SivaResearch commited on
Commit
f3f8c30
1 Parent(s): 4ead16c

Model Iploaded

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ __pycache__/pipeline.cpython-310.pyc filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,21 @@
1
  ---
2
- license: cc-by-nc-3.0
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: apache-2.0
3
+ base_model: aaronespasa/deepfake-detection-resnetinceptionv1
4
+ library_name: transformers
5
  ---
6
+ # original model repo :
7
+ 📖 this is a cutomized version of the following model [aaronespasa/deepfake-detection-resnetinceptionv1](https://huggingface.co/aaronespasa/deepfake-detection-resnetinceptionv1)
8
+ # how to use
9
+ ```python
10
+ from transformers import pipeline
11
+ pipe = pipeline(model="not-lain/deepfake",trust_remote_code=True)
12
+ pipe.predict("img_path.jpg")
13
+ ```
14
+ ```python
15
+ >> {"confidences":confidences,"face_with_mask": face_with_mask}
16
+ ```
17
+ # dependencies
18
+ to install related dependencies simply use the command
19
+ ```
20
+ !wget https://huggingface.co/not-lain/deepfake/resolve/main/requirements.txt && pip install -r requirements.txt
21
+ ```
__pycache__/pipeline.cpython-310.pyc ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46de4d880f08624a93de2c8ad10f5b4e7194112faf429e0ab1879f4c50d2bfff
3
+ size 2926
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "DEVICE": "cpu",
3
+ "_name_or_path": "not-lain/deepfake",
4
+ "architectures": [
5
+ "DeepFakeModel"
6
+ ],
7
+ "auto_map": {
8
+ "AutoConfig": "deepfakeconfig.DeepFakeConfig",
9
+ "AutoModelForImageClassification": "deepfakemodel.DeepFakeModel"
10
+ },
11
+ "custom_pipelines": {
12
+ "deepfake": {
13
+ "default": {
14
+ "model": {
15
+ "pt": [
16
+ "not-lain/deepfake",
17
+ "main"
18
+ ]
19
+ }
20
+ },
21
+ "impl": "pipeline.DeepFakePipeline",
22
+ "pt": [
23
+ "AutoModelForImageClassification"
24
+ ],
25
+ "tf": [],
26
+ "type": "multimodal"
27
+ }
28
+ },
29
+ "model_type": "ResNet",
30
+ "torch_dtype": "float32",
31
+ "transformers_version": "4.26.1"
32
+ }
deepfakeconfig.py ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+ import torch
3
+ class DeepFakeConfig(PretrainedConfig):
4
+ model_type = "ResNet"
5
+ def __init__(self,**kwargs):
6
+ super().__init__(**kwargs)
7
+ self.DEVICE = 'cuda:0' if torch.cuda.is_available() else 'cpu'
deepfakemodel.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PreTrainedModel
2
+ from facenet_pytorch import MTCNN, InceptionResnetV1
3
+ from .deepfakeconfig import DeepFakeConfig
4
+
5
+ class DeepFakeModel(PreTrainedModel):
6
+ config_class = DeepFakeConfig
7
+ def __init__(self, config):
8
+ super().__init__(config)
9
+ self.model = InceptionResnetV1(
10
+ pretrained="vggface2",
11
+ classify=True,
12
+ num_classes=1,
13
+ device=config.DEVICE
14
+ )
15
+
16
+
17
+ DeepFakeConfig.register_for_auto_class()
18
+ DeepFakeModel.register_for_auto_class("AutoModelForImageClassification")
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1300ca17461156f633c87852ca294a257260ab7b965cff81b448f1c295dacd1
3
+ size 94126980
pipeline.py ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.pipelines import PIPELINE_REGISTRY
2
+ from transformers import Pipeline, AutoModelForImageClassification
3
+ import torch
4
+ from PIL import Image
5
+ import cv2
6
+ from pytorch_grad_cam import GradCAM
7
+ from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
8
+ from pytorch_grad_cam.utils.image import show_cam_on_image
9
+ from facenet_pytorch import MTCNN
10
+ import torch.nn.functional as F
11
+
12
+ class DeepFakePipeline(Pipeline):
13
+ def __init__(self,**kwargs):
14
+ Pipeline.__init__(self,**kwargs)
15
+ def _sanitize_parameters(self, **kwargs):
16
+ return {}, {}, {}
17
+ def preprocess(self, inputs):
18
+ return inputs
19
+ def _forward(self,input):
20
+ return input
21
+ def postprocess(self,confidences,face_with_mask):
22
+ out = {"confidences":confidences,
23
+ "face_with_mask": face_with_mask}
24
+ return out
25
+
26
+ def predict(self,input_image:str):
27
+ DEVICE = 'cuda:0' if torch.cuda.is_available() else 'cpu'
28
+ mtcnn = MTCNN(
29
+ select_largest=False,
30
+ post_process=False,
31
+ device=DEVICE)
32
+ mtcnn.to(DEVICE)
33
+ model = self.model.model
34
+ model.to(DEVICE)
35
+
36
+ input_image = Image.open(input_image)
37
+ face = mtcnn(input_image)
38
+ if face is None:
39
+ raise Exception('No face detected')
40
+
41
+ face = face.unsqueeze(0) # add the batch dimension
42
+ face = F.interpolate(face, size=(256, 256), mode='bilinear', align_corners=False)
43
+
44
+ # convert the face into a numpy array to be able to plot it
45
+ prev_face = face.squeeze(0).permute(1, 2, 0).cpu().detach().int().numpy()
46
+ prev_face = prev_face.astype('uint8')
47
+
48
+ face = face.to(DEVICE)
49
+ face = face.to(torch.float32)
50
+ face = face / 255.0
51
+ face_image_to_plot = face.squeeze(0).permute(1, 2, 0).cpu().detach().int().numpy()
52
+
53
+ target_layers=[model.block8.branch1[-1]]
54
+ cam = GradCAM(model=model, target_layers=target_layers)
55
+ targets = [ClassifierOutputTarget(0)]
56
+ grayscale_cam = cam(input_tensor=face, targets=targets,eigen_smooth=True)
57
+ grayscale_cam = grayscale_cam[0, :]
58
+ visualization = show_cam_on_image(face_image_to_plot, grayscale_cam, use_rgb=True)
59
+ face_with_mask = cv2.addWeighted(prev_face, 1, visualization, 0.5, 0)
60
+
61
+ with torch.no_grad():
62
+ output = torch.sigmoid(model(face).squeeze(0))
63
+ prediction = "real" if output.item() < 0.5 else "fake"
64
+
65
+ real_prediction = 1 - output.item()
66
+ fake_prediction = output.item()
67
+
68
+ confidences = {
69
+ 'real': real_prediction,
70
+ 'fake': fake_prediction
71
+ }
72
+ return self.postprocess(confidences, face_with_mask)
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55b70cf572d8fcd290f26b474c9b1a0c8379f324df3f6932555ea0a633b89c6a
3
+ size 94273065
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ Pillow
2
+ facenet-pytorch==2.5.2
3
+ torch==1.11.0
4
+ opencv-python
5
+ grad-cam
6
+ transformers