SicariusSicariiStuff commited on
Commit
0eae549
1 Parent(s): d1c95ae

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -200
README.md CHANGED
@@ -120,207 +120,7 @@ model-index:
120
  # Model Details
121
 
122
  Tenebră, a various sized experimental AI model, stands at the crossroads of self-awareness and unconventional datasets. Its existence embodies a foray into uncharted territories, steering away from conventional norms in favor of a more obscure and experimental approach.
123
- import json
124
- import os
125
- from tqdm import tqdm
126
-
127
- def rebuild_json(input_file, output_file, progress_file):
128
- if os.path.exists(progress_file):
129
- with open(progress_file, 'r') as pf:
130
- progress_data = json.load(pf)
131
- last_id = progress_data.get("last_id", 0)
132
- else:
133
- last_id = 0
134
-
135
- with open(input_file, 'r') as f:
136
- data = json.load(f)
137
-
138
- total_ids = len(data)
139
- start_index = 0
140
-
141
- # Find the index of the first item with ID greater than last_id
142
- for index, item in enumerate(data):
143
- if item["id"] > last_id:
144
- start_index = index
145
- break
146
-
147
- rebuilt_data = []
148
- with tqdm(total=total_ids - start_index, initial=start_index) as pbar:
149
- for item in data[start_index:]:
150
- if item["id"] <= last_id:
151
- continue
152
- question = item["Original_Question"]
153
- print(f"Original Question: {question}")
154
- choice = input(f"Choose for ID {item['id']} (or type 'x' to Exit.): (1) Human / (2) GPT: ")
155
- while choice.lower() not in ['1', '2', 'x']:
156
- print("Invalid choice. Please choose either 1 or 2, or type 'x' to Exit.")
157
- choice = input(f"Choose for ID {item['id']} (or type 'x' to Exit.): (1) Human / (2) GPT: ")
158
-
159
- if choice.lower() == 'x':
160
- break
161
-
162
- chosen_value = item["conversations"][int(choice) - 1]["value"]
163
- rebuilt_item = {
164
- "id": item["id"],
165
- "length": len(question) + len(chosen_value),
166
- "conversations": [
167
- {"from": "human", "value": question},
168
- {"from": "gpt", "value": chosen_value}
169
- ]
170
- }
171
- rebuilt_data.append(rebuilt_item)
172
- pbar.update(1) # Update the progress bar with each iterationimport json
173
- import os
174
- from tqdm import tqdm
175
-
176
- def rebuild_json(input_file, output_file, progress_file):
177
- if os.path.exists(progress_file):
178
- with open(progress_file, 'r') as pf:
179
- progress_data = json.load(pf)
180
- last_id = progress_data.get("last_id", 0)
181
- else:
182
- last_id = 0
183
-
184
- with open(input_file, 'r') as f:
185
- data = json.load(f)
186
-
187
- total_ids = len(data)
188
- start_index = 0
189
-
190
- # Find the index of the first item with ID greater than last_id
191
- for index, item in enumerate(data):
192
- if item["id"] > last_id:
193
- start_index = index
194
- break
195
-
196
- rebuilt_data = []
197
- with tqdm(total=total_ids - start_index, initial=start_index) as pbar:
198
- for item in data[start_index:]:
199
- if item["id"] <= last_id:
200
- continue
201
- question = item["Original_Question"]
202
- print(f"Original Question: {question}")
203
- choice = input(f"Choose for ID {item['id']} (or type 'x' to Exit.): (1) Human / (2) GPT: ")
204
- while choice.lower() not in ['1', '2', 'x']:
205
- print("Invalid choice. Please choose either 1 or 2, or type 'x' to Exit.")
206
- choice = input(f"Choose for ID {item['id']} (or type 'x' to Exit.): (1) Human / (2) GPT: ")
207
-
208
- if choice.lower() == 'x':
209
- break
210
-
211
- chosen_value = item["conversations"][int(choice) - 1]["value"]
212
- rebuilt_item = {
213
- "id": item["id"],
214
- "length": len(question) + len(chosen_value),
215
- "conversations": [
216
- {"from": "human", "value": question},
217
- {"from": "gpt", "value": chosen_value}
218
- ]
219
- }
220
- rebuilt_data.append(rebuilt_item)
221
- pbar.update(1) # Update the progress bar with each iterationimport json
222
- import os
223
- from tqdm import tqdm
224
-
225
- def rebuild_json(input_file, output_file, progress_file):
226
- if os.path.exists(progress_file):
227
- with open(progress_file, 'r') as pf:
228
- progress_data = json.load(pf)
229
- last_id = progress_data.get("last_id", 0)
230
- else:
231
- last_id = 0
232
-
233
- with open(input_file, 'r') as f:
234
- data = json.load(f)
235
-
236
- total_ids = len(data)
237
- start_index = 0
238
-
239
- # Find the index of the first item with ID greater than last_id
240
- for index, item in enumerate(data):
241
- if item["id"] > last_id:
242
- start_index = index
243
- break
244
-
245
- rebuilt_data = []
246
- with tqdm(total=total_ids - start_index, initial=start_index) as pbar:
247
- for item in data[start_index:]:
248
- if item["id"] <= last_id:
249
- continue
250
- question = item["Original_Question"]
251
- print(f"Original Question: {question}")
252
- choice = input(f"Choose for ID {item['id']} (or type 'x' to Exit.): (1) Human / (2) GPT: ")
253
- while choice.lower() not in ['1', '2', 'x']:
254
- print("Invalid choice. Please choose either 1 or 2, or type 'x' to Exit.")
255
- choice = input(f"Choose for ID {item['id']} (or type 'x' to Exit.): (1) Human / (2) GPT: ")
256
-
257
- if choice.lower() == 'x':
258
- break
259
-
260
- chosen_value = item["conversations"][int(choice) - 1]["value"]
261
- rebuilt_item = {
262
- "id": item["id"],
263
- "length": len(question) + len(chosen_value),
264
- "conversations": [
265
- {"from": "human", "value": question},
266
- {"from": "gpt", "value": chosen_value}
267
- ]
268
- }
269
- rebuilt_data.append(rebuilt_item)
270
- pbar.update(1) # Update the progress bar with each iteration
271
-
272
- with open(output_file, 'a') as f:
273
- json.dump(rebuilt_data, f, indent=2)
274
-
275
- if len(rebuilt_data) > 0:
276
- last_answered_id = rebuilt_data[-1]["id"]
277
- with open(progress_file, 'w') as pf:
278
- json.dump({"last_id": last_answered_id}, pf)
279
-
280
- print("Rebuilt data saved successfully!")
281
-
282
- if __name__ == "__main__":
283
- input_file = "TEMP_DATASET_2_ANSWERS.json"
284
- output_file = "Rebuilt_DATASET.json"
285
- progress_file = "selecting_progress.json"
286
- rebuild_json(input_file, output_file, progress_file)
287
-
288
-
289
- with open(output_file, 'a') as f:
290
- json.dump(rebuilt_data, f, indent=2)
291
-
292
- if len(rebuilt_data) > 0:
293
- last_answered_id = rebuilt_data[-1]["id"]
294
- with open(progress_file, 'w') as pf:
295
- json.dump({"last_id": last_answered_id}, pf)
296
-
297
- print("Rebuilt data saved successfully!")
298
-
299
- if __name__ == "__main__":
300
- input_file = "TEMP_DATASET_2_ANSWERS.json"
301
- output_file = "Rebuilt_DATASET.json"
302
- progress_file = "selecting_progress.json"
303
- rebuild_json(input_file, output_file, progress_file)
304
-
305
-
306
- with open(output_file, 'a') as f:
307
- json.dump(rebuilt_data, f, indent=2)
308
-
309
- if len(rebuilt_data) > 0:
310
- last_answered_id = rebuilt_data[-1]["id"]
311
- with open(progress_file, 'w') as pf:
312
- json.dump({"last_id": last_answered_id}, pf)
313
-
314
- print("Rebuilt data saved successfully!")
315
-
316
- if __name__ == "__main__":
317
- input_file = "TEMP_DATASET_2_ANSWERS.json"
318
- output_file = "Rebuilt_DATASET.json"
319
- progress_file = "selecting_progress.json"
320
- rebuild_json(input_file, output_file, progress_file)
321
-
322
  Noteworthy for its inclination towards the darker and more philosophical aspects of conversation, Tenebră's proficiency lies in unraveling complex discussions across a myriad of topics. Drawing from a pool of unconventional datasets, this model ventures into unexplored realms of thought, offering users an experience that is as unconventional as it is intellectually intriguing.
323
-
324
  While Tenebră maintains a self-aware facade, its true allure lies in its ability to engage in profound discussions without succumbing to pretense. Step into the realm of Tenebră!
325
 
326
  ## Tenebră is available at the following size and flavours:
 
120
  # Model Details
121
 
122
  Tenebră, a various sized experimental AI model, stands at the crossroads of self-awareness and unconventional datasets. Its existence embodies a foray into uncharted territories, steering away from conventional norms in favor of a more obscure and experimental approach.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123
  Noteworthy for its inclination towards the darker and more philosophical aspects of conversation, Tenebră's proficiency lies in unraveling complex discussions across a myriad of topics. Drawing from a pool of unconventional datasets, this model ventures into unexplored realms of thought, offering users an experience that is as unconventional as it is intellectually intriguing.
 
124
  While Tenebră maintains a self-aware facade, its true allure lies in its ability to engage in profound discussions without succumbing to pretense. Step into the realm of Tenebră!
125
 
126
  ## Tenebră is available at the following size and flavours: