Upload 2 files
Browse files- app.py +45 -0
- requirements.txt +1 -0
app.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Untitled3.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1eg0M7FRTlmONVU_5IaZH-EKADvdtODmT
|
8 |
+
"""
|
9 |
+
|
10 |
+
#!pip install torch
|
11 |
+
|
12 |
+
#!pip install diffusers transformers accelerate torch
|
13 |
+
|
14 |
+
#!pip install streamlit
|
15 |
+
|
16 |
+
from diffusers import StableDiffusionPipeline
|
17 |
+
import torch
|
18 |
+
import streamlit as st
|
19 |
+
|
20 |
+
def pic_mo(prom):
|
21 |
+
model_id = "runwayml/stable-diffusion-v1-5"
|
22 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
23 |
+
pipe = pipe.to("cuda")
|
24 |
+
|
25 |
+
prompt = str(prom)
|
26 |
+
|
27 |
+
image = pipe(prompt).images[0]
|
28 |
+
|
29 |
+
return image
|
30 |
+
|
31 |
+
def main():
|
32 |
+
st.title("Text to Image with runwayml/stable-diffusion-v1-5")
|
33 |
+
|
34 |
+
# Input text prompt
|
35 |
+
title = st.text_input('Write a prompt', "")
|
36 |
+
|
37 |
+
if st.button('Generate Image'):
|
38 |
+
# Call the pic_mo function to generate an image
|
39 |
+
generated_image = pic_mo(title)
|
40 |
+
|
41 |
+
# Display the generated image
|
42 |
+
st.image(generated_image, caption='Generated Image', use_column_width=True)
|
43 |
+
|
44 |
+
if __name__ == '__main__':
|
45 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
python-dotenv
|