
def forward(
|
1614 |
+
self,
|
1615 |
+
pixel_values: Optional[torch.Tensor] = None,
|
1616 |
+
img_attn_mask=None,
|
1617 |
+
input_ids: Optional[torch.Tensor] = None,
|
1618 |
+
attention_mask=None,
|
1619 |
+
head_mask: Optional[torch.Tensor] = None,
|
1620 |
+
img_features: Optional[List[torch.FloatTensor]] = None,
|
1621 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1622 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1623 |
+
labels: Optional[torch.LongTensor] = None,
|
1624 |
+
use_cache: Optional[bool] = None,
|
1625 |
+
output_attentions: Optional[bool] = None,
|
1626 |
+
output_hidden_states: Optional[bool] = None,
|
1627 |
+
return_dict: Optional[bool] = None,
|
1628 |
+
) -> Union[Tuple, Kosmos2ForConditionalGenerationModelOutput]:
|
1629 |
+
r"""
|
1630 |
+
Returns:
|
1631 |
+
|
1632 |
+
Examples:
|
1633 |
+
|
1634 |
+
```python
|
1635 |
+
>>> from PIL import Image
|
1636 |
+
>>> from transformers import AutoProcessor, Kosmos2ForConditionalGeneration
|
1637 |
+
|
1638 |
+
>>> model = Kosmos2ForConditionalGeneration.from_pretrained("ydshieh/kosmos-2-patch14-224")
|
1639 |
+
>>> processor = AutoProcessor.from_pretrained("ydshieh/kosmos-2-patch14-224")
|
1640 |
+
|
1641 |
+
>>> prompt = "<grounding> An image of"
|
1642 |
+
>>> image = Image.open("snowman.jpg")
|
1643 |
+
|
1644 |
+
>>> inputs = processor(text=prompt, images=image, return_tensors="pt")
|
1645 |
+
|
1646 |
+
>>> generated_ids = model.generate(
|
1647 |
+
... pixel_values=inputs["pixel_values"],
|
1648 |
+
... input_ids=inputs["input_ids"][:, :-1],
|
1649 |
+
... attention_mask=inputs["attention_mask"][:, :-1],
|
1650 |
+
... img_features=None,
|
1651 |
+
... img_attn_mask=inputs["img_attn_mask"][:, :-1],
|
1652 |
+
... use_cache=True,
|
1653 |
+
... max_new_tokens=64,
|
1654 |
+
... )
|
1655 |
+
|
1656 |
+
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
1657 |
+
>>> result = processor.post_processor_generation(generated_text)
|
1658 |
+
>>> result
|
1659 |
+
<grounding> An image of<phrase> a snowman</phrase><object><patch_index_0044><patch_index_0863></object> warming himself by<phrase> a fire</phrase><object><patch_index_0005><patch_index_0911></object>.
|
1660 |
+
```"""
|
1661 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1662 |
+
output_hidden_states = (
|
1663 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1664 |
+
)
|
1665 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1666 |
+
|
1667 |
+
vision_model_output = None
|
1668 |
+
image_connector_attention = None
|
1669 |
+
if img_features is None:
|
1670 |
+
if pixel_values is None:
|
1671 |
+
raise ValueError("You have to specify either `pixel_values` or `img_features`.")
|
1672 |
+
|
1673 |
+
vision_model_output = self.vision_model(pixel_values)
|
1674 |
+
# HF's CLIP has `last_hidden_state` without going through `post_layernorm`.
|
1675 |
+
# Here we need the whole `last_hidden_state` through `post_layernorm` instead of just `pooled_output`.
|
1676 |
+
img_features = self.vision_model.model.post_layernorm(vision_model_output.last_hidden_state)
|
1677 |
+
# normalized features
|
1678 |
+
img_features = nn.functional.normalize(img_features, dim=-1)
|
1679 |
+
img_features, image_connector_attention = self.image_to_text_connector(img_features)
|
1680 |
+
|
1681 |
+
lm_outputs = self.text_model(
|
1682 |
+
input_ids=input_ids,
|
1683 |
+
attention_mask=attention_mask,
|
1684 |
+
img_features=img_features,
|
1685 |
+
img_attn_mask=img_attn_mask,
|
1686 |
+
head_mask=head_mask,
|
1687 |
+
past_key_values=past_key_values,
|
1688 |
+
inputs_embeds=inputs_embeds,
|
1689 |
+
labels=labels,
|
1690 |
+
use_cache=use_cache,
|
1691 |
+
output_attentions=output_attentions,
|
1692 |
+
output_hidden_states=output_hidden_states,
|
1693 |
+
return_dict=return_dict,
|
1694 |
+
)
|
1695 |
+
|
1696 |
+
if not return_dict:
|
1697 |
+
outputs = lm_outputs + (img_features, image_connector_attention, vision_model_output)
|
1698 |
+
return tuple(output for output in outputs if output is not None)
|
1699 |
+
|
1700 |
+
return Kosmos2ForConditionalGenerationModelOutput(
|
1701 |
+
loss=lm_outputs.loss,
|
1702 |
+
logits=lm_outputs.logits,
|
1703 |
+
past_key_values=lm_outputs.past_key_values,
|
1704 |
+
hidden_states=lm_outputs.hidden_states,
|
1705 |
+
attentions=lm_outputs.attentions,
|
1706 |
+
image_features=img_features,
|
1707 |
+
image_connector_attention=image_connector_attention,
|
1708 |
+
vision_model_output=vision_model_output,
|
1709 |
+
)
|
1710 |
+
|
1711 |
+
def generate(
|
1712 |
+
self,
|
1713 |
+
input_ids=None,
|
1714 |
+
attention_mask=None,
|
1715 |
+
img_features=None,
|
1716 |
+
inputs_embeds=None,
|
1717 |
+
pixel_values=None,
|
1718 |
+
**kwargs,
|
1719 |
+
):
|
1720 |
+
# in order to allow `inputs` argument (as in `GenerationMixin`)
|
1721 |
+
inputs = kwargs.pop("inputs", None)
|
1722 |
+
if pixel_values is not None and inputs is not None:
|
1723 |
+
raise ValueError(
|
1724 |
+
f"`inputs`: {inputs} were passed alongside `pixel_values` which is not allowed."
|
1725 |
+
f"Make sure to either pass `inputs` or pixel_values=..."
|
1726 |
+
)
|
1727 |
+
if pixel_values is None and inputs is not None:
|
1728 |
+
pixel_values = inputs
|
1729 |
+
|
1730 |
+
if img_features is None:
|
1731 |
+
vision_model_output = self.vision_model(pixel_values)
|
1732 |
+
# HF's CLIP has `last_hidden_state` without going through `post_layernorm`.
|
1733 |
+
# Here we need the whole `last_hidden_state` through `post_layernorm` instead of just `pooled_output`.
|
1734 |
+
img_features = self.vision_model.model.post_layernorm(vision_model_output.last_hidden_state)
|
1735 |
+
# normalized features
|
1736 |
+
img_features = nn.functional.normalize(img_features, dim=-1)
|
1737 |
+
img_features, image_connector_attention = self.image_to_text_connector(img_features)
|
1738 |
+
|
1739 |
+
output = self.text_model.generate(
|
1740 |
+
input_ids=input_ids,
|
1741 |
+
attention_mask=attention_mask,
|
1742 |
+
img_features=img_features,
|
1743 |
+
input_embeds=inputs_embeds,
|
1744 |
+
**kwargs,
|
1745 |
+
)
|
1746 |
+
|
1747 |
+
return output
|
preprocessor_config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"crop_size": {
|
3 |
+
"height": 224,
|
4 |
+
"width": 224
|
5 |
+
},
|
6 |
+
"do_center_crop": true,
|
7 |
+
"do_convert_rgb": true,
|
8 |
+
"do_normalize": true,
|
9 |
+
"do_rescale": true,
|
10 |
+
"do_resize": true,
|
11 |
+
"image_mean": [
|
12 |
+
0.48145466,
|
13 |
+
0.4578275,
|
14 |
+
0.40821073
|
15 |
+
],
|
16 |
+
"image_processor_type": "Kosmos2ImageProcessor",
|
17 |
+
"image_std": [
|
18 |
+
0.26862954,
|
19 |
+
0.26130258,
|
20 |
+
0.27577711
|
21 |
+
],
|
22 |
+
"processor_class": "Kosmos2Processor",
|
23 |
+
"auto_map": {
|
24 |
+
"AutoProcessor": "processing_kosmos2.Kosmos2Processor",
|
25 |
+
"AutoImageProcessor": "image_processing_kosmos2.Kosmos2ImageProcessor"
|
26 |
+
},
|
27 |
+
"resample": 3,
|
28 |
+
"rescale_factor": 0.00392156862745098,
|
29 |
+
"size": {
|
30 |
+
"shortest_edge": 224
|
31 |
+
}
|
32 |
+
}
|
processing_kosmos2.py
ADDED
@@ -0,0 +1,604 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Processor class for KOSMOS-2."""
