SimoneAstarita commited on
Commit
f789c03
1 Parent(s): 5dd0cf9

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,787 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Snowflake/snowflake-arctic-embed-xs
3
+ language:
4
+ - en
5
+ library_name: sentence-transformers
6
+ license: apache-2.0
7
+ pipeline_tag: sentence-similarity
8
+ tags:
9
+ - sentence-transformers
10
+ - sentence-similarity
11
+ - feature-extraction
12
+ - generated_from_trainer
13
+ - dataset_size:416298
14
+ - loss:MultipleNegativesRankingLoss
15
+ widget:
16
+ - source_sentence: The radial profiles using frank for the seven targets can be seen
17
+ in Figure 6.
18
+ sentences:
19
+ - At longer radio wavelengths, we selected the newest observations of the appropriate
20
+ resolution from the VLA archive.
21
+ - The radial profiles using frank for the seven targets can be seen in Figure 6.
22
+ - For further information on observation and data calibration, refer to Hunt et al.
23
+ (2021).
24
+ - source_sentence: They are extragalactic scaled up versions of galactic Ultra Compact
25
+ (UC) H ii regions, which are typically excited by a single massive star and are
26
+ ≲less-than-or-similar-to\lesssim 0.1 pc in size (Wood & Churchwell, 1989).
27
+ sentences:
28
+ - They are extragalactic scaled up versions of galactic Ultra Compact (UC) H ii
29
+ regions, which are typically excited by a single massive star and are ≲less-than-or-similar-to\lesssim
30
+ 0.1 pc in size (Wood & Churchwell, 1989).
31
+ - The LMT is a project operated by the Instituto Nacional de Astrófisica, Óptica,
32
+ y Electrónica (Mexico) and the University of Massachusetts at Amherst (USA).
33
+ - We measure the detection confidence in the resolved image as the ratio between
34
+ the local mean posterior and the local posterior standard deviation of the estimated
35
+ circular polarization, evaluated based on 1000 images drawn from the posterior
36
+ distribution.
37
+ - source_sentence: The flux density calibrator was 3C286, and the complex gain calibrator
38
+ was J0836-2016.
39
+ sentences:
40
+ - The flux density calibrator was 3C286, and the complex gain calibrator was J0836-2016.
41
+ - While rcsubscript𝑟cr_{\rm c} has a clear dependence on Dmaxsubscript𝐷maxD_{\rm
42
+ max}, xMMSNsubscript𝑥MMSNx_{\rm MMSN} and tagesubscript𝑡aget_{\rm age}, ΣcsubscriptΣc\Sigma_{\rm
43
+ c} only has weak dependence on Dmaxsubscript𝐷maxD_{\rm max}, and so is mostly
44
+ sensitive to the scaling of the total initial planetesimal mass, xMMSNsubscript𝑥MMSNx_{\rm
45
+ MMSN} and tagesubscript𝑡aget_{\rm age}.
46
+ - 20 is valid only at r=rc𝑟subscript𝑟cr=r_{\rm c}, it has been shown that the surface
47
+ density of dust at r>rc𝑟subscript𝑟cr>r_{\rm c} is expected to be flat for a primordial
48
+ surface density exponent (−α𝛼-\alpha) of -3/2, or more generally proportional
49
+ to r−0.6​α+0.9superscript𝑟0.6𝛼0.9r^{-0.6\alpha+0.9} (Schüppler et al., 2016; Marino
50
+ et al., 2017b; Geiler & Krivov, 2017).
51
+ - source_sentence: We would like to thank A. Deller and W. Brisken for EHT-specific
52
+ support with the use of DiFX.
53
+ sentences:
54
+ - Ice has one of the weakest strengths, and thus if we had assumed stronger solids
55
+ the derived values of Dmaxsubscript𝐷D_{\max} and xMMSNsubscript𝑥MMSNx_{\rm MMSN}
56
+ would be lower.
57
+ - We would like to thank A. Deller and W. Brisken for EHT-specific support with
58
+ the use of DiFX.
59
+ - The wsmoothsubscript𝑤smoothw_{\rm smooth} chosen parameter ranged from 10−2superscript10210^{-2}
60
+ to 10−4superscript10410^{-4} depending on the disc.
61
+ - source_sentence: New higher resolution images and our parametric modelling confirmed
62
+ this finding.
63
+ sentences:
64
+ - New higher resolution images and our parametric modelling confirmed this finding.
65
+ - With the 3-bit correlator configuration, we obtained a total bandwidth of ∼similar-to\sim8 GHz
66
+ across Ka-band.
67
+ - Pan & Schlichting, 2012) and thus could slightly affect the surface density slope.
