--- license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer metrics: - f1 - recall - accuracy - precision model-index: - name: mdeberta-v3-base-fine-tuned-text-classificarion-ds-ss results: [] --- # mdeberta-v3-base-fine-tuned-text-classificarion-ds-ss This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0388 - F1: 0.7346 - Recall: 0.7570 - Accuracy: 0.7570 - Precision: 0.7456 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Recall | Accuracy | Precision | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:--------:|:---------:| | 3.3067 | 1.0 | 883 | 1.8916 | 0.4861 | 0.5479 | 0.5479 | 0.4605 | | 1.5839 | 2.0 | 1766 | 1.2443 | 0.6494 | 0.6955 | 0.6955 | 0.6456 | | 1.1286 | 3.0 | 2649 | 1.0806 | 0.7047 | 0.7283 | 0.7283 | 0.7074 | | 0.892 | 4.0 | 3532 | 1.0966 | 0.7087 | 0.7393 | 0.7393 | 0.7165 | | 0.7316 | 5.0 | 4415 | 1.0388 | 0.7346 | 0.7570 | 0.7570 | 0.7456 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3