|
16 |
+
|
17 |
+
import copy
|
18 |
+
import math
|
19 |
+
import re
|
20 |
+
from typing import List, Optional, Tuple, Union
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
|
24 |
+
from transformers.image_processing_utils import BatchFeature
|
25 |
+
from transformers.image_utils import ImageInput, is_batched
|
26 |
+
from transformers.processing_utils import ProcessorMixin
|
27 |
+
from transformers.tokenization_utils_base import PaddingStrategy, TextInput, TruncationStrategy
|
28 |
+
from transformers.utils import TensorType, is_tf_available, is_torch_available
|
29 |
+
|
30 |
+
|
31 |
+
if is_torch_available():
|
32 |
+
import torch
|
33 |
+
|
34 |
+
if is_tf_available():
|
35 |
+
import tensorflow as tf
|
36 |
+
|
37 |
+
|
38 |
+
BboxInput = Union[
|
39 |
+
List[Tuple[int, int]],
|
40 |
+
List[Tuple[float, float, float, float]],
|
41 |
+
List[List[Tuple[int, int]]],
|
42 |
+
List[List[Tuple[float, float, float]]],
|
43 |
+
]
|
44 |
+
|
45 |
+
|
46 |
+
class Kosmos2Processor(ProcessorMixin):
|
47 |
+
r"""
|
48 |
+
Constructs an KOSMOS-2 processor which wraps a CLIP image processor and a KOSMOS-2 tokenizer into a single
|
49 |
+
processor.
|
50 |
+
|
51 |
+
[`Kosmos2Processor`] offers all the functionalities of [`CLIPImageProcessor`] and [`Kosmos2TokenizerFast`]. See the
|
52 |
+
docstring of [`~Kosmos2Processor.__call__`] and [`~Kosmos2Processor.decode`] for more information.
|
53 |
+
|
54 |
+
Args:
|
55 |
+
image_processor (`CLIPImageProcessor`):
|
56 |
+
An instance of [`CLIPImageProcessor`]. The image processor is a required input.
|
57 |
+
tokenizer (`Kosmos2TokenizerFast`):
|
58 |
+
An instance of ['Kosmos2TokenizerFast`]. The tokenizer is a required input.
|
59 |
+
"""
|
60 |
+
attributes = ["image_processor", "tokenizer"]
|
61 |
+
# Better to use explicit classes if local code works
|
62 |
+
# image_processor_class = "Kosmos2ImageProcessor"
|
63 |
+
# tokenizer_class = ("Kosmos2Tokenizer", "Kosmos2TokenizerFast")
|
64 |
+
|
65 |
+
# To make remote code work
|
66 |
+
image_processor_class = "AutoImageProcessor"
|
67 |
+
tokenizer_class = "AutoTokenizer"
|
68 |
+
|
69 |
+
def __init__(self, image_processor, tokenizer):
|
70 |
+
tokenizer.return_token_type_ids = False
|
71 |
+
super().__init__(image_processor, tokenizer)
|
72 |
+
self.current_processor = self.image_processor
|
73 |
+
|
74 |
+
def __call__(
|
75 |
+
self,
|
76 |
+
images: ImageInput = None,
|
77 |
+
text: Union[TextInput, List[TextInput]] = None,
|
78 |
+
bboxes: BboxInput = None,
|
79 |
+
num_image_tokens: Optional[int] = 64,
|
80 |
+
first_image_token_id: Optional[int] = None,
|
81 |
+
add_special_tokens: bool = True,
|
82 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
83 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
84 |
+
max_length: Optional[int] = None,
|
85 |
+
stride: int = 0,
|
86 |
+
pad_to_multiple_of: Optional[int] = None,
|
87 |
+
return_attention_mask: Optional[bool] = None,
|
88 |
+
return_overflowing_tokens: bool = False,
|
89 |
+
return_special_tokens_mask: bool = False,
|
90 |
+
return_offsets_mapping: bool = False,
|
91 |
+
return_token_type_ids: bool = False,
|
92 |
+
return_length: bool = False,
|
93 |
+
verbose: bool = True,
|
94 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
95 |
+
**kwargs,
|
96 |
+
) -> BatchFeature:
|
97 |
+
"""
|
98 |
+
This method uses [`CLIPImageProcessor.__call__`] method to prepare image(s) for the model, and
|
99 |
+
[`Kosmos2TokenizerFast.__call__`] to prepare text for the model.
|
100 |
+
|
101 |
+
Please refer to the docstring of the above two methods for more information.
|
102 |
+
"""
|
103 |
+
if text is None:
|
104 |
+
raise ValueError("You have to specify at least `text`.")
|
105 |
+
|
106 |
+
text = self.preprocess_text(text, images, bboxes, num_image_tokens=num_image_tokens)
|
107 |
+
|
108 |
+
encoding = BatchFeature()
|
109 |
+
|
110 |
+
text_encoding = self.tokenizer(
|
111 |
+
text=text,
|
112 |
+
add_special_tokens=add_special_tokens,
|
113 |
+
padding=padding,
|
114 |
+
truncation=truncation,
|
115 |
+
max_length=max_length,
|
116 |
+
stride=stride,
|
117 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
118 |
+
return_attention_mask=return_attention_mask,
|
119 |
+
return_overflowing_tokens=return_overflowing_tokens,
|
120 |
+
return_special_tokens_mask=return_special_tokens_mask,
|
121 |
+
return_offsets_mapping=return_offsets_mapping,
|
122 |
+
return_token_type_ids=return_token_type_ids,
|
123 |
+
return_length=return_length,
|
124 |
+
verbose=verbose,
|
125 |
+
return_tensors=return_tensors,
|
126 |
+
**kwargs,
|
127 |
+
)
|
128 |
+
encoding.update(text_encoding)
|
129 |
+
|
130 |
+
if images is not None:
|
131 |
+
image_encoding = self.image_processor(images, return_tensors=return_tensors)
|
132 |
+
encoding.update(image_encoding)
|
133 |
+
|
134 |
+
# Use the id of the first token after <unk>
|
135 |
+
if first_image_token_id is None:
|
136 |
+
first_image_token_id = self.tokenizer.unk_token_id + 1
|
137 |
+
|
138 |
+
# To see if we need one more `0` (for `<s>`) at the beginning of `img_attn_mask`.
|
139 |
+
with_bos = add_special_tokens
|
140 |
+
|
141 |
+
# The first (actual) `<image>` token is always at the 1st or 2nd place (after `<s>` if any). Here we look
|
142 |
+
# for the second `<image>` token (which indicate the first image token).
|
143 |
+
start_index = int(with_bos) + 1
|
144 |
+
|
145 |
+
if return_tensors:
|
146 |
+
# change the ids for the fake `<image>` tokens in `input_ids`
|
147 |
+
input_ids = np.array(encoding["input_ids"])
|
148 |
+
input_ids[:, start_index : (start_index + num_image_tokens)] = np.arange(
|
149 |
+
first_image_token_id, first_image_token_id + num_image_tokens
|
150 |
+
)
|
151 |
+
|
152 |
+
batch_size, seq_len = input_ids.shape[:2]
|
153 |
+
img_attn_mask = []
|
154 |
+
if with_bos:
|
155 |
+
# for `<s>`
|
156 |
+
img_attn_mask.append(np.zeros(shape=(batch_size, 1), dtype=np.int64))
|
157 |
+
# for `<image>` (the real one)
|
158 |
+
img_attn_mask.append(np.zeros(shape=(batch_size, 1), dtype=np.int64))
|
159 |
+
# for image tokens
|
160 |
+
img_attn_mask.append(np.ones(shape=(batch_size, 64), dtype=np.int64))
|
161 |
+
# for `</image>`
|
162 |
+
img_attn_mask.append(np.zeros(shape=(batch_size, 1), dtype=np.int64))
|
163 |
+
# trailing part (which are not related to the image)
|
164 |
+
seq_len -= int(with_bos) + 1 + num_image_tokens + 1
|
165 |
+
img_attn_mask.append(np.zeros(shape=(batch_size, seq_len), dtype=np.int64))
|
166 |
+
|
167 |
+
# concatenate along the sequence dimension
|
168 |
+
img_attn_mask = np.concatenate(img_attn_mask, axis=1)
|
169 |
+
|
170 |
+
# to the target tensor type
|
171 |
+
if return_tensors == "pt":
|
172 |
+
input_ids = torch.from_numpy(input_ids)
|
173 |
+
img_attn_mask = torch.from_numpy(img_attn_mask)
|
174 |
+
elif return_tensors == "tf":
|
175 |
+
input_ids = tf.convert_to_tensor(input_ids)
|
176 |
+
img_attn_mask = tf.convert_to_tensor(img_attn_mask)
|
177 |
+
|
178 |
+
encoding["input_ids"] = input_ids
|
179 |
+
encoding["img_attn_mask"] = img_attn_mask
|
180 |
+
|
181 |
+
else:
|
182 |
+
# Add `img_attn_mask`: the leading and trailing `0` are for `boi` and `eoi` tokens. The `1` indicates
|
183 |
+
# the places of image tokens.
|
184 |
+
image_token_ids = list(range(first_image_token_id, first_image_token_id + num_image_tokens))
|
185 |
+
base_img_attn_mask = [0] + [1] * num_image_tokens + [0]
|
186 |
+
|
187 |
+
# loop over `encoding["input_ids"]`
|
188 |
+
input_ids = []
|
189 |
+
img_attn_mask = []
|
190 |
+
all_input_ids = encoding["input_ids"]
|
191 |
+
# not batched -> (changed to) batch of size 1
|
192 |
+
if isinstance(text, str):
|
193 |
+
all_input_ids = [all_input_ids]
|
194 |
+
for text_ids in all_input_ids:
|
195 |
+
# change the ids for the fake `<image>` tokens in `input_ids`
|
196 |
+
text_ids = text_ids[:start_index] + image_token_ids + text_ids[start_index + num_image_tokens :]
|
197 |
+
input_ids.append(text_ids)
|
198 |
+
|
199 |
+
mask = copy.copy(base_img_attn_mask)
|
200 |
+
if with_bos:
|
201 |
+
# for `<s>`
|
202 |
+
mask = [0] + mask
|
203 |
+
# trailing part (which are not related to the image)
|
204 |
+
mask += [0] * (len(text_ids) - len(mask))
|
205 |
+
img_attn_mask.append(mask)
|
206 |
+
|
207 |
+
# un-batch if necessary
|
208 |
+
if isinstance(text, str):
|
209 |
+
input_ids = input_ids[0]
|
210 |
+
img_attn_mask = img_attn_mask[0]
|
211 |
+
|
212 |
+
encoding["input_ids"] = input_ids
|
213 |
+
encoding["img_attn_mask"] = img_attn_mask
|
214 |
+
|
215 |
+
return encoding
|
216 |
+
|
217 |
+
def preprocess_text(
|
218 |
+
self,
|
219 |
+
texts: Union[TextInput, List[TextInput]],
|
220 |
+
images: ImageInput = None,
|
221 |
+
bboxes: BboxInput = None,
|
222 |
+
num_image_tokens: Optional[int] = 64,
|
223 |
+
) -> Union[str, List[str]]:
|
224 |
+
"""Add image and bounding box information to `texts` as image and patch index tokens.
|
225 |
+
|
226 |
+
Args:
|
227 |
+
texts (`Union[TextInput, List[TextInput]]`): The texts to be processed.
|
228 |
+
images (`ImageInput`, *optional*): The images associated to `texts`.
|
229 |
+
bboxes (`Union[List[Tuple[int]], List[Tuple[float]], List[List[Tuple[int]]], List[List[Tuple[float]]]]`, *optional*): The bounding bboxes associated to `texts`.
|
230 |
+
num_image_tokens (`int`, *optional*, defaults to 64): The number of image tokens (used as latent queries). This should corresponds to the `latent_query_num` attribute in `Kosmos2Config`.
|
231 |
+
|
232 |
+
Returns:
|
233 |
+
`Union[TextInput, List[TextInput]]`: The processed texts with image and patch index tokens.
|
234 |
+
"""
|
235 |
+
# These are fake `<image>` tokens enclosed between (the actual) `<image>` token and `</image>`.
|
236 |
+
img_tokens = ["<image>"] * num_image_tokens
|
237 |
+
img_info = " ".join(["<image>"] + img_tokens + ["</image>"])
|
238 |
+
|
239 |
+
def check_bboxes_for_single_text(bboxes):
|
240 |
+
"""
|
241 |
+
Check `bboxes` for a single text example. It could be
|
242 |
+
- `None`: no bounding box associated to a text.
|
243 |
+
- A list with each element being the bounding boxes associated to one `<phrase> ... </phrase>` pair
|
244 |
+
found in a text. This could be:
|
245 |
+
- `None`: no bounding box associated to a `<phrase> ... </phrase>` pair.
|
246 |
+
- A tuple of 2 integers: A single bounding box specified by patch indices.
|
247 |
+
- A tuple of 4 float point number: A single bounding box specified by (normalized) coordinates.
|
248 |
+
- A list containing the above 2 tuple types: Multiple bounding boxes for a
|
249 |
+
`<phrase> ... </phrase>` pair.
|
250 |
+
"""
|
251 |
+
if bboxes is None:
|
252 |
+
return
|
253 |
+
elif not isinstance(bboxes, list):
|
254 |
+
raise ValueError("`bboxes` (for a single text example) should be `None` or a list.")
|
255 |
+
|
256 |
+
# `bbox` is the bounding boxes for a single <phrase> </phrase> pair
|
257 |
+
for bbox in bboxes:
|
258 |
+
if bbox is None:
|
259 |
+
continue
|
260 |
+
elif not isinstance(bbox, list):
|
261 |
+
bbox = [bbox]
|
262 |
+
for elt in bbox:
|
263 |
+
if not isinstance(elt, tuple) or not (
|
264 |
+
(len(elt) == 2 and all(isinstance(x, int) for x in elt))
|
265 |
+
or (len(elt) == 4 and all(isinstance(x, float) for x in elt))
|
266 |
+
):
|
267 |
+
raise ValueError(
|
268 |
+
"Each element in `bboxes` (for a single text example) should be `None`, a tuple containing "
|
269 |
+
"2 integers or 4 float point numbers, or a list containing such tuples. Also "
|
270 |
+
"make sure the arguments `texts` and `bboxes` passed to `preprocess_text` are both in "
|
271 |
+
"batches or both for a single example."
|
272 |
+
)
|
273 |
+
|
274 |
+
def preprocess_single(text, image, bboxes):
|
275 |
+
if image is not None:
|
276 |
+
# Add `<image> ... (fake) image tokens ... </image>`
|
277 |
+
text = f"{img_info} {text}"
|
278 |
+
|
279 |
+
# Add `<object> <patch_idx_xxxx> <patch_idx_yyy> </object>` after `<phrase> phrase text </phrase>`
|
280 |
+
text = self._insert_patch_index_tokens(text, bboxes)
|
281 |
+
text = self._add_remove_spaces_around_tag_tokens(text)
|
282 |
+
|
283 |
+
return text
|
284 |
+
|
285 |
+
# make batch to simplify processing logic
|
286 |
+
batched = True
|
287 |
+
if isinstance(texts, str):
|
288 |
+
batched = False
|
289 |
+
texts = [texts]
|
290 |
+
|
291 |
+
if images is None:
|
292 |
+
images = [None] * len(texts)
|
293 |
+
elif not is_batched(images):
|
294 |
+
images = [images]
|
295 |
+
if len(texts) != len(images):
|
296 |
+
raise ValueError(
|
297 |
+
f"The number of examples in `texts` and `images` should be the same. Got {len(texts)} v.s. {len(images)} instead."
|
298 |
+
)
|
299 |
+
|
300 |
+
if not batched:
|
301 |
+
check_bboxes_for_single_text(bboxes)
|
302 |
+
bboxes = [bboxes]
|
303 |
+
elif bboxes is not None:
|
304 |
+
if not isinstance(bboxes, list):
|
305 |
+
raise ValueError("`bboxes` should be `None` or a list (as a batch) when `texts` is passed as a batch.")
|
306 |
+
for x in bboxes:
|
307 |
+
check_bboxes_for_single_text(x)
|
308 |
+
else:
|
309 |
+
bboxes = [None] * len(texts)
|
310 |
+
|
311 |
+
if len(bboxes) != len(texts):
|
312 |
+
raise ValueError(
|
313 |
+
f"The number of examples in `texts` and `bboxes` should be the same. Got {len(texts)} v.s. {len(bboxes)} instead."
|
314 |
+
)
|
315 |
+
|
316 |
+
result = [preprocess_single(text, image, bbox) for text, image, bbox in zip(texts, images, bboxes)]
|
317 |
+
# un-batch if necessary
|
318 |
+
if not batched:
|
319 |
+
result = result[0]
|
320 |
+
|
321 |
+
return result
|
322 |
+
|
323 |
+
# Copied from transformers.models.blip.processing_blip.BlipProcessor.batch_decode with BertTokenizerFast->PreTrainedTokenizer
|
324 |
+
def batch_decode(self, *args, **kwargs):
|
325 |
+
"""
|
326 |
+
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
|
327 |
+
refer to the docstring of this method for more information.
|
328 |
+
"""
|
329 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
330 |
+
|
331 |
+
# Copied from transformers.models.blip.processing_blip.BlipProcessor.decode with BertTokenizerFast->PreTrainedTokenizer
|
332 |
+
def decode(self, *args, **kwargs):
|
333 |
+
"""
|
334 |
+
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer
|
335 |
+
to the docstring of this method for more information.
|
336 |
+
"""
|
337 |
+
return self.tokenizer.decode(*args, **kwargs)
|
338 |
+
|
339 |
+
def post_processor_generation(self, text, cleanup_and_extract=True):
|
340 |
+
|
341 |
+
caption = text.split("</image>")[-1]
|
342 |
+
if cleanup_and_extract:
|
343 |
+
return clean_text_and_extract_entities_with_bboxes(caption)
|
344 |
+
return caption
|
345 |
+
|
346 |
+
@property
|
347 |
+
# Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names
|
348 |
+
def model_input_names(self):
|
349 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
350 |
+
image_processor_input_names = self.image_processor.model_input_names
|
351 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
352 |
+
|
353 |
+
def _insert_patch_index_tokens(self, text: str, bboxes: Union[List[Tuple[int]], List[Tuple[float]]]) -> str:
|
354 |
+
if bboxes is None or len(bboxes) == 0:
|
355 |
+
return text
|
356 |
+
|
357 |
+
matched_phrases = list(re.finditer(r"<phrase>.+?</phrase>", string=text))
|
358 |
+
if len(matched_phrases) != len(bboxes):
|
359 |
+
raise ValueError(
|
360 |
+
f"The number of elements in `bboxes` should be the same as the number of `<phrase> ... </phrase>` pairs in `text`. Got {len(matched_phrases)} v.s. {len(bboxes)} instead."
|
361 |
+
)
|
362 |
+
|
363 |
+
# insert object's patch index tokens
|
364 |
+
# the found `<phrase> ... </phrase>` pairs.
|
365 |
+
curr_pos = 0
|
366 |
+
buffer = []
|
367 |
+
for matched, bbox in zip(matched_phrases, bboxes):
|
368 |
+
_, end = matched.span()
|
369 |
+
buffer.append(text[curr_pos:end])
|
370 |
+
curr_pos = end
|
371 |
+
# A phrase without bbox
|
372 |
+
if bbox is None:
|
373 |
+
continue
|
374 |
+
# A phrase with a single bbox
|
375 |
+
if isinstance(bbox, tuple):
|
376 |
+
bbox = [bbox]
|
377 |
+
patch_index_strings = []
|
378 |
+
# A phrase could have multiple bboxes
|
379 |
+
for box in bbox:
|
380 |
+
patch_index_1, patch_index_2 = self._convert_bbox_to_patch_index_tokens(box)
|
381 |
+
patch_index_strings.append(f"{patch_index_1} {patch_index_2}")
|
382 |
+
position_str = " </delimiter_of_multi_objects/> ".join(patch_index_strings)
|
383 |
+
buffer.append(f"<object> {position_str} </object>")
|
384 |
+
# remaining
|
385 |
+
if curr_pos < len(text):
|
386 |
+
buffer.append(text[curr_pos:])
|
387 |
+
|
388 |
+
text = "".join(buffer)
|
389 |
+
return text
|
390 |
+
|
391 |
+
def _convert_bbox_to_patch_index_tokens(
|
392 |
+
self, bbox: Union[Tuple[int, int], Tuple[float, float, float, float]]
|
393 |
+
) -> Tuple[str, str]:
|
394 |
+
# already computed patch indices
|
395 |
+
if len(bbox) == 2:
|
396 |
+
idx_1, idx_2 = bbox
|
397 |
+
# bbox specified with (normalized) coordinates
|
398 |
+
else:
|
399 |
+
# use `self.tokenizer` to get `num_patches_per_side`
|
400 |
+
num_patches_per_side = int(math.sqrt(self.tokenizer.num_patch_index_tokens))
|
401 |
+
idx_1, idx_2 = coordinate_to_patch_index(bbox, num_patches_per_side)
|
402 |
+
|
403 |
+
token_1 = f"<patch_index_{str(idx_1).zfill(4)}>"
|
404 |
+
token_2 = f"<patch_index_{str(idx_2).zfill(4)}>"
|
405 |
+
|
406 |
+
return token_1, token_2
|
407 |
+
|
408 |
+
def _add_remove_spaces_around_tag_tokens(self, text):
|
409 |
+
"""
|
410 |
+
Remove spaces before tag tokens (e.g. `<x>`). Also ensure a space after a tag token, if it is not followed by
|
411 |
+
another tag token (this is not technically necessary, but good for a standard/consistent format). This avoids
|
412 |
+
the inconsistency of tokenization results between kosmos-2 slow and fast tokenizers.
|
413 |
+
"""
|
414 |
+
|
415 |
+
tag_tokens = set(
|
416 |
+
self.tokenizer.tag_tokens
|
417 |
+
+ [f"<patch_index_{str(x).zfill(4)}>" for x in range(self.tokenizer.num_patch_index_tokens)]
|
418 |
+
)
|
419 |
+
pattern = "|".join(tag_tokens)
|
420 |
+
splits = re.split(rf"({pattern})", text)
|
421 |
+
|
422 |
+
output = ""
|
423 |
+
prev_str_in_targets = False
|
424 |
+
for split in splits:
|
425 |
+
if split in tag_tokens:
|
426 |
+
prev_str_in_targets = True
|
427 |
+
output = output.rstrip() + split
|
428 |
+
else:
|
429 |
+
# we don't need to ensure a space before a normal token that is after a tag token. But having it and
|
430 |
+
# keeps a standard format is good anyway.
|
431 |
+
if prev_str_in_targets and not split.startswith(" "):
|
432 |
+
output += " " + split
|
433 |
+
else:
|
434 |
+
output += split
|
435 |
+
prev_str_in_targets = False
|
436 |
+
|
437 |
+
return output
|
438 |
+
|
439 |
+
|
440 |
+
def coordinate_to_patch_index(bbox: Tuple[float, float, float, float], num_patches_per_side: int) -> Tuple[int, int]:
|
441 |
+
"""Convert a bounding box to a pair of patch indices.
|
442 |
+
|
443 |
+
Args:
|
444 |
+
bbox (`Tuple[float, float, float, float]`):
|
445 |
+
The 4 coordinates of the bounding box, with the format being (x1, y1, x2, y2) specifying the upper-left
|
446 |
+
and lower-right corners of the box. It should have x2 > x1 and y1 > y2.
|
447 |
+
num_patches_per_side (`int`): the number of patches along each side.
|
448 |
+
|
449 |
+
Returns:
|
450 |
+
`Tuple[int, int]`: A pair of patch indices.
|
451 |
+
"""
|
452 |
+
(x1, y1, x2, y2) = bbox
|
453 |
+
|
454 |
+
ul_x = math.floor(x1 * num_patches_per_side)
|
455 |
+
ul_y = math.floor(y1 * num_patches_per_side)
|
456 |
+
|
457 |
+
lr_x = math.ceil(x2 * num_patches_per_side - 1)
|
458 |
+
lr_y = math.ceil(y2 * num_patches_per_side - 1)
|
459 |
+
|
460 |
+
ul_idx = ul_y * num_patches_per_side + ul_x
|
461 |
+
lr_idx = lr_y * num_patches_per_side + lr_x
|
462 |
+
|
463 |
+
return ul_idx, lr_idx
|
464 |
+
|
465 |
+
|
466 |
+
# copied from https://github.com/microsoft/unilm/blob/97e4923e97d3ee10b57e97013556e3fd0d207a9b/kosmos-2/demo/decode_string.py#L35C1-L75C38
|
467 |
+
# (with format modifications)
|
468 |
+
def patch_index_to_coordinate(ul_idx: int, lr_idx: int, num_patches_per_side: int):
|
469 |
+
"""
|
470 |
+
Given a grid of length `num_patches_per_side` and the indices of the upper-left and lower-right corners of a
|
471 |
+
bounding box, returns the normalized coordinates of the bounding box, in the form (x1, y1, x2, y2).
|
472 |
+
|
473 |
+
Args:
|
474 |
+
ul_idx (`int`): the index of the grid cell that corresponds to the upper-left corner of the bounding box.
|
475 |
+
lr_idx (`int`): the index of the grid cell that corresponds to the lower-right corner of the bounding box.
|
476 |
+
num_patches_per_side (`int`): the number of patches along each side.
|
477 |
+
|
478 |
+
Returns:
|
479 |
+
`Tuple[float]`: the normalized coordinates of the bounding box, in the form (x1, y1, x2, y2).