68
+ ---
69
+
70
+ # internstall-ice-crystal-xs
71
+
72
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-xs](https://huggingface.co/Snowflake/snowflake-arctic-embed-xs). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
73
+
74
+ ## Model Details
75
+
76
+ ### Model Description
77
+ - **Model Type:** Sentence Transformer
78
+ - **Base model:** [Snowflake/snowflake-arctic-embed-xs](https://huggingface.co/Snowflake/snowflake-arctic-embed-xs) <!-- at revision 742da4f66e1823b5b4dbe6c320a1375a1fd85f9e -->
79
+ - **Maximum Sequence Length:** 512 tokens
80
+ - **Output Dimensionality:** 384 tokens
81
+ - **Similarity Function:** Cosine Similarity
82
+ <!-- - **Training Dataset:** Unknown -->
83
+ - **Language:** en
84
+ - **License:** apache-2.0
85
+
86
+ ### Model Sources
87
+
88
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
89
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
90
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
91
+
92
+ ### Full Model Architecture
93
+
94
+ ```
95
+ SentenceTransformer(
96
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
97
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
98
+ (2): Normalize()
99
+ )
100
+ ```
101
+
102
+ ## Usage
103
+
104
+ ### Direct Usage (Sentence Transformers)
105
+
106
+ First install the Sentence Transformers library:
107
+
108
+ ```bash
109
+ pip install -U sentence-transformers
110
+ ```
111
+
112
+ Then you can load this model and run inference.
113
+ ```python
114
+ from sentence_transformers import SentenceTransformer
115
+
116
+ # Download from the 🤗 Hub
117
+ model = SentenceTransformer("SimoneAstarita/interstellar-ice-crystal-xs")
118
+ # Run inference
119
+ sentences = [
120
+ 'New higher resolution images and our parametric modelling confirmed this finding.',
121
+ 'New higher resolution images and our parametric modelling confirmed this finding.',
122
+ 'Pan & Schlichting, 2012) and thus could slightly affect the surface density slope.',
123
+ ]
124
+ embeddings = model.encode(sentences)
125
+ print(embeddings.shape)
126
+ # [3, 384]
127
+
128
+ # Get the similarity scores for the embeddings
129
+ similarities = model.similarity(embeddings, embeddings)
130
+ print(similarities.shape)
131
+ # [3, 3]
132
+ ```
133
+
134
+ <!--
135
+ ### Direct Usage (Transformers)
136
+
137
+ <details><summary>Click to see the direct usage in Transformers</summary>
138
+
139
+ </details>
140
+ -->
141
+
142
+ <!--
143
+ ### Downstream Usage (Sentence Transformers)
144
+
145
+ You can finetune this model on your own dataset.
146
+
147
+ <details><summary>Click to expand</summary>
148
+
149
+ </details>
150
+ -->
151
+
152
+ <!--
153
+ ### Out-of-Scope Use
154
+
155
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
156
+ -->
157
+
158
+ <!--
159
+ ## Bias, Risks and Limitations
160
+
161
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
162
+ -->
163
+
164
+ <!--
165
+ ### Recommendations
166
+
167
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
168
+ -->
169
+
170
+ ## Training Details
171
+
172
+ ### Training Dataset
173
+
174
+ #### Unnamed Dataset
175
+
176
+
177
+ * Size: 416,298 training samples
178
+ * Columns: <code>anchor</code> and <code>positive</code>
179
+ * Approximate statistics based on the first 1000 samples:
180
+ | | anchor | positive |
181
+ |:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
182
+ | type | string | string |
183
+ | details | <ul><li>min: 4 tokens</li><li>mean: 42.81 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 42.81 tokens</li><li>max: 512 tokens</li></ul> |
184
+ * Samples:
185
+ | anchor | positive |
186
+ |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
187
+ | <code>Resolving the inner parsec of the blazar J1924–2914 with the Event Horizon Telescope</code> | <code>Resolving the inner parsec of the blazar J1924–2914 with the Event Horizon Telescope</code> |
188
+ | <code>The radio source J1924–2914 (PKS 1921–293, OV–236) is a radio-loud quasar at a redshift z=0.353𝑧0.353z=0.353 (Wills & Wills, 1981; Jones et al., 2009).</code> | <code>The radio source J1924–2914 (PKS 1921–293, OV–236) is a radio-loud quasar at a redshift z=0.353𝑧0.353z=0.353 (Wills & Wills, 1981; Jones et al., 2009).</code> |
189
+ | <code>The source exhibits strong optical variability and is highly polarized (Wills & Wills, 1981; Pica et al., 1988; Worrall & Wilkes, 1990).</code> | <code>The source exhibits strong optical variability and is highly polarized (Wills & Wills, 1981; Pica et al., 1988; Worrall & Wilkes, 1990).</code> |
190
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
191
+ ```json
192
+ {
193
+ "scale": 20.0,
194
+ "similarity_fct": "cos_sim"
195
+ }
196
+ ```
197
+
198
+ ### Training Hyperparameters
199
+ #### Non-Default Hyperparameters
200
+
201
+ - `per_device_train_batch_size`: 32
202
+ - `per_device_eval_batch_size`: 32
203
+ - `warmup_ratio`: 0.1
204
+ - `fp16`: True
205
+ - `batch_sampler`: no_duplicates
206
+
207
+ #### All Hyperparameters
208
+ <details><summary>Click to expand</summary>
209
+
210
+ - `overwrite_output_dir`: False
211
+ - `do_predict`: False
212
+ - `eval_strategy`: no
213
+ - `prediction_loss_only`: True
214
+ - `per_device_train_batch_size`: 32
215
+ - `per_device_eval_batch_size`: 32
216
+ - `per_gpu_train_batch_size`: None
217
+ - `per_gpu_eval_batch_size`: None
218
+ - `gradient_accumulation_steps`: 1
219
+ - `eval_accumulation_steps`: None
220
+ - `torch_empty_cache_steps`: None
221
+ - `learning_rate`: 5e-05
222
+ - `weight_decay`: 0.0
223
+ - `adam_beta1`: 0.9
224
+ - `adam_beta2`: 0.999
225
+ - `adam_epsilon`: 1e-08
226
+ - `max_grad_norm`: 1.0
227
+ - `num_train_epochs`: 3
228
+ - `max_steps`: -1
229
+ - `lr_scheduler_type`: linear
230
+ - `lr_scheduler_kwargs`: {}
231
+ - `warmup_ratio`: 0.1
232
+ - `warmup_steps`: 0
233
+ - `log_level`: passive
234
+ - `log_level_replica`: warning
235
+ - `log_on_each_node`: True
236
+ - `logging_nan_inf_filter`: True
237
+ - `save_safetensors`: True
238
+ - `save_on_each_node`: False
239
+ - `save_only_model`: False
240
+ - `restore_callback_states_from_checkpoint`: False
241
+ - `no_cuda`: False
242
+ - `use_cpu`: False
243
+ - `use_mps_device`: False
244
+ - `seed`: 42
245
+ - `data_seed`: None
246
+ - `jit_mode_eval`: False
247
+ - `use_ipex`: False
248
+ - `bf16`: False
249
+ - `fp16`: True
250
+ - `fp16_opt_level`: O1
251
+ - `half_precision_backend`: auto
252
+ - `bf16_full_eval`: False
253
+ - `fp16_full_eval`: False
254
+ - `tf32`: None
255
+ - `local_rank`: 0
256
+ - `ddp_backend`: None
257
+ - `tpu_num_cores`: None
258
+ - `tpu_metrics_debug`: False
259
+ - `debug`: []
260
+ - `dataloader_drop_last`: False
261
+ - `dataloader_num_workers`: 0
262
+ - `dataloader_prefetch_factor`: None
263
+ - `past_index`: -1
264
+ - `disable_tqdm`: False
265
+ - `remove_unused_columns`: True
266
+ - `label_names`: None
267
+ - `load_best_model_at_end`: False
268
+ - `ignore_data_skip`: False
269
+ - `fsdp`: []
270
+ - `fsdp_min_num_params`: 0
271
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
272
+ - `fsdp_transformer_layer_cls_to_wrap`: None
273
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
274
+ - `deepspeed`: None
275
+ - `label_smoothing_factor`: 0.0
276
+ - `optim`: adamw_torch
277
+ - `optim_args`: None
278
+ - `adafactor`: False
279
+ - `group_by_length`: False
280
+ - `length_column_name`: length
281
+ - `ddp_find_unused_parameters`: None
282
+ - `ddp_bucket_cap_mb`: None
283
+ - `ddp_broadcast_buffers`: False
284
+ - `dataloader_pin_memory`: True
285
+ - `dataloader_persistent_workers`: False
286
+ - `skip_memory_metrics`: True
287
+ - `use_legacy_prediction_loop`: False
288
+ - `push_to_hub`: False
289
+ - `resume_from_checkpoint`: None
290
+ - `hub_model_id`: None
291
+ - `hub_strategy`: every_save
292
+ - `hub_private_repo`: False
293
+ - `hub_always_push`: False
294
+ - `gradient_checkpointing`: False
295
+ - `gradient_checkpointing_kwargs`: None
296
+ - `include_inputs_for_metrics`: False
297
+ - `eval_do_concat_batches`: True
298
+ - `fp16_backend`: auto
299
+ - `push_to_hub_model_id`: None
300
+ - `push_to_hub_organization`: None
301
+ - `mp_parameters`:
302
+ - `auto_find_batch_size`: False
303
+ - `full_determinism`: False
304
+ - `torchdynamo`: None
305
+ - `ray_scope`: last
306
+ - `ddp_timeout`: 1800
307
+ - `torch_compile`: False
308
+ - `torch_compile_backend`: None
309
+ - `torch_compile_mode`: None
310
+ - `dispatch_batches`: None
311
+ - `split_batches`: None
312
+ - `include_tokens_per_second`: False
313
+ - `include_num_input_tokens_seen`: False
314
+ - `neftune_noise_alpha`: None
315
+ - `optim_target_modules`: None
316
+ - `batch_eval_metrics`: False
317
+ - `eval_on_start`: False
318
+ - `eval_use_gather_object`: False
319
+ - `batch_sampler`: no_duplicates
320
+ - `multi_dataset_batch_sampler`: proportional
321
+
322
+ </details>
323
+
324
+ ### Training Logs
325
+ <details><summary>Click to expand</summary>
326
+
327
+ | Epoch | Step | Training Loss |
328
+ |:------:|:-----:|:-------------:|
329
+ | 0.0077 | 100 | 0.4784 |
330
+ | 0.0154 | 200 | 0.2415 |
331
+ | 0.0231 | 300 | 0.0424 |
332
+ | 0.0307 | 400 | 0.021 |
333
+ | 0.0384 | 500 | 0.0149 |
334
+ | 0.0461 | 600 | 0.0081 |
335
+ | 0.0538 | 700 | 0.0084 |
336
+ | 0.0615 | 800 | 0.0067 |
337
+ | 0.0692 | 900 | 0.0034 |
338
+ | 0.0769 | 1000 | 0.0025 |
339
+ | 0.0846 | 1100 | 0.0016 |
340
+ | 0.0077 | 100 | 0.0025 |
341
+ | 0.0154 | 200 | 0.0032 |
342
+ | 0.0231 | 300 | 0.0026 |
343
+ | 0.0307 | 400 | 0.0026 |
344
+ | 0.0384 | 500 | 0.0041 |
345
+ | 0.0461 | 600 | 0.0014 |
346
+ | 0.0538 | 700 | 0.0019 |
347
+ | 0.0615 | 800 | 0.0015 |
348
+ | 0.0692 | 900 | 0.001 |
349
+ | 0.0769 | 1000 | 0.0005 |
350
+ | 0.0846 | 1100 | 0.0004 |
351
+ | 0.0922 | 1200 | 0.0013 |
352
+ | 0.0999 | 1300 | 0.0013 |
353
+ | 0.1076 | 1400 | 0.0027 |
354
+ | 0.1153 | 1500 | 0.0018 |
355
+ | 0.1230 | 1600 | 0.001 |
356
+ | 0.1307 | 1700 | 0.0014 |
357
+ | 0.1384 | 1800 | 0.0012 |
358
+ | 0.1460 | 1900 | 0.0041 |
359
+ | 0.1537 | 2000 | 0.0009 |
360
+ | 0.1614 | 2100 | 0.0005 |
361
+ | 0.1691 | 2200 | 0.0011 |
362
+ | 0.1768 | 2300 | 0.001 |
363
+ | 0.1845 | 2400 | 0.0004 |
364
+ | 0.1922 | 2500 | 0.0011 |
365
+ | 0.1998 | 2600 | 0.0044 |
366
+ | 0.2075 | 2700 | 0.0004 |
367
+ | 0.2152 | 2800 | 0.0022 |
368
+ | 0.2229 | 2900 | 0.0007 |
369
+ | 0.2306 | 3000 | 0.0006 |
370
+ | 0.2383 | 3100 | 0.0002 |
371
+ | 0.2460 | 3200 | 0.0006 |
372
+ | 0.2537 | 3300 | 0.0004 |
373
+ | 0.2613 | 3400 | 0.0013 |
374
+ | 0.2690 | 3500 | 0.0006 |
375
+ | 0.2767 | 3600 | 0.0005 |
376
+ | 0.2844 | 3700 | 0.0018 |
377
+ | 0.2921 | 3800 | 0.0023 |
378
+ | 0.2998 | 3900 | 0.0011 |
379
+ | 0.3075 | 4000 | 0.0007 |
380
+ | 0.3151 | 4100 | 0.0008 |
381
+ | 0.3228 | 4200 | 0.0013 |
382
+ | 0.3305 | 4300 | 0.0012 |
383
+ | 0.3382 | 4400 | 0.001 |
384
+ | 0.3459 | 4500 | 0.0016 |
385
+ | 0.3536 | 4600 | 0.0025 |
386
+ | 0.3613 | 4700 | 0.0015 |
387
+ | 0.3689 | 4800 | 0.0018 |
388
+ | 0.3766 | 4900 | 0.0019 |
389
+ | 0.3843 | 5000 | 0.0021 |
390
+ | 0.3920 | 5100 | 0.0018 |
391
+ | 0.3997 | 5200 | 0.0004 |
392
+ | 0.4074 | 5300 | 0.0006 |
393
+ | 0.4151 | 5400 | 0.0007 |
394
+ | 0.4228 | 5500 | 0.0009 |
395
+ | 0.4304 | 5600 | 0.0004 |
396
+ | 0.4381 | 5700 | 0.0003 |
397
+ | 0.4458 | 5800 | 0.0007 |
398
+ | 0.4535 | 5900 | 0.0013 |
399
+ | 0.4612 | 6000 | 0.0007 |
400
+ | 0.4689 | 6100 | 0.0005 |
401
+ | 0.4766 | 6200 | 0.001 |
402
+ | 0.4842 | 6300 | 0.0027 |
403
+ | 0.4919 | 6400 | 0.0018 |
404
+ | 0.4996 | 6500 | 0.0006 |
405
+ | 0.5073 | 6600 | 0.0008 |
406
+ | 0.5150 | 6700 | 0.0006 |
407
+ | 0.5227 | 6800 | 0.0007 |
408
+ | 0.5304 | 6900 | 0.001 |
409
+ | 0.5380 | 7000 | 0.0007 |
410
+ | 0.5457 | 7100 | 0.0005 |
411
+ | 0.5534 | 7200 | 0.0012 |
412
+ | 0.5611 | 7300 | 0.0012 |
413
+ | 0.5688 | 7400 | 0.0011 |
414
+ | 0.5765 | 7500 | 0.0005 |
415
+ | 0.5842 | 7600 | 0.0013 |
416
+ | 0.5919 | 7700 | 0.0012 |
417
+ | 0.5995 | 7800 | 0.0007 |
418
+ | 0.6072 | 7900 | 0.0012 |
419
+ | 0.6149 | 8000 | 0.0012 |
420
+ | 0.6226 | 8100 | 0.0003 |
421
+ | 0.6303 | 8200 | 0.0003 |
422
+ | 0.6380 | 8300 | 0.0003 |
423
+ | 0.6457 | 8400 | 0.002 |
424
+ | 0.6533 | 8500 | 0.0003 |
425
+ | 0.6610 | 8600 | 0.0016 |
426
+ | 0.6687 | 8700 | 0.0003 |
427
+ | 0.6764 | 8800 | 0.0002 |
428
+ | 0.6841 | 8900 | 0.0006 |
429
+ | 0.6918 | 9000 | 0.0005 |
430
+ | 0.6995 | 9100 | 0.0017 |
431
+ | 0.7071 | 9200 | 0.0037 |
432
+ | 0.7148 | 9300 | 0.0005 |
433
+ | 0.7225 | 9400 | 0.0006 |
434
+ | 0.7302 | 9500 | 0.0004 |
435
+ | 0.7379 | 9600 | 0.0002 |
436
+ | 0.7456 | 9700 | 0.0008 |
437
+ | 0.7533 | 9800 | 0.0005 |
438
+ | 0.7610 | 9900 | 0.0006 |
439
+ | 0.7686 | 10000 | 0.0004 |
440
+ | 0.7763 | 10100 | 0.0004 |
441
+ | 0.7840 | 10200 | 0.0006 |
442
+ | 0.7917 | 10300 | 0.0019 |
443
+ | 0.7994 | 10400 | 0.0007 |
444
+ | 0.8071 | 10500 | 0.0003 |
445
+ | 0.8148 | 10600 | 0.0003 |
446
+ | 0.8224 | 10700 | 0.0005 |
447
+ | 0.8301 | 10800 | 0.0009 |
448
+ | 0.8378 | 10900 | 0.0006 |
449
+ | 0.8455 | 11000 | 0.002 |
450
+ | 0.8532 | 11100 | 0.0018 |
451
+ | 0.8609 | 11200 | 0.0009 |
452
+ | 0.8686 | 11300 | 0.0004 |
453
+ | 0.8762 | 11400 | 0.0005 |
454
+ | 0.8839 | 11500 | 0.0008 |
455
+ | 0.8916 | 11600 | 0.0003 |
456
+ | 0.8993 | 11700 | 0.0002 |
457
+ | 0.9070 | 11800 | 0.0004 |
458
+ | 0.9147 | 11900 | 0.0007 |
459
+ | 0.9224 | 12000 | 0.0009 |
460
+ | 0.9301 | 12100 | 0.0007 |
461
+ | 0.9377 | 12200 | 0.0007 |
462
+ | 0.9454 | 12300 | 0.0009 |
463
+ | 0.9531 | 12400 | 0.0007 |
464
+ | 0.9608 | 12500 | 0.0009 |
465
+ | 0.9685 | 12600 | 0.0004 |
466
+ | 0.9762 | 12700 | 0.0002 |
467
+ | 0.9839 | 12800 | 0.0003 |
468
+ | 0.9915 | 12900 | 0.0002 |
469
+ | 0.9992 | 13000 | 0.0002 |
470
+ | 1.0069 | 13100 | 0.0006 |
471
+ | 1.0146 | 13200 | 0.0007 |
472
+ | 1.0223 | 13300 | 0.0007 |
473
+ | 1.0300 | 13400 | 0.0005 |
474
+ | 1.0377 | 13500 | 0.0008 |
475
+ | 1.0453 | 13600 | 0.0016 |
476
+ | 1.0530 | 13700 | 0.0007 |
477
+ | 1.0607 | 13800 | 0.0013 |
478
+ | 1.0684 | 13900 | 0.0005 |
479
+ | 1.0761 | 14000 | 0.0002 |
480
+ | 1.0838 | 14100 | 0.0001 |
481
+ | 1.0915 | 14200 | 0.0003 |
482
+ | 1.0992 | 14300 | 0.0003 |
483
+ | 1.1068 | 14400 | 0.0006 |
484
+ | 1.1145 | 14500 | 0.0002 |
485
+ | 1.1222 | 14600 | 0.0003 |
486
+ | 1.1299 | 14700 | 0.0002 |
487
+ | 1.1376 | 14800 | 0.0006 |
488
+ | 1.1453 | 14900 | 0.0011 |
489
+ | 1.1530 | 15000 | 0.0004 |
490
+ | 1.1606 | 15100 | 0.0001 |
491
+ | 1.1683 | 15200 | 0.0003 |
492
+ | 1.1760 | 15300 | 0.0001 |
493
+ | 1.1837 | 15400 | 0.0002 |
494
+ | 1.1914 | 15500 | 0.0001 |
495
+ | 1.1991 | 15600 | 0.003 |
496
+ | 1.2068 | 15700 | 0.0001 |
497
+ | 1.2145 | 15800 | 0.0002 |
498
+ | 1.2221 | 15900 | 0.0005 |
499
+ | 1.2298 | 16000 | 0.0004 |
500
+ | 1.2375 | 16100 | 0.0001 |
501
+ | 1.2452 | 16200 | 0.0003 |
502
+ | 1.2529 | 16300 | 0.0003 |
503
+ | 1.2606 | 16400 | 0.0008 |
504
+ | 1.2683 | 16500 | 0.0004 |
505
+ | 1.2759 | 16600 | 0.0001 |
506
+ | 1.2836 | 16700 | 0.0002 |
507
+ | 1.2913 | 16800 | 0.0011 |
508
+ | 1.2990 | 16900 | 0.0001 |
509
+ | 1.3067 | 17000 | 0.0001 |
510
+ | 1.3144 | 17100 | 0.0002 |
511
+ | 1.3221 | 17200 | 0.0005 |
512
+ | 1.3297 | 17300 | 0.0012 |
513
+ | 1.3374 | 17400 | 0.0003 |
514
+ | 1.3451 | 17500 | 0.0002 |
515
+ | 1.3528 | 17600 | 0.0009 |
516
+ | 1.3605 | 17700 | 0.0003 |
517
+ | 1.3682 | 17800 | 0.0005 |
518
+ | 1.3759 | 17900 | 0.0008 |
519
+ | 1.3836 | 18000 | 0.0005 |
520
+ | 1.3912 | 18100 | 0.0007 |
521
+ | 1.3989 | 18200 | 0.0002 |
522
+ | 1.4066 | 18300 | 0.0003 |
523
+ | 1.4143 | 18400 | 0.0002 |
524
+ | 1.4220 | 18500 | 0.0001 |
525
+ | 1.4297 | 18600 | 0.0001 |
526
+ | 1.4374 | 18700 | 0.0001 |
527
+ | 1.4450 | 18800 | 0.0005 |
528
+ | 1.4527 | 18900 | 0.0002 |
529
+ | 1.4604 | 19000 | 0.0001 |
530
+ | 1.4681 | 19100 | 0.0002 |
531
+ | 1.4758 | 19200 | 0.0006 |
532
+ | 1.4835 | 19300 | 0.0015 |
533
+ | 1.4912 | 19400 | 0.0012 |
534
+ | 1.4988 | 19500 | 0.0003 |
535
+ | 1.5065 | 19600 | 0.0005 |
536
+ | 1.5142 | 19700 | 0.0001 |
537
+ | 1.5219 | 19800 | 0.0002 |
538
+ | 1.5296 | 19900 | 0.0009 |
539
+ | 1.5373 | 20000 | 0.0002 |
540
+ | 1.5450 | 20100 | 0.0001 |
541
+ | 1.5527 | 20200 | 0.0003 |
542
+ | 1.5603 | 20300 | 0.0006 |
543
+ | 1.5680 | 20400 | 0.0002 |
544
+ | 1.5757 | 20500 | 0.0004 |
545
+ | 1.5834 | 20600 | 0.0006 |
546
+ | 1.5911 | 20700 | 0.0004 |
547
+ | 1.5988 | 20800 | 0.0002 |
548
+ | 1.6065 | 20900 | 0.0006 |
549
+ | 1.6141 | 21000 | 0.0006 |
550
+ | 1.6218 | 21100 | 0.0001 |
551
+ | 1.6295 | 21200 | 0.0001 |
552
+ | 1.6372 | 21300 | 0.0001 |
553
+ | 1.6449 | 21400 | 0.0008 |
554
+ | 1.6526 | 21500 | 0.0001 |
555
+ | 1.6603 | 21600 | 0.0005 |
556
+ | 1.6679 | 21700 | 0.0001 |
557
+ | 1.6756 | 21800 | 0.0001 |
558
+ | 1.6833 | 21900 | 0.0001 |
559
+ | 1.6910 | 22000 | 0.0001 |
560
+ | 1.6987 | 22100 | 0.0008 |
561
+ | 1.7064 | 22200 | 0.0014 |
562
+ | 1.7141 | 22300 | 0.0002 |
563
+ | 1.7218 | 22400 | 0.0007 |
564
+ | 1.7294 | 22500 | 0.0001 |
565
+ | 1.7371 | 22600 | 0.0001 |
566
+ | 1.7448 | 22700 | 0.0001 |
567
+ | 1.7525 | 22800 | 0.0002 |
568
+ | 1.7602 | 22900 | 0.0002 |
569
+ | 1.7679 | 23000 | 0.0001 |
570
+ | 1.7756 | 23100 | 0.0001 |
571
+ | 1.7832 | 23200 | 0.0005 |
572
+ | 1.7909 | 23300 | 0.0004 |
573
+ | 1.7986 | 23400 | 0.0002 |
574
+ | 1.8063 | 23500 | 0.0001 |
575
+ | 1.8140 | 23600 | 0.0001 |
576
+ | 1.8217 | 23700 | 0.0001 |
577
+ | 1.8294 | 23800 | 0.0004 |
578
+ | 1.8370 | 23900 | 0.0002 |
579
+ | 1.8447 | 24000 | 0.0002 |
580
+ | 1.8524 | 24100 | 0.0013 |
581
+ | 1.8601 | 24200 | 0.0004 |
582
+ | 1.8678 | 24300 | 0.0002 |
583
+ | 1.8755 | 24400 | 0.0002 |
584
+ | 1.8832 | 24500 | 0.0001 |
585
+ | 1.8909 | 24600 | 0.0001 |
586
+ | 1.8985 | 24700 | 0.0001 |
587
+ | 1.9062 | 24800 | 0.0002 |
588
+ | 1.9139 | 24900 | 0.0005 |
589
+ | 1.9216 | 25000 | 0.0001 |
590
+ | 1.9293 | 25100 | 0.0001 |
591
+ | 1.9370 | 25200 | 0.0002 |
592
+ | 1.9447 | 25300 | 0.0002 |
593
+ | 1.9523 | 25400 | 0.0006 |
594
+ | 1.9600 | 25500 | 0.0004 |
595
+ | 1.9677 | 25600 | 0.0002 |
596
+ | 1.9754 | 25700 | 0.0001 |
597
+ | 1.9831 | 25800 | 0.0001 |
598
+ | 1.9908 | 25900 | 0.0001 |
599
+ | 1.9985 | 26000 | 0.0001 |
600
+ | 2.0061 | 26100 | 0.0002 |
601
+ | 2.0138 | 26200 | 0.0007 |
602
+ | 2.0215 | 26300 | 0.0003 |
603
+ | 2.0292 | 26400 | 0.0001 |
604
+ | 2.0369 | 26500 | 0.0011 |
605
+ | 2.0446 | 26600 | 0.0002 |
606
+ | 2.0523 | 26700 | 0.0001 |
607
+ | 2.0600 | 26800 | 0.0002 |
608
+ | 2.0676 | 26900 | 0.0004 |
609
+ | 2.0753 | 27000 | 0.0001 |
610
+ | 2.0830 | 27100 | 0.0001 |
611
+ | 2.0907 | 27200 | 0.0001 |
612
+ | 2.0984 | 27300 | 0.0002 |
613
+ | 2.1061 | 27400 | 0.0001 |
614
+ | 2.1138 | 27500 | 0.0001 |
615
+ | 2.1214 | 27600 | 0.0001 |
616
+ | 2.1291 | 27700 | 0.0001 |
617
+ | 2.1368 | 27800 | 0.0003 |
618
+ | 2.1445 | 27900 | 0.0012 |
619
+ | 2.1522 | 28000 | 0.0001 |
620
+ | 2.1599 | 28100 | 0.0001 |
621
+ | 2.1676 | 28200 | 0.0001 |
622
+ | 2.1752 | 28300 | 0.0001 |
623
+ | 2.1829 | 28400 | 0.0001 |
624
+ | 2.1906 | 28500 | 0.0001 |
625
+ | 2.1983 | 28600 | 0.0014 |
626
+ | 2.2060 | 28700 | 0.0001 |
627
+ | 2.2137 | 28800 | 0.0001 |
628
+ | 2.2214 | 28900 | 0.0002 |
629
+ | 2.2291 | 29000 | 0.0 |
630
+ | 2.2367 | 29100 | 0.0001 |
631
+ | 2.2444 | 29200 | 0.0001 |
632
+ | 2.2521 | 29300 | 0.0001 |
633
+ | 2.2598 | 29400 | 0.0001 |
634
+ | 2.2675 | 29500 | 0.0001 |
635
+ | 2.2752 | 29600 | 0.0001 |
636
+ | 2.2829 | 29700 | 0.0001 |
637
+ | 2.2905 | 29800 | 0.0001 |
638
+ | 2.2982 | 29900 | 0.0001 |
639
+ | 2.3059 | 30000 | 0.0001 |
640
+ | 2.3136 | 30100 | 0.0001 |
641
+ | 2.3213 | 30200 | 0.0002 |
642
+ | 2.3290 | 30300 | 0.0011 |
643
+ | 2.3367 | 30400 | 0.0001 |
644
+ | 2.3444 | 30500 | 0.0001 |
645
+ | 2.3520 | 30600 | 0.0005 |
646
+ | 2.3597 | 30700 | 0.0001 |
647
+ | 2.3674 | 30800 | 0.0001 |
648
+ | 2.3751 | 30900 | 0.0006 |
649
+ | 2.3828 | 31000 | 0.0001 |
650
+ | 2.3905 | 31100 | 0.0001 |
651
+ | 2.3982 | 31200 | 0.0002 |
652
+ | 2.4058 | 31300 | 0.0001 |
653
+ | 2.4135 | 31400 | 0.0001 |
654
+ | 2.4212 | 31500 | 0.0001 |
655
+ | 2.4289 | 31600 | 0.0001 |
656
+ | 2.4366 | 31700 | 0.0001 |
657
+ | 2.4443 | 31800 | 0.0004 |
658
+ | 2.4520 | 31900 | 0.0001 |
659
+ | 2.4596 | 32000 | 0.0001 |
660
+ | 2.4673 | 32100 | 0.0002 |
661
+ | 2.4750 | 32200 | 0.0002 |
662
+ | 2.4827 | 32300 | 0.0004 |
663
+ | 2.4904 | 32400 | 0.0008 |
664
+ | 2.4981 | 32500 | 0.0001 |
665
+ | 2.5058 | 32600 | 0.0001 |
666
+ | 2.5135 | 32700 | 0.0001 |
667
+ | 2.5211 | 32800 | 0.0001 |
668
+ | 2.5288 | 32900 | 0.0006 |
669
+ | 2.5365 | 33000 | 0.0001 |
670
+ | 2.5442 | 33100 | 0.0001 |
671
+ | 2.5519 | 33200 | 0.0002 |
672
+ | 2.5596 | 33300 | 0.0001 |
673
+ | 2.5673 | 33400 | 0.0002 |
674
+ | 2.5749 | 33500 | 0.0001 |
675
+ | 2.5826 | 33600 | 0.0001 |
676
+ | 2.5903 | 33700 | 0.0001 |
677
+ | 2.5980 | 33800 | 0.0001 |
678
+ | 2.6057 | 33900 | 0.0001 |
679
+ | 2.6134 | 34000 | 0.0007 |
680
+ | 2.6211 | 34100 | 0.0 |
681
+ | 2.6287 | 34200 | 0.0001 |
682
+ | 2.6364 | 34300 | 0.0001 |
683
+ | 2.6441 | 34400 | 0.0006 |
684
+ | 2.6518 | 34500 | 0.0001 |
685
+ | 2.6595 | 34600 | 0.0001 |
686
+ | 2.6672 | 34700 | 0.0001 |
687
+ | 2.6749 | 34800 | 0.0 |
688
+ | 2.6826 | 34900 | 0.0001 |
689
+ | 2.6902 | 35000 | 0.0001 |
690
+ | 2.6979 | 35100 | 0.0005 |
691
+ | 2.7056 | 35200 | 0.0006 |
692
+ | 2.7133 | 35300 | 0.0001 |
693
+ | 2.7210 | 35400 | 0.0005 |
694
+ | 2.7287 | 35500 | 0.0001 |
695
+ | 2.7364 | 35600 | 0.0001 |
696
+ | 2.7440 | 35700 | 0.0001 |
697
+ | 2.7517 | 35800 | 0.0001 |
698
+ | 2.7594 | 35900 | 0.0001 |
699
+ | 2.7671 | 36000 | 0.0001 |
700
+ | 2.7748 | 36100 | 0.0001 |
701
+ | 2.7825 | 36200 | 0.0005 |
702
+ | 2.7902 | 36300 | 0.0001 |
703
+ | 2.7978 | 36400 | 0.0001 |
704
+ | 2.8055 | 36500 | 0.0001 |
705
+ | 2.8132 | 36600 | 0.0001 |
706
+ | 2.8209 | 36700 | 0.0001 |
707
+ | 2.8286 | 36800 | 0.0001 |
708
+ | 2.8363 | 36900 | 0.0001 |
709
+ | 2.8440 | 37000 | 0.0001 |
710
+ | 2.8517 | 37100 | 0.0013 |
711
+ | 2.8593 | 37200 | 0.0001 |
712
+ | 2.8670 | 37300 | 0.0001 |
713
+ | 2.8747 | 37400 | 0.0001 |
714
+ | 2.8824 | 37500 | 0.0001 |
715
+ | 2.8901 | 37600 | 0.0001 |
716
+ | 2.8978 | 37700 | 0.0001 |
717
+ | 2.9055 | 37800 | 0.0001 |
718
+ | 2.9131 | 37900 | 0.0002 |
719
+ | 2.9208 | 38000 | 0.0001 |
720
+ | 2.9285 | 38100 | 0.0001 |
721
+ | 2.9362 | 38200 | 0.0001 |
722
+ | 2.9439 | 38300 | 0.0001 |
723
+ | 2.9516 | 38400 | 0.0004 |
724
+ | 2.9593 | 38500 | 0.0001 |
725
+ | 2.9669 | 38600 | 0.0001 |
726
+ | 2.9746 | 38700 | 0.0001 |
727
+ | 2.9823 | 38800 | 0.0001 |
728
+ | 2.9900 | 38900 | 0.0001 |
729
+ | 2.9977 | 39000 | 0.0001 |
730
+
731
+ </details>
732
+
733
+ ### Framework Versions
734
+ - Python: 3.10.12
735
+ - Sentence Transformers: 3.1.0
736
+ - Transformers: 4.44.2
737
+ - PyTorch: 2.4.0+cu121
738
+ - Accelerate: 0.34.2
739
+ - Datasets: 3.0.0
740
+ - Tokenizers: 0.19.1
741
+
742
+ ## Citation
743
+
744
+ ### BibTeX
745
+
746
+ #### Sentence Transformers
747
+ ```bibtex
748
+ @inproceedings{reimers-2019-sentence-bert,
749
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
750
+ author = "Reimers, Nils and Gurevych, Iryna",
751
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
752
+ month = "11",
753
+ year = "2019",
754
+ publisher = "Association for Computational Linguistics",
755
+ url = "https://arxiv.org/abs/1908.10084",
756
+ }
757
+ ```
758
+
759
+ #### MultipleNegativesRankingLoss
760
+ ```bibtex
761
+ @misc{henderson2017efficient,
762
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
763
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
764
+ year={2017},
765
+ eprint={1705.00652},
766
+ archivePrefix={arXiv},
767
+ primaryClass={cs.CL}
768
+ }
769
+ ```
770
+
771
+ <!--
772
+ ## Glossary
773
+
774
+ *Clearly define terms in order to be accessible across audiences.*
775
+ -->
776
+
777
+ <!--
778
+ ## Model Card Authors
779
+
780
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
781
+ -->
782
+
783
+ <!--
784
+ ## Model Card Contact
785
+
786
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
787
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Snowflake/snowflake-arctic-embed-xs",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.0",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {
8
+ "query": "Represent this sentence for searching relevant passages: "
9
+ },
10
+ "default_prompt_name": null,
11
+ "similarity_fn_name": null
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05498bd7198e3b319b687e7445c016ab688016f73772bef0244bd55999f16472
3
+ size 90272656
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 512,
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff