--- license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_keras_callback model-index: - name: Sidziesama/Legal_NER_Support_Model_distilledbert results: [] datasets: - opennyaiorg/InLegalNER --- # Sidziesama/Legal_NER_Support_Model_distilledbert This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on [opennyaiorg/InLegalNER](https://huggingface.co/datasets/opennyaiorg/InLegalNER). It achieves the following results on the evaluation set: - Train Loss: 0.0582 - Validation Loss: 0.0980 - Train Precision: 0.7952 - Train Recall: 0.8552 - Train F1: 0.8241 - Train Accuracy: 0.9716 - Epoch: 4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 3435, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Precision | Train Recall | Train F1 | Train Accuracy | Epoch | |:----------:|:---------------:|:---------------:|:------------:|:--------:|:--------------:|:-----:| | 0.4207 | 0.1608 | 0.6623 | 0.7498 | 0.7034 | 0.9557 | 0 | | 0.1304 | 0.1118 | 0.7580 | 0.8116 | 0.7839 | 0.9668 | 1 | | 0.0891 | 0.1012 | 0.7698 | 0.8525 | 0.8090 | 0.9701 | 2 | | 0.0699 | 0.0976 | 0.7933 | 0.8507 | 0.8210 | 0.9713 | 3 | | 0.0582 | 0.0980 | 0.7952 | 0.8552 | 0.8241 | 0.9716 | 4 | ### Framework versions - Transformers 4.39.3 - TensorFlow 2.15.0 - Datasets 2.18.0 - Tokenizers 0.15.2