Update modeling_rwkv5.py
Browse files- modeling_rwkv5.py +256 -239
modeling_rwkv5.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
# coding=utf-8
|
2 |
-
# Copyright
|
|
|
3 |
#
|
4 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
# you may not use this file except in compliance with the License.
|
@@ -15,7 +16,6 @@
|
|
15 |
"""PyTorch RWKV5 World model."""
|
16 |
|
17 |
from dataclasses import dataclass
|
18 |
-
from pathlib import Path
|
19 |
from typing import List, Optional, Tuple, Union
|
20 |
|
21 |
import torch
|
@@ -30,7 +30,6 @@ from transformers.utils import (
|
|
30 |
add_code_sample_docstrings,
|
31 |
add_start_docstrings,
|
32 |
add_start_docstrings_to_model_forward,
|
33 |
-
is_bitsandbytes_available,
|
34 |
is_ninja_available,
|
35 |
is_torch_cuda_available,
|
36 |
logging,
|
@@ -44,23 +43,28 @@ logger = logging.get_logger(__name__)
|
|
44 |
_CHECKPOINT_FOR_DOC = "RWKV/rwkv-5-world-1b5"
|
45 |
_CONFIG_FOR_DOC = "Rwkv5Config"
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
rwkv5_cuda_kernel = None
|
48 |
|
49 |
|
50 |
-
# Copied from https://github.com/huggingface/transformers/blob/18cbaf13dcaca7145f5652aefb9b19734c56c3cd/src/transformers/models/rwkv/modeling_rwkv.py#L65
|
51 |
def load_wkv5_cuda_kernel(head_size):
|
52 |
from torch.utils.cpp_extension import load as load_kernel
|
53 |
|
54 |
global rwkv5_cuda_kernel
|
55 |
|
56 |
-
kernel_folder = Path(__file__).
|
57 |
cuda_kernel_files = [kernel_folder / f for f in ["wkv5_op.cpp", "wkv5_cuda.cu"]]
|
58 |
|
59 |
# Only load the kernel if it's not been loaded yet or if we changed the context length
|
60 |
if rwkv5_cuda_kernel is not None and rwkv5_cuda_kernel.head_size == head_size:
|
61 |
return
|
62 |
|
63 |
-
logger.info(f"Loading CUDA kernel for
|
64 |
|
65 |
flags = [
|
66 |
"-res-usage",
|
@@ -80,177 +84,200 @@ def load_wkv5_cuda_kernel(head_size):
|
|
80 |
rwkv5_cuda_kernel.head_size = head_size
|
81 |
|
82 |
|
83 |
-
class
|
84 |
@staticmethod
|
85 |
-
def forward(ctx,
|
86 |
with torch.no_grad():
|
87 |
-
assert
|
88 |
-
assert
|
89 |
-
assert
|
90 |
-
assert
|
91 |
-
assert
|
92 |
-
assert
|
93 |
-
|
94 |
-
|
95 |
-
ctx.
|
96 |
-
ctx.
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
assert
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
dtype=torch.bfloat16,
|
107 |
-
|
108 |
-
)
|
109 |
-
|
110 |
-
rwkv5_cuda_kernel.forward_bf16(
|
111 |
-
batch,
|
112 |
-
seq_length,
|
113 |
-
hidden_size,
|
114 |
-
num_heads,
|
115 |
-
state,
|
116 |
-
receptance,
|
117 |
-
key,
|
118 |
-
value,
|
119 |
-
ee_time_decay,
|
120 |
-
time_first,
|
121 |
-
out,
|
122 |
-
)
|
123 |
-
return out, state
|
124 |
|
125 |
@staticmethod
|
126 |
-
def backward(ctx,
|
127 |
with torch.no_grad():
|
128 |
-
assert
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
greceptance = torch.empty(
|
139 |
-
global_shape,
|
140 |
-
device=gout.device,
|
141 |
requires_grad=False,
|
142 |
dtype=torch.bfloat16,
|
143 |
memory_format=torch.contiguous_format,
|
144 |
-
)
|
145 |
-
|
146 |
-
|
147 |
-
device=
|
148 |
requires_grad=False,
|
149 |
dtype=torch.bfloat16,
|
150 |
memory_format=torch.contiguous_format,
|
151 |
-
)
|
152 |
-
|
153 |
-
|
154 |
-
device=
|
155 |
requires_grad=False,
|
156 |
dtype=torch.bfloat16,
|
157 |
memory_format=torch.contiguous_format,
|
158 |
-
)
|
159 |
-
|
160 |
-
(
|
161 |
-
device=
|
162 |
requires_grad=False,
|
163 |
dtype=torch.bfloat16,
|
164 |
memory_format=torch.contiguous_format,
|
165 |
-
)
|
166 |
-
|
167 |
-
(
|
168 |
-
device=
|
169 |
requires_grad=False,
|
170 |
dtype=torch.bfloat16,
|
171 |
memory_format=torch.contiguous_format,
|
172 |
-
)
|
173 |
-
rwkv5_cuda_kernel.
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
current_receptance = receptance[:, :, current_index:current_index+1, :]
|
212 |
-
current_key = key[:, :, :, current_index:current_index+1]
|
213 |
-
current_value = value[:, :, current_index:current_index+1, :]
|
214 |
-
attention_output = current_key @ current_value
|
215 |
-
out[:, current_index] = (current_receptance @ (time_first * attention_output + state)).squeeze(2)
|
216 |
with torch.no_grad():
|
217 |
-
state =
|
|
|
|
|
|
|
|
|
|
|
218 |
|
219 |
return out, state
|
220 |
|
221 |
-
|
222 |
-
def
|
223 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
# Launching the CUDA kernel for just one token will actually be slower (there is no for loop in the CPU version
|
225 |
# in this case).
|
226 |
one_token = key.size(1) == 1
|
227 |
-
if
|
228 |
-
return
|
229 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
)
|
231 |
else:
|
232 |
-
|
|
|
|
|
|
|
|
|
|
|
233 |
|
234 |
|
235 |
-
class
|
236 |
def __init__(self, config, layer_id=0):
|
237 |
super().__init__()
|
238 |
self.config = config
|
239 |
kernel_loaded = rwkv5_cuda_kernel is not None and rwkv5_cuda_kernel.head_size == config.head_size
|
240 |
if is_ninja_available() and is_torch_cuda_available() and not kernel_loaded:
|
241 |
try:
|
242 |
-
load_wkv5_cuda_kernel(config.
|
243 |
except Exception:
|
244 |
logger.info("Could not load the custom CUDA kernel for RWKV5 attention.")
|
245 |
self.layer_id = layer_id
|
246 |
hidden_size = config.hidden_size
|
247 |
-
|
|
|
|
|
|
|
|
|
|
|
248 |
self.attention_hidden_size = attention_hidden_size
|
249 |
-
head_size = config.head_size
|
250 |
-
num_heads = attention_hidden_size // head_size
|
251 |
|
252 |
-
self.time_decay = nn.Parameter(torch.empty(
|
253 |
-
self.time_faaaa = nn.Parameter(torch.empty(
|
254 |
self.time_mix_gate = nn.Parameter(torch.empty(1, 1, hidden_size))
|
255 |
|
256 |
self.time_mix_key = nn.Parameter(torch.empty(1, 1, hidden_size))
|
@@ -263,9 +290,11 @@ class Rwkv5SelfAttention(nn.Module):
|
|
263 |
self.receptance = nn.Linear(hidden_size, attention_hidden_size, bias=False)
|
264 |
self.gate = nn.Linear(hidden_size, attention_hidden_size, bias=False)
|
265 |
self.output = nn.Linear(attention_hidden_size, hidden_size, bias=False)
|
266 |
-
|
|
|
267 |
|
268 |
-
|
|
|
269 |
# Mix hidden with the previous timestep to produce key, value, receptance
|
270 |
if hidden.size(1) == 1 and state is not None:
|
271 |
shifted = state[0][:, :, self.layer_id]
|
@@ -275,12 +304,12 @@ class Rwkv5SelfAttention(nn.Module):
|
|
275 |
shifted[:, 0] = state[0][:, :, self.layer_id]
|
276 |
if len(shifted.size()) == 2:
|
277 |
shifted = shifted.unsqueeze(1)
|
278 |
-
|
279 |
key = hidden * self.time_mix_key + shifted * (1 - self.time_mix_key)
|
280 |
value = hidden * self.time_mix_value + shifted * (1 - self.time_mix_value)
|
281 |
receptance = hidden * self.time_mix_receptance + shifted * (1 - self.time_mix_receptance)
|
282 |
gate = hidden * self.time_mix_gate + shifted * (1 - self.time_mix_gate)
|
283 |
|
|
|
284 |
key = self.key(key)
|
285 |
value = self.value(value)
|
286 |
receptance = self.receptance(receptance)
|
@@ -292,32 +321,45 @@ class Rwkv5SelfAttention(nn.Module):
|
|
292 |
return receptance, key, value, gate, state
|
293 |
|
294 |
def forward(self, hidden, state=None, use_cache=False, seq_mode=True):
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
|
|
|
300 |
layer_state = state[1][:, :, :, :, self.layer_id] if state is not None else None
|
301 |
-
|
302 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
303 |
)
|
304 |
|
305 |
if layer_state is not None:
|
306 |
state[1][:, :, :, :, self.layer_id] = layer_state
|
307 |
|
308 |
-
|
309 |
-
|
310 |
-
out = out.to(dtype=hidden.dtype) * gate
|
311 |
-
out = self.output(out)
|
312 |
-
return out, state
|
313 |
|
314 |
-
|
315 |
-
class Rwkv5FeedForward(nn.Module):
|
316 |
def __init__(self, config, layer_id=0):
|
317 |
super().__init__()
|
318 |
self.config = config
|
319 |
self.layer_id = layer_id
|
320 |
hidden_size = config.hidden_size
|
|
|
321 |
intermediate_size = (
|
322 |
config.intermediate_size
|
323 |
if config.intermediate_size is not None
|
@@ -354,8 +396,7 @@ class Rwkv5FeedForward(nn.Module):
|
|
354 |
return receptance * value, state
|
355 |
|
356 |
|
357 |
-
|
358 |
-
class Rwkv5Block(nn.Module):
|
359 |
def __init__(self, config, layer_id):
|
360 |
super().__init__()
|
361 |
self.config = config
|
@@ -367,8 +408,8 @@ class Rwkv5Block(nn.Module):
|
|
367 |
self.ln1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
368 |
self.ln2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
369 |
|
370 |
-
self.attention =
|
371 |
-
self.feed_forward =
|
372 |
|
373 |
def forward(self, hidden, state=None, use_cache=False, output_attentions=False, seq_mode=True):
|
374 |
if self.layer_id == 0:
|
@@ -388,7 +429,6 @@ class Rwkv5Block(nn.Module):
|
|
388 |
return outputs
|
389 |
|
390 |
|
391 |
-
# Copied from transformers.models.rwkv.modeling_rwkv.RwkvPreTrainedModel with Rwkv->Rwkv5
|
392 |
class Rwkv5PreTrainedModel(PreTrainedModel):
|
393 |
"""
|
394 |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
@@ -396,20 +436,19 @@ class Rwkv5PreTrainedModel(PreTrainedModel):
|
|
396 |
"""
|
397 |
|
398 |
config_class = Rwkv5Config
|
399 |
-
base_model_prefix = "
|
400 |
-
_no_split_modules = ["
|
401 |
_keep_in_fp32_modules = ["time_decay", "time_first"]
|
402 |
supports_gradient_checkpointing = True
|
403 |
|
404 |
def _init_weights(self, module):
|
405 |
"""Initialize the weights."""
