update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
model-index:
|
11 |
+
- name: hing-mbert-ours-run-2
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# hing-mbert-ours-run-2
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [l3cube-pune/hing-mbert](https://huggingface.co/l3cube-pune/hing-mbert) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 3.3919
|
23 |
+
- Accuracy: 0.62
|
24 |
+
- Precision: 0.5759
|
25 |
+
- Recall: 0.5631
|
26 |
+
- F1: 0.5669
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 5e-05
|
46 |
+
- train_batch_size: 16
|
47 |
+
- eval_batch_size: 16
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 20
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
57 |
+
| 1.0284 | 1.0 | 100 | 1.2914 | 0.595 | 0.5712 | 0.4800 | 0.4642 |
|
58 |
+
| 0.8127 | 2.0 | 200 | 0.8552 | 0.59 | 0.5744 | 0.5675 | 0.4891 |
|
59 |
+
| 0.5499 | 3.0 | 300 | 1.1212 | 0.645 | 0.6544 | 0.5600 | 0.5475 |
|
60 |
+
| 0.3433 | 4.0 | 400 | 1.2017 | 0.605 | 0.5872 | 0.5866 | 0.5791 |
|
61 |
+
| 0.2218 | 5.0 | 500 | 1.8329 | 0.655 | 0.6458 | 0.6064 | 0.6055 |
|
62 |
+
| 0.1763 | 6.0 | 600 | 2.4194 | 0.655 | 0.6140 | 0.5802 | 0.5871 |
|
63 |
+
| 0.1022 | 7.0 | 700 | 2.3894 | 0.66 | 0.6171 | 0.6045 | 0.6048 |
|
64 |
+
| 0.0631 | 8.0 | 800 | 2.8259 | 0.605 | 0.5704 | 0.5255 | 0.5259 |
|
65 |
+
| 0.0254 | 9.0 | 900 | 2.9135 | 0.65 | 0.6013 | 0.5734 | 0.5784 |
|
66 |
+
| 0.0316 | 10.0 | 1000 | 3.0548 | 0.62 | 0.5862 | 0.5650 | 0.5670 |
|
67 |
+
| 0.026 | 11.0 | 1100 | 3.1020 | 0.62 | 0.5722 | 0.5593 | 0.5619 |
|
68 |
+
| 0.0152 | 12.0 | 1200 | 3.0692 | 0.62 | 0.5685 | 0.5597 | 0.5621 |
|
69 |
+
| 0.0156 | 13.0 | 1300 | 3.1068 | 0.615 | 0.5771 | 0.5589 | 0.5624 |
|
70 |
+
| 0.0237 | 14.0 | 1400 | 3.3487 | 0.62 | 0.5924 | 0.5589 | 0.5642 |
|
71 |
+
| 0.0094 | 15.0 | 1500 | 3.2007 | 0.615 | 0.5665 | 0.5639 | 0.5650 |
|
72 |
+
| 0.0054 | 16.0 | 1600 | 3.2838 | 0.62 | 0.5807 | 0.5657 | 0.5690 |
|
73 |
+
| 0.005 | 17.0 | 1700 | 3.2258 | 0.615 | 0.5846 | 0.5723 | 0.5747 |
|
74 |
+
| 0.005 | 18.0 | 1800 | 3.3572 | 0.63 | 0.5827 | 0.5698 | 0.5736 |
|
75 |
+
| 0.0022 | 19.0 | 1900 | 3.3642 | 0.62 | 0.5759 | 0.5631 | 0.5669 |
|
76 |
+
| 0.0019 | 20.0 | 2000 | 3.3919 | 0.62 | 0.5759 | 0.5631 | 0.5669 |
|
77 |
+
|
78 |
+
|
79 |
+
### Framework versions
|
80 |
+
|
81 |
+
- Transformers 4.25.1
|
82 |
+
- Pytorch 1.13.0+cu116
|
83 |
+
- Tokenizers 0.13.2
|