|
480 |
+
"""
|
481 |
+
# Compute the size of each cell in the grid
|
482 |
+
cell_size = 1.0 / num_patches_per_side
|
483 |
+
|
484 |
+
# Compute the x and y indices of the upper-left and lower-right corners of the bounding box
|
485 |
+
ul_x = ul_idx % num_patches_per_side
|
486 |
+
ul_y = ul_idx // num_patches_per_side
|
487 |
+
|
488 |
+
lr_x = lr_idx % num_patches_per_side
|
489 |
+
lr_y = lr_idx // num_patches_per_side
|
490 |
+
|
491 |
+
# Compute the normalized coordinates of the bounding box
|
492 |
+
if ul_idx == lr_idx:
|
493 |
+
x1 = ul_x * cell_size
|
494 |
+
y1 = ul_y * cell_size
|
495 |
+
x2 = lr_x * cell_size + cell_size
|
496 |
+
y2 = lr_y * cell_size + cell_size
|
497 |
+
elif ul_x == lr_x or ul_y == lr_y:
|
498 |
+
x1 = ul_x * cell_size
|
499 |
+
y1 = ul_y * cell_size
|
500 |
+
x2 = lr_x * cell_size + cell_size
|
501 |
+
y2 = lr_y * cell_size + cell_size
|
502 |
+
else:
|
503 |
+
x1 = ul_x * cell_size + cell_size / 2
|
504 |
+
y1 = ul_y * cell_size + cell_size / 2
|
505 |
+
x2 = lr_x * cell_size + cell_size / 2
|
506 |
+
y2 = lr_y * cell_size + cell_size / 2
|
507 |
+
|
508 |
+
return x1, y1, x2, y2
|
509 |
+
|
510 |
+
|
511 |
+
# copied from https://github.com/microsoft/unilm/blob/97e4923e97d3ee10b57e97013556e3fd0d207a9b/kosmos-2/demo/decode_string.py#L4-L33
|
512 |
+
# (with format modifications)
|
513 |
+
def extract_entities_with_patch_indices(text):
|
514 |
+
# The regular expression pattern for matching the required formats
|
515 |
+
pattern = r'(?:(<phrase>([^<]+)</phrase>))?<object>((?:<patch_index_\d+><patch_index_\d+></delimiter_of_multi_objects/>)*<patch_index_\d+><patch_index_\d+>)</object>'
|
516 |
+
|
517 |
+
# Find all matches in the given string
|
518 |
+
matches = re.finditer(pattern, text)
|
519 |
+
|
520 |
+
# Initialize an empty list to store the valid patch_index combinations
|
521 |
+
entities_with_patch_indices = []
|
522 |
+
|
523 |
+
for match in matches:
|
524 |
+
# span of a `phrase` that is between <phrase> and </phrase>
|
525 |
+
span = match.span(2)
|
526 |
+
phrase_tag, phrase, match_content = match.groups()
|
527 |
+
if not phrase_tag:
|
528 |
+
phrase = None
|
529 |
+
span = (None, None)
|
530 |
+
|
531 |
+
# Split the match_content by the delimiter to get individual patch_index pairs
|
532 |
+
patch_index_pairs = match_content.split('</delimiter_of_multi_objects/>')
|
533 |
+
|
534 |
+
entity_bboxes = []
|
535 |
+
for pair in patch_index_pairs:
|
536 |
+
# Extract the xxxx and yyyy values from the patch_index pair
|
537 |
+
x = re.search(r'<patch_index_(\d+)>', pair)
|
538 |
+
y = re.search(r'<patch_index_(\d+)>', pair[1:])
|
539 |
+
|
540 |
+
if x and y:
|
541 |
+
if phrase:
|
542 |
+
entity_bboxes.append((int(x.group(1)), int(y.group(1))))
|
543 |
+
else:
|
544 |
+
entity_bboxes.append((int(x.group(1)), int(y.group(1))))
|
545 |
+
|
546 |
+
if phrase:
|
547 |
+
entities_with_patch_indices.append((phrase, span, entity_bboxes))
|
548 |
+
else:
|
549 |
+
for bbox in entity_bboxes:
|
550 |
+
# fake entity name
|
551 |
+
entity = f"<patch_index_{bbox[0]}><patch_index_{bbox[1]}>"
|
552 |
+
entities_with_patch_indices.append((entity, span, [bbox]))
|
553 |
+
|
554 |
+
return entities_with_patch_indices
|
555 |
+
|
556 |
+
|
557 |
+
# TODO: Be careful
|
558 |
+
def remove_special_fields(text):
|
559 |
+
return re.sub('<.*?>', '', text)
|
560 |
+
|
561 |
+
|
562 |
+
def adjust_entity_positions(entity, text):
|
563 |
+
|
564 |
+
entity_name, (start, end) = entity
|
565 |
+
adjusted_start = len(remove_special_fields(text[:start]))
|
566 |
+
adjusted_end = len(remove_special_fields(text[:end]))
|
567 |
+
adjusted_entity = (entity_name, (adjusted_start, adjusted_end))
|
568 |
+
return adjusted_entity
|
569 |
+
|
570 |
+
|
571 |
+
# copied from https://github.com/microsoft/unilm/blob/97e4923e97d3ee10b57e97013556e3fd0d207a9b/kosmos-2/demo/decode_string.py#L77-L87
|
572 |
+
# (with format modifications)
|
573 |
+
def clean_text_and_extract_entities_with_bboxes(text, num_patches_per_side=32):
|
574 |
+
|
575 |
+
processed_text = remove_special_fields(text)
|
576 |
+
|
577 |
+
entities_with_patch_indices = extract_entities_with_patch_indices(text)
|
578 |
+
entities = []
|
579 |
+
for item in entities_with_patch_indices:
|
580 |
+
entity, bboxes = item[0:2], item[2]
|
581 |
+
adjusted_entity = adjust_entity_positions(entity, text)
|
582 |
+
bboxes_in_coords = list(map(lambda bbox: patch_index_to_coordinate(bbox[0], bbox[1], num_patches_per_side), bboxes))
|
583 |
+
|
584 |
+
entities.append(adjusted_entity + (bboxes_in_coords,))
|
585 |
+
|
586 |
+
def cleanup_spaces(text, entities):
|
587 |
+
new_text = text.strip()
|
588 |
+
leading_spaces = len(text) - len(text.lstrip())
|
589 |
+
|
590 |
+
new_entities = []
|
591 |
+
for entity_name, (start, end), bboxes in entities:
|
592 |
+
|
593 |
+
entity_name_leading_spaces = len(entity_name) - len(entity_name.lstrip())
|
594 |
+
entity_name_trailing_spaces = len(entity_name) - len(entity_name.rstrip())
|
595 |
+
|
596 |
+
start = start - leading_spaces + entity_name_leading_spaces
|
597 |
+
end = end - leading_spaces - entity_name_trailing_spaces
|
598 |
+
entity_name = entity_name.strip()
|
599 |
+
|
600 |
+
new_entities.append((entity_name, (start, end), bboxes))
|
601 |
+
|
602 |
+
return new_text, new_entities
|
603 |
+
|
604 |
+
return cleanup_spaces(processed_text, entities)
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c7290a8c916513d3bc0cbda4f0b0d02dcc17db935df7da9b52d3917e47cde17
|
3 |
+
size 6658242717
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3a60b4d1d1d8f70c8b2569c94540d4d9b7c694fd32e7a428ad0dcffaafaa3beb
|
3 |
+
size 1363614
|
snowman.jpg
ADDED
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"cls_token": "<s>",
|
4 |
+
"eos_token": "</s>",
|
5 |
+
"mask_token": {
|
6 |
+
"content": "<mask>",
|
7 |
+
"lstrip": true,
|
8 |
+
"normalized": true,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false
|
11 |
+
},
|
12 |
+
"pad_token": "<pad>",
|
13 |
+
"sep_token": "</s>",
|
14 |
+
"unk_token": "<unk>"
|
15 |
+
}
|
tokenization_kosmos2.py
ADDED
@@ -0,0 +1,413 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Tokenization classes for KOSMOS-2 model."""
|
16 |
+
|
17 |
+
|
18 |
+
import os
|
19 |
+
from shutil import copyfile
|
20 |
+
from typing import Any, Dict, List, Optional, Tuple
|
21 |
+
|
22 |
+
import sentencepiece as spm
|
23 |
+
|
24 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
25 |
+
from transformers.utils import logging
|
26 |
+
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
SPIECE_UNDERLINE = "▁"
|
31 |
+
|
32 |
+
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"}
|
33 |
+
|
34 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
35 |
+
"vocab_file": {
|
36 |
+
"microsoft/kosmos-2-patch14-224": "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/sentencepiece.bpe.model",
|
37 |
+
}
|
38 |
+
}
|
39 |
+
|
40 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
41 |
+
"microsoft/kosmos-2-patch14-224": 2048,
|
42 |
+
}
|
43 |
+
|
44 |
+
|
45 |
+
class Kosmos2Tokenizer(PreTrainedTokenizer):
|
46 |
+
"""
|
47 |
+
Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on
|
48 |
+
[SentencePiece](https://github.com/google/sentencepiece).
|
49 |
+
|
50 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
51 |
+
this superclass for more information regarding those methods.
|
52 |
+
|
53 |
+
Args:
|
54 |
+
vocab_file (`str`):
|
55 |
+
Path to the vocabulary file.
|
56 |
+
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
57 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
58 |
+
|
59 |
+
<Tip>
|
60 |
+
|
61 |
+
When building a sequence using special tokens, this is not the token that is used for the beginning of
|
62 |
+
sequence. The token used is the `cls_token`.
|
63 |
+
|
64 |
+
</Tip>
|
65 |
+
|
66 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
67 |
+
The end of sequence token.
|
68 |
+
|
69 |
+
<Tip>
|
70 |
+
|
71 |
+
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
72 |
+
The token used is the `sep_token`.
|
73 |
+
|
74 |
+
</Tip>
|
75 |
+
|
76 |
+
sep_token (`str`, *optional*, defaults to `"</s>"`):
|
77 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
78 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
79 |
+
token of a sequence built with special tokens.
|
80 |
+
cls_token (`str`, *optional*, defaults to `"<s>"`):
|
81 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
82 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
83 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
84 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
85 |
+
token instead.
|
86 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
87 |
+
The token used for padding, for example when batching sequences of different lengths.
|
88 |
+
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
89 |
+
The token used for masking values. This is the token used when training this model with masked language
|
90 |
+
modeling. This is the token which the model will try to predict.
|
91 |
+
additional_special_tokens (`List[str]`, *optional*, defaults to `["<s>NOTUSED", "</s>NOTUSED"]`):
|
92 |
+
Additional special tokens used by the tokenizer.
|
93 |
+
num_patch_index_tokens (`int`, *optional*, defaults to `1024`):
|
94 |
+
The number of tokens used to specify the patch indices of bounding boxes in an image. These tokens have the
|
95 |
+
format `<patch_index_xxxx>` where `xxxx` is an integer.
|
96 |
+
sp_model_kwargs (`dict`, *optional*):
|
97 |
+
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
|
98 |
+
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
|
99 |
+
to set:
|
100 |
+
|
101 |
+
- `enable_sampling`: Enable subword regularization.
|
102 |
+
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
|
103 |
+
|
104 |
+
- `nbest_size = {0,1}`: No sampling is performed.
|
105 |
+
- `nbest_size > 1`: samples from the nbest_size results.
|
106 |
+
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
|
107 |
+
using forward-filtering-and-backward-sampling algorithm.
|
108 |
+
|
109 |
+
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
|
110 |
+
BPE-dropout.
|
111 |
+
|
112 |
+
Attributes:
|
113 |
+
sp_model (`SentencePieceProcessor`):
|
114 |
+
The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
|
115 |
+
"""
|
116 |
+
|
117 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
118 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
119 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
120 |
+
model_input_names = ["input_ids", "attention_mask"]
|
121 |
+
|
122 |
+
def __init__(
|
123 |
+
self,
|
124 |
+
vocab_file,
|
125 |
+
bos_token="<s>",
|
126 |
+
eos_token="</s>",
|
127 |
+
sep_token="</s>",
|
128 |
+
cls_token="<s>",
|
129 |
+
unk_token="<unk>",
|
130 |
+
pad_token="<pad>",
|
131 |
+
mask_token="<mask>",
|
132 |
+
num_patch_index_tokens=1024,
|
133 |
+
add_tag_and_patch_index_tokens=False,
|
134 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
135 |
+
**kwargs,
|
136 |
+
) -> None:
|
137 |
+
# Mask token behave like a normal word, i.e. include the space before it
|
138 |
+
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
|
139 |
+
|
140 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
141 |
+
|
142 |
+
super().__init__(
|
143 |
+
bos_token=bos_token,
|
144 |
+
eos_token=eos_token,
|
145 |
+
unk_token=unk_token,
|
146 |
+
sep_token=sep_token,
|
147 |
+
cls_token=cls_token,
|
148 |
+
pad_token=pad_token,
|
149 |
+
mask_token=mask_token,
|
150 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
151 |
+
**kwargs,
|
152 |
+
)
|
153 |
+
|
154 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
155 |
+
self.sp_model.Load(str(vocab_file))
|
156 |
+
self.vocab_file = vocab_file
|
157 |
+
|
158 |
+
# Original fairseq vocab and spm vocab must be "aligned":
|
159 |
+
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
|
160 |
+
# -------- | ------- | ------- | ------ | ------- | ------ | ------ | ------ | ------ | ------- | ------
|
161 |
+
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | '.' | '_the' | ',' | '▁to' | '▁and' | '▁of'
|
162 |
+
# spm | '<unk>' | '<s>' | '</s>' | '.' | '_the' | ',' | '▁to' | '▁and' | '▁of' | '▁a'
|
163 |
+
|
164 |
+
# Mimic fairseq token-to-id alignment for the first 4 token
|
165 |
+
self.fairseq_tokens_to_ids = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3}
|
166 |
+
|
167 |
+
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
|
168 |
+
self.fairseq_offset = 1
|
169 |
+
|
170 |
+
self.fairseq_tokens_to_ids["<mask>"] = len(self.sp_model) + self.fairseq_offset
|
171 |
+
self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
|
172 |
+
|
173 |
+
self.eod_token = "</doc>"
|
174 |
+
|
175 |
+
self.boi_token = "<image>"
|
176 |
+
self.eoi_token = "</image>"
|
177 |
+
|
178 |
+
self.eoc_token = "</chunk>"
|
179 |
+
self.eol_token = "</line>"
|
180 |
+
|
181 |
+
self.bop_token = "<phrase>"
|
182 |
+
self.eop_token = "</phrase>"
|
183 |
+
|
184 |
+
self.boo_token = "<object>"
|
185 |
+
self.eoo_token = "</object>"
|
186 |
+
|
187 |
+
self.dom_token = "</delimiter_of_multi_objects/>"
|
188 |
+
|
189 |
+
self.grd_token = "<grounding>"
|
190 |
+
|
191 |
+
self.tag_tokens = [
|
192 |
+
self.eod_token,
|
193 |
+
self.boi_token,
|
194 |
+
self.eoi_token,
|
195 |
+
self.eoc_token,
|
196 |
+
self.eol_token,
|
197 |
+
self.bop_token,
|
198 |
+
self.eop_token,
|
199 |
+
self.boo_token,
|
200 |
+
self.eoo_token,
|
201 |
+
self.dom_token,
|
202 |
+
self.grd_token,
|
203 |
+
]
|
204 |
+
|
205 |
+
self.num_patch_index_tokens = num_patch_index_tokens
|
206 |
+
patch_index_tokens = [f"<patch_index_{str(x).zfill(4)}>" for x in range(self.num_patch_index_tokens)]
|
207 |
+
|
208 |
+
if add_tag_and_patch_index_tokens:
|
209 |
+
for idx, token in enumerate(self.tag_tokens + patch_index_tokens):
|
210 |
+
# we can't add them as special tokens, as the slow tokenizer doesn't save the information of a token
|
211 |
+
# being special when it is added through `add_tokens`, but the fast tokenizer is able to do so.
|
212 |
+
self.add_tokens(AddedToken(token, lstrip=True, rstrip=False), special_tokens=True)
|
213 |
+
|
214 |
+
def _decode(
|
215 |
+
self,
|
216 |
+
token_ids: List[int],
|
217 |
+
skip_special_tokens: bool = False,
|
218 |
+
clean_up_tokenization_spaces: bool = None,
|
219 |
+
spaces_between_special_tokens: bool = True,
|
220 |
+
**kwargs,
|
221 |
+
) -> str:
|
222 |
+
self._decode_use_source_tokenizer = kwargs.pop("use_source_tokenizer", False)
|
223 |
+
|
224 |
+
filtered_tokens = self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)
|
225 |
+
|
226 |
+
# To avoid mixing byte-level and unicode for byte-level BPT
|
227 |
+
# we need to build string separately for added tokens and byte-level tokens
|
228 |
+
# cf. https://github.com/huggingface/transformers/issues/1133
|
229 |
+
sub_texts = []
|
230 |
+
current_sub_text = []
|
231 |
+
is_first_current_sub_text = True
|
232 |
+
for token in filtered_tokens:
|
233 |
+
if skip_special_tokens and token in self.all_special_ids:
|
234 |
+
continue
|
235 |
+
if token in self.added_tokens_encoder:
|
236 |
+
if current_sub_text:
|
237 |
+
sub_text = self.convert_tokens_to_string(current_sub_text)