|
406 |
-
if isinstance(module,
|
407 |
layer_id = module.layer_id
|
408 |
num_hidden_layers = module.config.num_hidden_layers
|
409 |
hidden_size = module.config.hidden_size
|
410 |
attention_hidden_size = module.attention_hidden_size
|
411 |
-
|
412 |
-
num_heads = attention_hidden_size // head_size
|
413 |
|
414 |
ratio_0_to_1 = layer_id / (num_hidden_layers - 1) # 0 to 1
|
415 |
ratio_1_to_almost0 = 1.0 - (layer_id / num_hidden_layers) # 1 to ~0
|
@@ -421,6 +460,7 @@ class Rwkv5PreTrainedModel(PreTrainedModel):
|
|
421 |
)
|
422 |
time_weight = time_weight[None, None, :]
|
423 |
|
|
|
424 |
decay_speed = [
|
425 |
-6.0 + 5.0 * (h / (attention_hidden_size - 1)) ** (0.7 + 1.3 * ratio_0_to_1)
|
426 |
for h in range(attention_hidden_size)
|
@@ -436,15 +476,15 @@ class Rwkv5PreTrainedModel(PreTrainedModel):
|
|
436 |
)
|
437 |
|
438 |
with torch.no_grad():
|
439 |
-
module.time_decay.data = decay_speed.reshape(
|
440 |
-
module.time_faaaa.data = tmp.reshape(
|
441 |
module.time_mix_key.data = torch.pow(time_weight, ratio_1_to_almost0)
|
442 |
|
443 |
module.time_mix_value.data = torch.pow(time_weight, ratio_1_to_almost0) + 0.3 * ratio_0_to_1
|
444 |
module.time_mix_receptance.data = torch.pow(time_weight, 0.5 * ratio_1_to_almost0)
|
445 |
module.time_mix_gate.data = torch.pow(time_weight, 0.5 * ratio_1_to_almost0)
|
446 |
|
447 |
-
elif isinstance(module,
|
448 |
layer_id = module.layer_id
|
449 |
num_hidden_layers = module.config.num_hidden_layers
|
450 |
hidden_size = module.config.hidden_size
|
@@ -463,12 +503,10 @@ class Rwkv5PreTrainedModel(PreTrainedModel):
|
|
463 |
module.time_mix_receptance.data = torch.pow(time_weight, ratio_1_to_almost0)
|
464 |
|
465 |
|
466 |
-
# Copied from transformers.models.rwkv.modeling_rwkv.RwkvOutput with Rwkv->Rwkv5
|
467 |
@dataclass
|
468 |
class Rwkv5Output(ModelOutput):
|
469 |
"""
|
470 |
-
Class for the
|
471 |
-
|
472 |
Args:
|
473 |
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
474 |
Sequence of hidden-states at the output of the last layer of the model.
|
@@ -491,12 +529,10 @@ class Rwkv5Output(ModelOutput):
|
|
491 |
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
492 |
|
493 |
|
494 |
-
# Copied from transformers.models.rwkv.modeling_rwkv.RwkvCausalLMOutput with Rwkv->Rwkv5
|
495 |
@dataclass
|
496 |
class Rwkv5CausalLMOutput(ModelOutput):
|
497 |
"""
|
498 |
Base class for causal language model (or autoregressive) outputs.
|
499 |
-
|
500 |
Args:
|
501 |
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
502 |
Language modeling loss (for next-token prediction).
|
@@ -522,20 +558,19 @@ class Rwkv5CausalLMOutput(ModelOutput):
|
|
522 |
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
523 |
|
524 |
|
525 |
-
|
526 |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
527 |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
528 |
etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module)
|
529 |
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
|
530 |
general usage and behavior.
|
531 |
-
|
532 |
Parameters:
|
533 |
config ([`Rwkv5Config`]): Model configuration class with all the parameters of the model.
|
534 |
Initializing with a config file does not load the weights associated with the model, only the
|
535 |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
536 |
"""
|
537 |
|
538 |
-
|
539 |
Args:
|
540 |
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
541 |
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else
|
@@ -565,15 +600,15 @@ RWKV5_INPUTS_DOCSTRING = r"""
|
|
565 |
|
566 |
|
567 |
@add_start_docstrings(
|
568 |
-
"The bare
|
569 |
-
|
570 |
)
|
571 |
class Rwkv5Model(Rwkv5PreTrainedModel):
|
572 |
def __init__(self, config):
|
573 |
super().__init__(config)
|
574 |
|
575 |
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
|
576 |
-
self.blocks = nn.ModuleList([
|
577 |
self.ln_out = nn.LayerNorm(config.hidden_size)
|
578 |
|
579 |
self.layers_are_rescaled = False
|
@@ -588,7 +623,7 @@ class Rwkv5Model(Rwkv5PreTrainedModel):
|
|
588 |
def set_input_embeddings(self, new_embeddings):
|
589 |
self.embeddings = new_embeddings
|
590 |
|
591 |
-
@add_start_docstrings_to_model_forward(
|
592 |
@add_code_sample_docstrings(
|
593 |
checkpoint=_CHECKPOINT_FOR_DOC,
|
594 |
output_type=Rwkv5Output,
|
@@ -609,7 +644,6 @@ class Rwkv5Model(Rwkv5PreTrainedModel):
|
|
609 |
output_hidden_states = (
|
610 |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
611 |
)
|
612 |
-
# FIXME - training is supportable with the CUDA code
|
613 |
# rwkv5 only support inference in huggingface.
|
614 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
615 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
@@ -627,37 +661,40 @@ class Rwkv5Model(Rwkv5PreTrainedModel):
|
|
627 |
if inputs_embeds is None:
|
628 |
inputs_embeds = self.embeddings(input_ids)
|
629 |
|
630 |
-
if state is None:
|
|
|
631 |
state = []
|
632 |
-
|
633 |
-
|
634 |
-
|
635 |
-
|
636 |
-
|
637 |
-
|
638 |
-
|
639 |
-
|
640 |
-
|
641 |
-
|
642 |
-
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
-
|
649 |
-
|
650 |
-
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
|
|
|
|
|
661 |
|
662 |
seq_mode = inputs_embeds.shape[1] > 1
|
663 |
hidden_states = inputs_embeds
|
@@ -720,37 +757,14 @@ class Rwkv5Model(Rwkv5PreTrainedModel):
|
|
720 |
|
721 |
self.layers_are_rescaled = not self.training
|
722 |
|
723 |
-
def _bnb_4bit_dequantize_and_rescale(self, target_layer, block_id):
|
724 |
-
r"""
|
725 |
-
Perform the dequantization and rescaling of the weights of a given layer. After that operation the layer will
|
726 |
-
be quantized again.
|
727 |
-
"""
|
728 |
-
if not is_bitsandbytes_available():
|
729 |
-
raise ImportError("Please install bitsandbytes to use this method.")
|
730 |
-
import bitsandbytes as bnb
|
731 |
-
|
732 |
-
dequant_weights = bnb.functional.dequantize_4bit(target_layer.weight.data, target_layer.weight.quant_state)
|
733 |
-
|
734 |
-
dequant_weights.div_(2 ** int(block_id // self.config.rescale_every))
|
735 |
|
736 |
-
# re-quantize the model:
|
737 |
-
# we need to put it first on CPU then back to the device
|
738 |
-
# this will create an overhead :/
|
739 |
-
# We set requires_grad=False as we cannot compute gradients on top of 4bit parameters anyway and to avoid
|
740 |
-
# bugs with bnb
|
741 |
-
quant_weight = bnb.nn.Params4bit(dequant_weights.to("cpu"), requires_grad=False).to(dequant_weights.device)
|
742 |
-
setattr(target_layer, "weight", quant_weight)
|
743 |
-
|
744 |
-
|
745 |
-
# copied from HuggingFace https://github.com/huggingface/transformers/blob/main/src/transformers/models/rwkv/modeling_rwkv.py
|
746 |
@add_start_docstrings(
|
747 |
"""
|
748 |
-
The
|
749 |
embeddings).
|
750 |
""",
|
751 |
-
|
752 |
)
|
753 |
-
# Copied from transformers.models.rwkv.modeling_rwkv.RwkvForCausalLM with Rwkv->Rwkv5
|
754 |
class Rwkv5ForCausalLM(Rwkv5PreTrainedModel):
|
755 |
_tied_weights_keys = ["head.weight"]
|
756 |
|
@@ -772,6 +786,9 @@ class Rwkv5ForCausalLM(Rwkv5PreTrainedModel):
|
|
772 |
# only last token for inputs_ids if the state is passed along.
|
773 |
if state is not None:
|
774 |
input_ids = input_ids[:, -1].unsqueeze(-1)
|
|
|
|
|
|
|
775 |
|
776 |
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
777 |
if inputs_embeds is not None and state is None:
|
@@ -782,7 +799,7 @@ class Rwkv5ForCausalLM(Rwkv5PreTrainedModel):
|
|
782 |
model_inputs["state"] = state
|
783 |
return model_inputs
|
784 |
|
785 |
-
@add_start_docstrings_to_model_forward(
|
786 |
@add_code_sample_docstrings(
|
787 |
checkpoint=_CHECKPOINT_FOR_DOC,
|
788 |
output_type=Rwkv5CausalLMOutput,
|
@@ -808,7 +825,7 @@ class Rwkv5ForCausalLM(Rwkv5PreTrainedModel):
|
|
808 |
"""
|
809 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
810 |
|
811 |
-
|
812 |
input_ids,
|
813 |
inputs_embeds=inputs_embeds,
|
814 |
state=state,
|
@@ -817,7 +834,7 @@ class Rwkv5ForCausalLM(Rwkv5PreTrainedModel):
|
|
817 |
output_hidden_states=output_hidden_states,
|
818 |
return_dict=return_dict,
|
819 |
)
|
820 |
-
hidden_states =
|
821 |
|
822 |
logits = self.head(hidden_states)
|
823 |
|
@@ -833,13 +850,13 @@ class Rwkv5ForCausalLM(Rwkv5PreTrainedModel):
|
|
833 |
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
834 |
|
835 |
if not return_dict:
|
836 |
-
output = (logits,) +
|
837 |
return ((loss,) + output) if loss is not None else output
|
838 |
|
839 |
return Rwkv5CausalLMOutput(
|
840 |
loss=loss,
|
841 |
logits=logits,
|
842 |
-
state=
|
843 |
-
hidden_states=
|
844 |
-
attentions=
|
845 |
-
)
|
|
|
1 |
# coding=utf-8
|
2 |
+
# Copyright 2023 Bo Peng and HuggingFace Inc. team.
|
3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
4 |
#
|
5 |
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
# you may not use this file except in compliance with the License.
|
|
|
16 |
"""PyTorch RWKV5 World model."""
|
17 |
|
18 |
from dataclasses import dataclass
|
|
|
19 |
from typing import List, Optional, Tuple, Union
|
20 |
|
21 |
import torch
|
|
|
30 |
add_code_sample_docstrings,
|
31 |
add_start_docstrings,
|
32 |
add_start_docstrings_to_model_forward,
|
|
|
33 |
is_ninja_available,
|
34 |
is_torch_cuda_available,
|
35 |
logging,
|
|
|
43 |
_CHECKPOINT_FOR_DOC = "RWKV/rwkv-5-world-1b5"
|
44 |
_CONFIG_FOR_DOC = "Rwkv5Config"
|
45 |
|
46 |
+
RWKV5_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
47 |
+
"RWKV/rwkv-5-world-1b5",
|
48 |
+
"RWKV/rwkv-5-world-3b",
|
49 |
+
# See all RWKV models at https://huggingface.co/models?filter=rwkv
|
50 |
+
]
|
51 |
+
|
52 |
rwkv5_cuda_kernel = None
|
53 |
|
54 |
|
|
|
55 |
def load_wkv5_cuda_kernel(head_size):
|
56 |
from torch.utils.cpp_extension import load as load_kernel
|
57 |
|
58 |
global rwkv5_cuda_kernel
|
59 |
|
60 |
+
kernel_folder = Path(__file__).resolve().parent.parent.parent / "kernels" / "rwkv5"
|
61 |
cuda_kernel_files = [kernel_folder / f for f in ["wkv5_op.cpp", "wkv5_cuda.cu"]]
|
62 |
|
63 |
# Only load the kernel if it's not been loaded yet or if we changed the context length
|
64 |
if rwkv5_cuda_kernel is not None and rwkv5_cuda_kernel.head_size == head_size:
|
65 |
return
|
66 |
|
67 |
+
logger.info(f"Loading CUDA kernel for RWKV at head size of {head_size}.")
|
68 |
|
69 |
flags = [
|
70 |
"-res-usage",
|
|
|
84 |
rwkv5_cuda_kernel.head_size = head_size
|
85 |
|
86 |
|
87 |
+
class WKV_5(torch.autograd.Function):
|
88 |
@staticmethod
|
89 |
+
def forward(ctx, B, T, C, H, r, k, v, w, u, s):
|
90 |
with torch.no_grad():
|
91 |
+
assert r.dtype == torch.bfloat16
|
92 |
+
assert k.dtype == torch.bfloat16
|
93 |
+
assert v.dtype == torch.bfloat16
|
94 |
+
assert w.dtype == torch.bfloat16
|
95 |
+
assert u.dtype == torch.bfloat16
|
96 |
+
assert s.dtype == torch.float32
|
97 |
+
ctx.B = B
|
98 |
+
ctx.T = T
|
99 |
+
ctx.C = C
|
100 |
+
ctx.H = H
|
101 |
+
assert r.is_contiguous()
|
102 |
+
assert k.is_contiguous()
|
103 |
+
assert v.is_contiguous()
|
104 |
+
assert w.is_contiguous()
|
105 |
+
assert u.is_contiguous()
|
106 |
+
ew = (-torch.exp(w.float())).contiguous()
|
107 |
+
eew = (torch.exp(ew)).contiguous()
|
108 |
+
ctx.save_for_backward(r, k, v, eew, ew, u)
|
109 |
+
y = torch.empty(
|
110 |
+
(B, T, C), device=r.device, dtype=torch.bfloat16, memory_format=torch.contiguous_format
|
111 |
+
) # .uniform_(-1, 1)
|
112 |
+
rwkv5_cuda_kernel.forward(B, T, C, H, r, k, v, eew, u, y, s)
|
113 |
+
return y, s
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
@staticmethod
|
116 |
+
def backward(ctx, gy):
|
117 |
with torch.no_grad():
|
118 |
+
assert gy.dtype == torch.bfloat16
|
119 |
+
B = ctx.B
|
120 |
+
T = ctx.T
|
121 |
+
C = ctx.C
|
122 |
+
H = ctx.H
|
123 |
+
assert gy.is_contiguous()
|
124 |
+
r, k, v, eew, ew, u = ctx.saved_tensors
|
125 |
+
gr = torch.empty(
|
126 |
+
(B, T, C),
|
127 |
+
device=gy.device,
|
|
|
|
|
|
|
128 |
requires_grad=False,
|
129 |
dtype=torch.bfloat16,
|
130 |
memory_format=torch.contiguous_format,
|
131 |
+
) # .uniform_(-1, 1)
|
132 |
+
gk = torch.empty(
|
133 |
+
(B, T, C),
|
134 |
+
device=gy.device,
|
135 |
requires_grad=False,
|
136 |
dtype=torch.bfloat16,
|
137 |
memory_format=torch.contiguous_format,
|
138 |
+
) # .uniform_(-1, 1)
|
139 |
+
gv = torch.empty(
|
140 |
+
(B, T, C),
|
141 |
+
device=gy.device,
|
142 |
requires_grad=False,
|
143 |
dtype=torch.bfloat16,
|
144 |
memory_format=torch.contiguous_format,
|
145 |
+
) # .uniform_(-1, 1)
|
146 |
+
gw = torch.empty(
|
147 |
+
(B, C),
|
148 |
+
device=gy.device,
|
149 |
requires_grad=False,
|
150 |
dtype=torch.bfloat16,
|
151 |
memory_format=torch.contiguous_format,
|
152 |
+
) # .uniform_(-1, 1)
|
153 |
+
gu = torch.empty(
|
154 |
+
(B, C),
|
155 |
+
device=gy.device,
|
156 |
requires_grad=False,
|
157 |
dtype=torch.bfloat16,
|
158 |
memory_format=torch.contiguous_format,
|
159 |
+
) # .uniform_(-1, 1)
|
160 |
+
rwkv5_cuda_kernel.backward(B, T, C, H, r, k, v, eew, ew, u, gy, gr, gk, gv, gw, gu)
|
161 |
+
gw = torch.sum(gw, 0).view(H, C // H)
|
162 |
+
gu = torch.sum(gu, 0).view(H, C // H)
|
163 |
+
return (None, None, None, None, gr, gk, gv, gw, gu)
|
164 |
+
|
165 |
+
|
166 |
+
def rwkv_linear_attention_v5_cpu(
|
167 |
+
B,
|
168 |
+
H,
|
169 |
+
S,
|
170 |
+
T,
|
171 |
+
n_head,
|
172 |
+
hidden,
|
173 |
+
time_decay,
|
174 |
+
time_first,
|
175 |
+
receptance,
|
176 |
+
key,
|
177 |
+
value,
|
178 |
+
gate,
|
179 |
+
lxw,
|
180 |
+
lxb,
|
181 |
+
ow,
|
182 |
+
state,
|
183 |
+
):
|
184 |
+
key = key.to(torch.float32).view(B, T, H, S).transpose(1, 2).transpose(-2, -1)
|
185 |
+
value = value.to(torch.float32).view(B, T, H, S).transpose(1, 2)
|
186 |
+
receptance = receptance.to(torch.float32).view(B, T, H, S).transpose(1, 2)
|
187 |
+
time_decay = torch.exp(-torch.exp(time_decay.float())).reshape(-1, 1, 1).reshape(n_head, -1, 1)
|
188 |
+
time_first = time_first.float().reshape(-1, 1, 1).reshape(n_head, -1, 1)
|
189 |
+
lxw = lxw.float()
|
190 |
+
lxb = lxb.float()
|
191 |
+
out = torch.zeros_like(key).reshape(B, T, H, S)
|
192 |
+
for t in range(T):
|
193 |
+
rt = receptance[:, :, t : t + 1, :]
|
194 |
+
kt = key[:, :, :, t : t + 1]
|
195 |
+
vt = value[:, :, t : t + 1, :]
|
196 |
+
at = kt @ vt
|
197 |
+
out[:, t] = (rt @ (time_first * at + state)).squeeze(2)
|
|
|
|
|
|
|
|
|
|
|
198 |
with torch.no_grad():
|
199 |
+
state = at + time_decay * state
|
200 |
+
|
201 |
+
out = out.reshape(B * T, H * S)
|
202 |
+
out = F.group_norm(out, num_groups=H, weight=lxw, bias=lxb).reshape(B, T, H * S)
|
203 |
+
out = out.to(dtype=hidden.dtype) * gate
|
204 |
+
out = out @ ow
|
205 |
|
206 |
return out, state
|
207 |
|
208 |
+
|
209 |
+
def rwkv_linear_attention(
|
210 |
+
B,
|
211 |
+
H,
|
212 |
+
S,
|
213 |
+
T,
|
214 |
+
n_head,
|
215 |
+
hidden,
|
216 |
+
time_decay,
|
217 |
+
time_first,
|
218 |
+
receptance,
|
219 |
+
key,
|
220 |
+
value,
|
221 |
+
gate,
|
222 |
+
lxw,
|
223 |
+
lxb,
|
224 |
+
ow,
|
225 |
+
state,
|
226 |
+
):
|
227 |
+
no_cuda = any(t.device.type != "cuda" for t in [time_decay, time_first, receptance, key, value])
|
228 |
# Launching the CUDA kernel for just one token will actually be slower (there is no for loop in the CPU version
|
229 |
# in this case).
|
230 |
one_token = key.size(1) == 1
|
231 |
+
if rwkv5_cuda_kernel is None or no_cuda or one_token:
|
232 |
+
return rwkv_linear_attention_v5_cpu(
|
233 |
+
B,
|
234 |
+
H,
|
235 |
+
S,
|
236 |
+
T,
|
237 |
+
n_head,
|
238 |
+
hidden,
|
239 |
+
time_decay,
|
240 |
+
time_first,
|
241 |
+
receptance,
|
242 |
+
key,
|
243 |
+
value,
|
244 |
+
gate,
|
245 |
+
lxw,
|
246 |
+
lxb,
|
247 |
+
ow,
|
248 |
+
state,
|
249 |
)
|
250 |
else:
|
251 |
+
out, state = WKV_5.apply(B, T, H * S, H, receptance, key, value, time_decay, time_first, state)
|
252 |
+
out = out.reshape(B * T, H * S)
|
253 |
+
out = F.group_norm(out, num_groups=H, weight=lxw, bias=lxb).reshape(B, T, H * S)
|
254 |
+
out = out.to(dtype=hidden.dtype) * gate
|
255 |
+
out = out @ ow
|
256 |
+
return out, state
|
257 |
|
258 |
|
259 |
+
class RwkvSelfAttention(nn.Module):
|
260 |
def __init__(self, config, layer_id=0):
|
261 |
super().__init__()
|
262 |
self.config = config
|
263 |
kernel_loaded = rwkv5_cuda_kernel is not None and rwkv5_cuda_kernel.head_size == config.head_size
|
264 |
if is_ninja_available() and is_torch_cuda_available() and not kernel_loaded:
|
265 |
try:
|
266 |
+
load_wkv5_cuda_kernel(config.context_length)
|
267 |
except Exception:
|
268 |
logger.info("Could not load the custom CUDA kernel for RWKV5 attention.")
|
269 |
self.layer_id = layer_id
|
270 |
hidden_size = config.hidden_size
|
271 |
+
# https://github.com/BlinkDL/RWKV-LM/blob/main/RWKV-v4neo/src/model.py#L146
|
272 |
+
num_attention_heads = hidden_size // config.head_size
|
273 |
+
self.num_attention_heads = num_attention_heads
|
274 |
+
attention_hidden_size = (
|
275 |
+
config.attention_hidden_size if config.attention_hidden_size is not None else hidden_size
|
276 |
+
)
|
277 |
self.attention_hidden_size = attention_hidden_size
|
|
|
|
|
278 |
|
279 |
+
self.time_decay = nn.Parameter(torch.empty(num_attention_heads, config.head_size))
|
280 |
+
self.time_faaaa = nn.Parameter(torch.empty(num_attention_heads, config.head_size))
|
281 |
self.time_mix_gate = nn.Parameter(torch.empty(1, 1, hidden_size))
|
282 |
|
283 |
self.time_mix_key = nn.Parameter(torch.empty(1, 1, hidden_size))
|
|
|
290 |
self.receptance = nn.Linear(hidden_size, attention_hidden_size, bias=False)
|
291 |
self.gate = nn.Linear(hidden_size, attention_hidden_size, bias=False)
|
292 |
self.output = nn.Linear(attention_hidden_size, hidden_size, bias=False)
|
293 |
+
# https://github.com/BlinkDL/RWKV-LM/blob/3db37a72356b736966ddd377268f02b80963af3f/RWKV-v4neo/src/model.py#L190C1-L190C1
|
294 |
+
self.ln_x = nn.GroupNorm(hidden_size // config.head_size, hidden_size)
|
295 |
|
296 |
+
# TODO: maybe jit, otherwise move inside forward
|
297 |
+
def extract_key_value(self, B, H, S, T, hidden, state=None):
|
298 |
# Mix hidden with the previous timestep to produce key, value, receptance
|
299 |
if hidden.size(1) == 1 and state is not None:
|
300 |
shifted = state[0][:, :, self.layer_id]
|
|
|
304 |
shifted[:, 0] = state[0][:, :, self.layer_id]
|
305 |
if len(shifted.size()) == 2:
|
306 |
shifted = shifted.unsqueeze(1)
|
|
|
307 |
key = hidden * self.time_mix_key + shifted * (1 - self.time_mix_key)
|
308 |
value = hidden * self.time_mix_value + shifted * (1 - self.time_mix_value)
|
309 |
receptance = hidden * self.time_mix_receptance + shifted * (1 - self.time_mix_receptance)
|
310 |
gate = hidden * self.time_mix_gate + shifted * (1 - self.time_mix_gate)
|
311 |
|
312 |
+
# https://github.com/BlinkDL/ChatRWKV/blob/main/rwkv_pip_package/src/rwkv/model.py#L693
|
313 |
key = self.key(key)
|
314 |
value = self.value(value)
|
315 |
receptance = self.receptance(receptance)
|
|
|
321 |
return receptance, key, value, gate, state
|
322 |
|
323 |
def forward(self, hidden, state=None, use_cache=False, seq_mode=True):
|
324 |
+
B = hidden.shape[0]
|
325 |
+
H = self.time_decay.shape[0]
|
326 |
+
S = hidden.shape[-1] // H
|
327 |
+
T = hidden.shape[1]
|
328 |
|
329 |
+
receptance, key, value, gate, state = self.extract_key_value(B, H, S, T, hidden, state=state)
|
330 |
layer_state = state[1][:, :, :, :, self.layer_id] if state is not None else None
|
331 |
+
rwkv, layer_state = rwkv_linear_attention(
|
332 |
+
B,
|
333 |
+
H,
|
334 |
+
S,
|
335 |
+
T,
|
336 |
+
self.num_attention_heads,
|
337 |
+
hidden,
|
338 |
+
self.time_decay,
|
339 |
+
self.time_faaaa,
|
340 |
+
receptance,
|
341 |
+
key,
|
342 |
+
value,
|
343 |
+
gate,
|
344 |
+
self.ln_x.weight,
|
345 |
+
self.ln_x.bias,
|
346 |
+
self.output.weight.t(),
|
347 |
+
state=layer_state,
|
348 |
)
|
349 |
|
350 |
if layer_state is not None:
|
351 |
state[1][:, :, :, :, self.layer_id] = layer_state
|
352 |
|
353 |
+
return rwkv, state
|
354 |
+
|
|
|
|
|
|
|
355 |
|
356 |
+
class RwkvFeedForward(nn.Module):
|
|
|
357 |
def __init__(self, config, layer_id=0):
|
358 |
super().__init__()
|
359 |
self.config = config
|
360 |
self.layer_id = layer_id
|
361 |
hidden_size = config.hidden_size
|
362 |
+
# https://github.com/BlinkDL/RWKV-LM/blob/3db37a72356b736966ddd377268f02b80963af3f/RWKV-v4neo/train.py#L168
|
363 |
intermediate_size = (
|
364 |
config.intermediate_size
|
365 |
if config.intermediate_size is not None
|
|
|
396 |
return receptance * value, state
|
397 |
|
398 |
|
399 |
+
class RwkvBlock(nn.Module):
|
|
|
400 |
def __init__(self, config, layer_id):
|
401 |
super().__init__()
|
402 |
self.config = config
|
|
|
408 |
self.ln1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
409 |
self.ln2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
410 |
|
411 |
+
self.attention = RwkvSelfAttention(config, layer_id)
|
412 |
+
self.feed_forward = RwkvFeedForward(config, layer_id)
|
413 |
|
414 |
def forward(self, hidden, state=None, use_cache=False, output_attentions=False, seq_mode=True):
|
415 |
if self.layer_id == 0:
|
|
|
429 |
return outputs
|
430 |
|
431 |
|
|
|
432 |
class Rwkv5PreTrainedModel(PreTrainedModel):
|
433 |
"""
|
434 |
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
|
|
436 |
"""
|
437 |
|
438 |
config_class = Rwkv5Config
|
439 |
+
base_model_prefix = "rwkv"
|
440 |
+
_no_split_modules = ["RwkvBlock"]
|
441 |
_keep_in_fp32_modules = ["time_decay", "time_first"]
|
442 |
supports_gradient_checkpointing = True
|
443 |
|
444 |
def _init_weights(self, module):
|
445 |
"""Initialize the weights."""
|
446 |
+
if isinstance(module, RwkvSelfAttention):
|
447 |
layer_id = module.layer_id
|
448 |
num_hidden_layers = module.config.num_hidden_layers
|
449 |
hidden_size = module.config.hidden_size
|
450 |
attention_hidden_size = module.attention_hidden_size
|
451 |
+
num_attention_heads = hidden_size // module.config.num_attention_heads
|
|
|
452 |
|
453 |
ratio_0_to_1 = layer_id / (num_hidden_layers - 1) # 0 to 1
|
454 |
ratio_1_to_almost0 = 1.0 - (layer_id / num_hidden_layers) # 1 to ~0
|
|
|
460 |
)
|
461 |
time_weight = time_weight[None, None, :]
|
462 |
|
463 |
+
# https://github.com/BlinkDL/RWKV-LM/blob/main/RWKV-v4neo/src/model.py#L398
|
464 |
decay_speed = [
|
465 |
-6.0 + 5.0 * (h / (attention_hidden_size - 1)) ** (0.7 + 1.3 * ratio_0_to_1)
|
466 |
for h in range(attention_hidden_size)
|
|
|
476 |
)
|
477 |
|
478 |
with torch.no_grad():
|
479 |
+
module.time_decay.data = decay_speed.reshape(num_attention_heads, module.config.num_attention_heads)
|
480 |
+
module.time_faaaa.data = tmp.reshape(num_attention_heads, module.config.num_attention_heads)
|
481 |
module.time_mix_key.data = torch.pow(time_weight, ratio_1_to_almost0)
|
482 |
|
483 |
module.time_mix_value.data = torch.pow(time_weight, ratio_1_to_almost0) + 0.3 * ratio_0_to_1
|
484 |
module.time_mix_receptance.data = torch.pow(time_weight, 0.5 * ratio_1_to_almost0)
|
485 |
module.time_mix_gate.data = torch.pow(time_weight, 0.5 * ratio_1_to_almost0)
|
486 |
|
487 |
+
elif isinstance(module, RwkvFeedForward):
|
488 |
layer_id = module.layer_id
|
489 |
num_hidden_layers = module.config.num_hidden_layers
|
490 |
hidden_size = module.config.hidden_size
|
|
|
503 |
module.time_mix_receptance.data = torch.pow(time_weight, ratio_1_to_almost0)
|
504 |
|
505 |
|
|
|
506 |
@dataclass
|
507 |
class Rwkv5Output(ModelOutput):
|
508 |
"""
|
509 |
+
Class for the RWKV model outputs.
|
|
|
510 |
Args:
|
511 |
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
512 |
Sequence of hidden-states at the output of the last layer of the model.
|
|
|
529 |
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
530 |
|
531 |
|
|
|
532 |
@dataclass
|
533 |
class Rwkv5CausalLMOutput(ModelOutput):
|
534 |
"""
|
535 |
Base class for causal language model (or autoregressive) outputs.
|
|
|
536 |
Args:
|
537 |
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
538 |
Language modeling loss (for next-token prediction).
|
|
|
558 |
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
559 |
|
560 |
|
561 |
+
RWKV_START_DOCSTRING = r"""
|
562 |
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
563 |
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
564 |
etc.) This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module)
|
565 |
subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to
|
566 |
general usage and behavior.
|
|
|
567 |
Parameters:
|
568 |
config ([`Rwkv5Config`]): Model configuration class with all the parameters of the model.
|
569 |
Initializing with a config file does not load the weights associated with the model, only the
|
570 |
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
571 |
"""
|
572 |
|
573 |
+
RWKV_INPUTS_DOCSTRING = r"""
|
574 |
Args:
|
575 |
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
|
576 |
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else
|
|
|
600 |
|
601 |
|
602 |
@add_start_docstrings(
|
603 |
+
"The bare RWKV Model transformer outputting raw hidden-states without any specific head on top.",
|
604 |
+
RWKV_START_DOCSTRING,
|
605 |
)
|
606 |
class Rwkv5Model(Rwkv5PreTrainedModel):
|
607 |
def __init__(self, config):
|
608 |
super().__init__(config)
|
609 |
|
610 |
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
|
611 |
+
self.blocks = nn.ModuleList([RwkvBlock(config, layer_id=idx) for idx in range(config.num_hidden_layers)])
|
612 |
self.ln_out = nn.LayerNorm(config.hidden_size)
|
613 |
|
614 |
self.layers_are_rescaled = False
|
|
|
623 |
def set_input_embeddings(self, new_embeddings):
|
624 |
self.embeddings = new_embeddings
|
625 |
|
626 |
+
@add_start_docstrings_to_model_forward(RWKV_INPUTS_DOCSTRING)
|
627 |
@add_code_sample_docstrings(
|
628 |
checkpoint=_CHECKPOINT_FOR_DOC,
|
629 |
output_type=Rwkv5Output,
|
|
|
644 |
output_hidden_states = (
|
645 |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
646 |
)
|
|
|
647 |
# rwkv5 only support inference in huggingface.
|
648 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
649 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
661 |
if inputs_embeds is None:
|
662 |
inputs_embeds = self.embeddings(input_ids)
|
663 |
|
664 |
+
if use_cache and state is None:
|
665 |
+
# https://github.com/BlinkDL/ChatRWKV/blob/main/rwkv_pip_package/src/rwkv/model.py#L904-L906
|
666 |
state = []
|
667 |
+
num_attention_heads = self.config.hidden_size // self.config.num_attention_heads
|
668 |
+
state.append(
|
669 |
+
torch.zeros(
|
670 |
+
(inputs_embeds.size(0), self.config.hidden_size, self.config.num_hidden_layers),
|
671 |
+
dtype=inputs_embeds.dtype,
|
672 |
+
requires_grad=False,
|
673 |
+
device=inputs_embeds.device,
|
674 |
+
).contiguous()
|
675 |
+
)
|
676 |
+
state.append(
|
677 |
+
torch.zeros(
|
678 |
+
(
|
679 |
+
inputs_embeds.size(0),
|
680 |
+
num_attention_heads,
|
681 |
+
self.config.hidden_size // num_attention_heads,
|
682 |
+
self.config.hidden_size // num_attention_heads,
|
683 |
+
self.config.num_hidden_layers,
|
684 |
+
),
|
685 |
+
dtype=torch.float32,
|
686 |
+
requires_grad=False,
|
687 |
+
device=inputs_embeds.device,
|
688 |
+
).contiguous()
|
689 |
+
)
|
690 |
+
state.append(
|
691 |
+
torch.zeros(
|
692 |
+
(inputs_embeds.size(0), self.config.hidden_size, self.config.num_hidden_layers),
|
693 |
+
dtype=inputs_embeds.dtype,
|
694 |
+
requires_grad=False,
|
695 |
+
device=inputs_embeds.device,
|
696 |
+
).contiguous()
|
697 |
+
)
|
698 |
|
699 |
seq_mode = inputs_embeds.shape[1] > 1
|
700 |
hidden_states = inputs_embeds
|
|
|
757 |
|
758 |
self.layers_are_rescaled = not self.training
|
759 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
760 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
761 |
@add_start_docstrings(
|
762 |
"""
|
763 |
+
The RWKV Model transformer with a language modeling head on top (linear layer with weights tied to the input
|
764 |
embeddings).
|
765 |
""",
|
766 |
+
RWKV_START_DOCSTRING,
|
767 |
)
|
|
|
768 |
class Rwkv5ForCausalLM(Rwkv5PreTrainedModel):
|
769 |
_tied_weights_keys = ["head.weight"]
|
770 |
|
|
|
786 |
# only last token for inputs_ids if the state is passed along.
|
787 |
if state is not None:
|
788 |
input_ids = input_ids[:, -1].unsqueeze(-1)
|
789 |
+
else:
|
790 |
+
# add in \n at the beginning
|
791 |
+
input_ids = torch.cat([torch.full([1,1],11,device=input_ids.device,dtype=input_ids.dtype), input_ids])
|
792 |
|
793 |
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
794 |
if inputs_embeds is not None and state is None:
|
|
|
799 |
model_inputs["state"] = state
|
800 |
return model_inputs
|
801 |
|
802 |
+
@add_start_docstrings_to_model_forward(RWKV_INPUTS_DOCSTRING)
|
803 |
@add_code_sample_docstrings(
|
804 |
checkpoint=_CHECKPOINT_FOR_DOC,
|
805 |
output_type=Rwkv5CausalLMOutput,
|
|
|
825 |
"""
|
826 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
827 |
|
828 |
+
rwkv_outputs = self.rwkv(
|
829 |
input_ids,
|
830 |
inputs_embeds=inputs_embeds,
|
831 |
state=state,
|
|
|
834 |
output_hidden_states=output_hidden_states,
|
835 |
return_dict=return_dict,
|
836 |
)
|
837 |
+
hidden_states = rwkv_outputs[0]
|
838 |
|
839 |
logits = self.head(hidden_states)
|
840 |
|
|
|
850 |
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
851 |
|
852 |
if not return_dict:
|
853 |
+
output = (logits,) + rwkv_outputs[1:]
|
854 |
return ((loss,) + output) if loss is not None else output
|
855 |
|
856 |
return Rwkv5CausalLMOutput(
|
857 |
loss=loss,
|
858 |
logits=logits,
|
859 |
+
state=rwkv_outputs.state,
|
860 |
+
hidden_states=rwkv_outputs.hidden_states,
|
861 |
+
attentions=rwkv_outputs.attentions,
|
862 |
+
)
|