|
238 |
+
# `convert_tokens_to_string` removes the leading space, which is undesired if we are not at the
|
239 |
+
# beginning part of the text. We can't use `spaces_between_special_tokens` to add this space back
|
240 |
+
# neither, as it will also add a space before a tag/patch_index token (which is not the case with
|
241 |
+
# the fast tokenizer - it doesn't even support `spaces_between_special_tokens`), which is not the
|
242 |
+
# ideal output format.
|
243 |
+
# The condition `not spaces_between_special_tokens` is to avoid double spaces.
|
244 |
+
if not is_first_current_sub_text and not spaces_between_special_tokens:
|
245 |
+
sub_text = " " + sub_text
|
246 |
+
sub_texts.append(sub_text)
|
247 |
+
current_sub_text = []
|
248 |
+
is_first_current_sub_text = False
|
249 |
+
sub_texts.append(token)
|
250 |
+
else:
|
251 |
+
current_sub_text.append(token)
|
252 |
+
if current_sub_text:
|
253 |
+
sub_texts.append(self.convert_tokens_to_string(current_sub_text))
|
254 |
+
|
255 |
+
if spaces_between_special_tokens:
|
256 |
+
text = " ".join(sub_texts)
|
257 |
+
else:
|
258 |
+
text = "".join(sub_texts)
|
259 |
+
|
260 |
+
clean_up_tokenization_spaces = (
|
261 |
+
clean_up_tokenization_spaces
|
262 |
+
if clean_up_tokenization_spaces is not None
|
263 |
+
else self.clean_up_tokenization_spaces
|
264 |
+
)
|
265 |
+
if clean_up_tokenization_spaces:
|
266 |
+
clean_text = self.clean_up_tokenization(text)
|
267 |
+
return clean_text
|
268 |
+
else:
|
269 |
+
return text
|
270 |
+
|
271 |
+
def __getstate__(self):
|
272 |
+
state = self.__dict__.copy()
|
273 |
+
state["sp_model"] = None
|
274 |
+
state["sp_model_proto"] = self.sp_model.serialized_model_proto()
|
275 |
+
return state
|
276 |
+
|
277 |
+
def __setstate__(self, d):
|
278 |
+
self.__dict__ = d
|
279 |
+
|
280 |
+
# for backward compatibility
|
281 |
+
if not hasattr(self, "sp_model_kwargs"):
|
282 |
+
self.sp_model_kwargs = {}
|
283 |
+
|
284 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
285 |
+
self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
|
286 |
+
|
287 |
+
def build_inputs_with_special_tokens(
|
288 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
289 |
+
) -> List[int]:
|
290 |
+
"""
|
291 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
292 |
+
adding special tokens. An XLM-RoBERTa sequence has the following format:
|
293 |
+
|
294 |
+
- single sequence: `<s> X </s>`
|
295 |
+
- pair of sequences: `<s> A </s></s> B </s>`
|
296 |
+
|
297 |
+
Args:
|
298 |
+
token_ids_0 (`List[int]`):
|
299 |
+
List of IDs to which the special tokens will be added.
|
300 |
+
token_ids_1 (`List[int]`, *optional*):
|
301 |
+
Optional second list of IDs for sequence pairs.
|
302 |
+
|
303 |
+
Returns:
|
304 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
305 |
+
"""
|
306 |
+
|
307 |
+
if token_ids_1 is None:
|
308 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
309 |
+
cls = [self.cls_token_id]
|
310 |
+
sep = [self.sep_token_id]
|
311 |
+
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
|
312 |
+
|
313 |
+
def get_special_tokens_mask(
|
314 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
315 |
+
) -> List[int]:
|
316 |
+
"""
|
317 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
318 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
319 |
+
|
320 |
+
Args:
|
321 |
+
token_ids_0 (`List[int]`):
|
322 |
+
List of IDs.
|
323 |
+
token_ids_1 (`List[int]`, *optional*):
|
324 |
+
Optional second list of IDs for sequence pairs.
|
325 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
326 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
327 |
+
|
328 |
+
Returns:
|
329 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
330 |
+
"""
|
331 |
+
|
332 |
+
if already_has_special_tokens:
|
333 |
+
return super().get_special_tokens_mask(
|
334 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
335 |
+
)
|
336 |
+
|
337 |
+
if token_ids_1 is None:
|
338 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
339 |
+
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
340 |
+
|
341 |
+
def create_token_type_ids_from_sequences(
|
342 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
343 |
+
) -> List[int]:
|
344 |
+
"""
|
345 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. XLM-RoBERTa does
|
346 |
+
not make use of token type ids, therefore a list of zeros is returned.
|
347 |
+
|
348 |
+
Args:
|
349 |
+
token_ids_0 (`List[int]`):
|
350 |
+
List of IDs.
|
351 |
+
token_ids_1 (`List[int]`, *optional*):
|
352 |
+
Optional second list of IDs for sequence pairs.
|
353 |
+
|
354 |
+
Returns:
|
355 |
+
`List[int]`: List of zeros.
|
356 |
+
|
357 |
+
"""
|
358 |
+
|
359 |
+
sep = [self.sep_token_id]
|
360 |
+
cls = [self.cls_token_id]
|
361 |
+
|
362 |
+
if token_ids_1 is None:
|
363 |
+
return len(cls + token_ids_0 + sep) * [0]
|
364 |
+
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
|
365 |
+
|
366 |
+
@property
|
367 |
+
def vocab_size(self):
|
368 |
+
return len(self.sp_model) + self.fairseq_offset + 1 # Add the <mask> token
|
369 |
+
|
370 |
+
def get_vocab(self):
|
371 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
372 |
+
vocab.update(self.added_tokens_encoder)
|
373 |
+
return vocab
|
374 |
+
|
375 |
+
def _tokenize(self, text: str) -> List[str]:
|
376 |
+
return self.sp_model.encode(text, out_type=str)
|
377 |
+
|
378 |
+
def _convert_token_to_id(self, token):
|
379 |
+
"""Converts a token (str) in an id using the vocab."""
|
380 |
+
if token in self.fairseq_tokens_to_ids:
|
381 |
+
return self.fairseq_tokens_to_ids[token]
|
382 |
+
spm_id = self.sp_model.PieceToId(token)
|
383 |
+
|
384 |
+
# Need to return unknown token if the SP model returned 0
|
385 |
+
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
|
386 |
+
|
387 |
+
def _convert_id_to_token(self, index):
|
388 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
389 |
+
if index in self.fairseq_ids_to_tokens:
|
390 |
+
return self.fairseq_ids_to_tokens[index]
|
391 |
+
return self.sp_model.IdToPiece(index - self.fairseq_offset)
|
392 |
+
|
393 |
+
def convert_tokens_to_string(self, tokens):
|
394 |
+
"""Converts a sequence of tokens (strings for sub-words) in a single string."""
|
395 |
+
out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
|
396 |
+
return out_string
|
397 |
+
|
398 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
399 |
+
if not os.path.isdir(save_directory):
|
400 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
401 |
+
return
|
402 |
+
out_vocab_file = os.path.join(
|
403 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
404 |
+
)
|
405 |
+
|
406 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
407 |
+
copyfile(self.vocab_file, out_vocab_file)
|
408 |
+
elif not os.path.isfile(self.vocab_file):
|
409 |
+
with open(out_vocab_file, "wb") as fi:
|
410 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
411 |
+
fi.write(content_spiece_model)
|
412 |
+
|
413 |
+
return (out_vocab_file,)
|
tokenization_kosmos2_fast.py
ADDED
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Tokenization classes for KOSMOS-2 model."""
|
16 |
+
|
17 |
+
|
18 |
+
import os
|
19 |
+
from shutil import copyfile
|
20 |
+
from typing import List, Optional, Tuple
|
21 |
+
|
22 |
+
from transformers.tokenization_utils import AddedToken
|
23 |
+
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
|
24 |
+
from transformers.utils import is_sentencepiece_available, logging
|
25 |
+
|
26 |
+
|
27 |
+
if is_sentencepiece_available():
|
28 |
+
from .tokenization_kosmos2 import Kosmos2Tokenizer
|
29 |
+
else:
|
30 |
+
Kosmos2TokenizerFast = None
|
31 |
+
|
32 |
+
|
33 |
+
logger = logging.get_logger(__name__)
|
34 |
+
|
35 |
+
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
|
36 |
+
|
37 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
38 |
+
"vocab_file": {
|
39 |
+
"microsoft/kosmos-2-patch14-224": "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/sentencepiece.bpe.model",
|
40 |
+
}
|
41 |
+
}
|
42 |
+
|
43 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
44 |
+
"microsoft/kosmos-2-patch14-224": 2048,
|
45 |
+
}
|
46 |
+
|
47 |
+
|
48 |
+
class Kosmos2TokenizerFast(PreTrainedTokenizerFast):
|
49 |
+
"""
|
50 |
+
Construct a "fast" KOSMOS-2 tokenizer (backed by HuggingFace's *tokenizers* library). Adapted from
|
51 |
+
[`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on
|
52 |
+
[BPE](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=BPE#models).
|
53 |
+
|
54 |
+
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
55 |
+
refer to this superclass for more information regarding those methods.
|
56 |
+
|
57 |
+
Args:
|
58 |
+
vocab_file (`str`):
|
59 |
+
Path to the vocabulary file.
|
60 |
+
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
61 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
62 |
+
|
63 |
+
<Tip>
|
64 |
+
|
65 |
+
When building a sequence using special tokens, this is not the token that is used for the beginning of
|
66 |
+
sequence. The token used is the `cls_token`.
|
67 |
+
|
68 |
+
</Tip>
|
69 |
+
|
70 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
71 |
+
The end of sequence token.
|
72 |
+
|
73 |
+
<Tip>
|
74 |
+
|
75 |
+
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
76 |
+
The token used is the `sep_token`.
|
77 |
+
|
78 |
+
</Tip>
|
79 |
+
|
80 |
+
sep_token (`str`, *optional*, defaults to `"</s>"`):
|
81 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
82 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
83 |
+
token of a sequence built with special tokens.
|
84 |
+
cls_token (`str`, *optional*, defaults to `"<s>"`):
|
85 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
86 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
87 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
88 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
89 |
+
token instead.
|
90 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
91 |
+
The token used for padding, for example when batching sequences of different lengths.
|
92 |
+
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
93 |
+
The token used for masking values. This is the token used when training this model with masked language
|
94 |
+
modeling. This is the token which the model will try to predict.
|
95 |
+
additional_special_tokens (`List[str]`, *optional*, defaults to `["<s>NOTUSED", "</s>NOTUSED"]`):
|
96 |
+
Additional special tokens used by the tokenizer.
|
97 |
+
num_patch_index_tokens (`int`, *optional*, defaults to `1024`):
|
98 |
+
The number of tokens used to specify the patch indices of bounding boxes in an image. These tokens have the
|
99 |
+
format `<patch_index_xxxx>` where `xxxx` is an integer.
|
100 |
+
"""
|
101 |
+
|
102 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
103 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
104 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
105 |
+
model_input_names = ["input_ids", "attention_mask"]
|
106 |
+
slow_tokenizer_class = Kosmos2Tokenizer
|
107 |
+
|
108 |
+
def __init__(
|
109 |
+
self,
|
110 |
+
vocab_file=None,
|
111 |
+
tokenizer_file=None,
|
112 |
+
bos_token="<s>",
|
113 |
+
eos_token="</s>",
|
114 |
+
sep_token="</s>",
|
115 |
+
cls_token="<s>",
|
116 |
+
unk_token="<unk>",
|
117 |
+
pad_token="<pad>",
|
118 |
+
mask_token="<mask>",
|
119 |
+
num_patch_index_tokens=1024,
|
120 |
+
add_tag_and_patch_index_tokens=False,
|
121 |
+
**kwargs,
|
122 |
+
):
|
123 |
+
# Mask token behave like a normal word, i.e. include the space before it
|
124 |
+
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
|
125 |
+
|
126 |
+
super().__init__(
|
127 |
+
vocab_file,
|
128 |
+
tokenizer_file=tokenizer_file,
|
129 |
+
bos_token=bos_token,
|
130 |
+
eos_token=eos_token,
|
131 |
+
sep_token=sep_token,
|
132 |
+
cls_token=cls_token,
|
133 |
+
unk_token=unk_token,
|
134 |
+
pad_token=pad_token,
|
135 |
+
mask_token=mask_token,
|
136 |
+
**kwargs,
|
137 |
+
)
|
138 |
+
|
139 |
+
self.vocab_file = vocab_file
|
140 |
+
self.can_save_slow_tokenizer = False if not self.vocab_file else True
|
141 |
+
|
142 |
+
self.eod_token = "</doc>"
|
143 |
+
|
144 |
+
self.boi_token = "<image>"
|
145 |
+
self.eoi_token = "</image>"
|
146 |
+
|
147 |
+
self.eoc_token = "</chunk>"
|
148 |
+
self.eol_token = "</line>"
|
149 |
+
|
150 |
+
self.bop_token = "<phrase>"
|
151 |
+
self.eop_token = "</phrase>"
|
152 |
+
|
153 |
+
self.boo_token = "<object>"
|
154 |
+
self.eoo_token = "</object>"
|
155 |
+
|
156 |
+
self.dom_token = "</delimiter_of_multi_objects/>"
|
157 |
+
|
158 |
+
self.grd_token = "<grounding>"
|
159 |
+
|
160 |
+
self.tag_tokens = [
|
161 |
+
self.eod_token,
|
162 |
+
self.boi_token,
|
163 |
+
self.eoi_token,
|
164 |
+
self.eoc_token,
|
165 |
+
self.eol_token,
|
166 |
+
self.bop_token,
|
167 |
+
self.eop_token,
|
168 |
+
self.boo_token,
|
169 |
+
self.eoo_token,
|
170 |
+
self.dom_token,
|
171 |
+
self.grd_token,
|
172 |
+
]
|
173 |
+
|
174 |
+
self.num_patch_index_tokens = num_patch_index_tokens
|
175 |
+
patch_index_tokens = [f"<patch_index_{str(x).zfill(4)}>" for x in range(self.num_patch_index_tokens)]
|
176 |
+
|
177 |
+
if add_tag_and_patch_index_tokens:
|
178 |
+
for idx, token in enumerate(self.tag_tokens + patch_index_tokens):
|
179 |
+
# we need to set `special_tokens=False` to be the same as in the slow tokenizer.
|
180 |
+
self.add_tokens(AddedToken(token, lstrip=True, rstrip=False), special_tokens=False)
|
181 |
+
|
182 |
+
def build_inputs_with_special_tokens(
|
183 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
184 |
+
) -> List[int]:
|
185 |
+
"""
|
186 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
187 |
+
adding special tokens. An XLM-RoBERTa sequence has the following format:
|
188 |
+
|
189 |
+
- single sequence: `<s> X </s>`
|
190 |
+
- pair of sequences: `<s> A </s></s> B </s>`
|
191 |
+
|
192 |
+
Args:
|
193 |
+
token_ids_0 (`List[int]`):
|
194 |
+
List of IDs to which the special tokens will be added.
|
195 |
+
token_ids_1 (`List[int]`, *optional*):
|
196 |
+
Optional second list of IDs for sequence pairs.
|
197 |
+
|
198 |
+
Returns:
|
199 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
200 |
+
"""
|
201 |
+
|
202 |
+
if token_ids_1 is None:
|
203 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
204 |
+
cls = [self.cls_token_id]
|
205 |
+
sep = [self.sep_token_id]
|
206 |
+
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
|
207 |
+
|
208 |
+
def create_token_type_ids_from_sequences(
|
209 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
210 |
+
) -> List[int]:
|
211 |
+
"""
|
212 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. XLM-RoBERTa does
|
213 |
+
not make use of token type ids, therefore a list of zeros is returned.
|
214 |
+
|
215 |
+
Args:
|
216 |
+
token_ids_0 (`List[int]`):
|
217 |
+
List of IDs.
|
218 |
+
token_ids_1 (`List[int]`, *optional*):
|
219 |
+
Optional second list of IDs for sequence pairs.
|
220 |
+
|
221 |
+
Returns:
|
222 |
+
`List[int]`: List of zeros.
|
223 |
+
|
224 |
+
"""
|
225 |
+
|
226 |
+
sep = [self.sep_token_id]
|
227 |
+
cls = [self.cls_token_id]
|
228 |
+
|
229 |
+
if token_ids_1 is None:
|
230 |
+
return len(cls + token_ids_0 + sep) * [0]
|
231 |
+
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
|
232 |
+
|
233 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
234 |
+
if not self.can_save_slow_tokenizer:
|
235 |
+
raise ValueError(
|
236 |
+
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
|
237 |
+
"tokenizer."
|
238 |
+
)
|
239 |
+
|
240 |
+
if not os.path.isdir(save_directory):
|
241 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory.")
|
242 |
+
return
|
243 |
+
out_vocab_file = os.path.join(
|
244 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
245 |
+
)
|
246 |
+
|
247 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
|
248 |
+
copyfile(self.vocab_file, out_vocab_file)
|
249 |
+
|
250 |
+
return (out_vocab_file,)
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "<s>",
|
3 |
+
"clean_up_tokenization_spaces": true,
|
4 |
+
"cls_token": "<s>",
|
5 |
+
"eos_token": "</s>",
|
6 |
+
"mask_token": {
|
7 |
+
"__type": "AddedToken",
|
8 |
+
"content": "<mask>",
|
9 |
+
"lstrip": true,
|
10 |
+
"normalized": true,
|
11 |
+
"rstrip": false,
|
12 |
+
"single_word": false
|
13 |
+
},
|
14 |
+
"model_max_length": 1000000000000000019884624838656,
|
15 |
+
"pad_token": "<pad>",
|
16 |
+
"processor_class": "Kosmos2Processor",
|
17 |
+
"sep_token": "</s>",
|
18 |
+
"sp_model_kwargs": {},
|
19 |
+
"tokenizer_class": "Kosmos2Tokenizer",
|
20 |
+
"unk_token": "<unk>",
|
21 |
+
"auto_map": {
|
22 |
+
"AutoTokenizer": [
|
23 |
+
"tokenization_kosmos2.Kosmos2Tokenizer",
|
24 |
+
"tokenization_kosmos2_fast.Kosmos2TokenizerFast"
|
25 |
+
]
|
26 |
+
}
|
27 |
+
}
|
two_dogs.jpg
ADDED