Smone55 commited on
Commit
154a5a8
1 Parent(s): a4acd37

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 2387.40 +/- 68.73
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8093d5a9ea41b9b4c168a00550f9f41309894166a4b2db2a6ba86c4e32b0e65b
3
+ size 130452
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2acaa16830>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2acaa168c0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2acaa16950>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2acaa169e0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f2acaa16a70>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f2acaa16b00>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2acaa16b90>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2acaa16c20>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f2acaa16cb0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2acaa16d40>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2acaa16dd0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2acaa16e60>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f2acaa0fac0>"
21
+ },
22
+ "verbose": 0,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "num_timesteps": 2000000,
36
+ "_total_timesteps": 2000000,
37
+ "_num_timesteps_at_start": 0,
38
+ "seed": null,
39
+ "action_noise": null,
40
+ "start_time": 1684936860409437496,
41
+ "learning_rate": 0.00096,
42
+ "tensorboard_log": null,
43
+ "lr_schedule": {
44
+ ":type:": "<class 'function'>",
45
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
46
+ },
47
+ "_last_obs": {
48
+ ":type:": "<class 'numpy.ndarray'>",
49
+ ":serialized:": "gAWV9QMAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAwAAAAAAAEtfij6D7IU/xoFVP8ytnj5RWT6/0TP1PkvtEr9xLze/AEpSvrLUIj/Jhxw/qL4OPm/9f7/tu0a/d4s4P5/y9Du7Xgi/dI1Uv7gzmD6XaZ8/fzeQv53OWTxbGOa8iOTyvnpPLz9WE6Q+weIcP2d1Z79gxGc+C15Yv67Mzb64ENQ/DmyCvx1Svz/7E1C/Y2t1vlUBoL8IGjE/uD3NPkVzYD/ibH4+MluKvtclOT/8wec8aLsqP6Rnxr8Q/KC/SfGOPdLCJr/cCXG/C7mNP75dlb96Ty8/VhOkPsHiHD9ndWe/2LchPwUWSL+vkJm+VE5nPzzgo76MzCvAvavjvlFQbTy4KWm+CpIQwEC8ur7f8s2/wPYmP1GE5b7lWDy+9kkXv7e1sz7qpMo/WYsCPegnTL1khFM/mWCKvySC3j7F8wJABOq6v1YTpD6I3dC/Z3Vnv2jBCj9h4Vi/3oLPvgXWnD+9Ury/Ngm/P8MNY7+sOOK+Goomv1xomD/hZSg/zwGMPvyu4z3E5Dm+8EY5PxP92DyV7Uc9t9Wqvya+oL8+Voo+41+Nv6sWkT4r844/7UQ4v3pPLz9WE6Q+weIcP2d1Z7/M+ls/M7ZBvyEohr7Gr9Q+ekMiv/B8/L+9O7W+iC+nvux0RT8N+p+/imGXPX0Xm788X9U+EON2P3h/xb1u/sK/0C+bvgVa1z/XKh++Bx4lvyaNVD+9eXw/eqxXPv6JtT4E6rq/VhOkPojd0L9ndWe/GQKpPrmvg7+JYD+/qJSNP/5Zpb+wVrk/1NF0v9zwP75yfqa/TEZYP/OE2D7IoS8/2ywqPvyGrj71QDk/PN/jPNuXhD2zqrG/Ny+sv9RtlT7zw3O/KTszPF5/Uz8S6oq/ek8vP1YTpD7B4hw/Z3Vnv0Ckkzyo4lS/kkrCvlWeaz+bZJm+KDk6v4kyl77yC7u9LyGNv31yE8BCraG+AXppPr1v8T45YyU+bZKjPg/82T8fe9w/Tx8aQPdoab67hIu/hnHePsBIsb/D0Us/2+uDPwTqur9WE6Q+iN3Qv16SjT969ZY/qkpMv5qupr6EnKs/ijVsvzELA78tPWy/DA1Dv8K0lz9MtgO/x+iVPbbq+z3Iuo++jzErPwZGAj8zgLq/1eyNv6A2NT+DLPC+oDL6P3siBT1BKX8/vYnYvNzVpL56Ty8/VhOkPsHiHD9ndWe/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksISxyGlIwBQ5R0lFKULg=="
50
+ },
51
+ "_last_episode_starts": {
52
+ ":type:": "<class 'numpy.ndarray'>",
53
+ ":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="
54
+ },
55
+ "_last_original_obs": {
56
+ ":type:": "<class 'numpy.ndarray'>",
57
+ ":serialized:": "gAWV9QMAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAwAAAAAAAAAAAAAMjHg1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA2qEsvQAAAAAnQuy/AAAAAFmsBz0AAAAA8SL/PwAAAAABf+e9AAAAAIVZ7T8AAAAACNWpvQAAAABZrd+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAO1NstgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAuvoD0AAAAAuSHnvwAAAABeTw0+AAAAAAZ25T8AAAAA2ff8vQAAAAB7weM/AAAAAFQEtD0AAAAA/wDlvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACkrFjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDGgP28AAAAAJqt3r8AAAAAFJsXugAAAABIIeI/AAAAAGuMLD0AAAAAdxH/PwAAAAAuVMe8AAAAAI+n9r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACoST42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAMGTQPQAAAAC+LfW/AAAAAAh4cDwAAAAAkNzpPwAAAACvZsM9AAAAAOB24j8AAAAALZD2vQAAAABoJ9q/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYRS6tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKaVuLwAAAAABof6vwAAAAD02wK9AAAAAAQ07D8AAAAAkIWnvQAAAAAGges/AAAAALVaDj4AAAAA1WLivwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALZbi7QAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBpIQC+AAAAAPs43L8AAAAAUHCEPQAAAABrmvg/AAAAAMEFuL0AAAAAyrboPwAAAAAfV+M9AAAAAAKCAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABcwuw1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAar22PQAAAADuo/O/AAAAAPIrSrsAAAAAdiPxPwAAAAC3y1Y9AAAAADzQ8T8AAAAAjdr1vQAAAADORP2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/YkOtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFAADr4AAAAAzfXqvwAAAAB14pG9AAAAAPQV4z8AAAAARDgPPQAAAAAP//s/AAAAANG9AT4AAAAADjj5vwAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksISxyGlIwBQ5R0lFKULg=="
58
+ },
59
+ "_episode_num": 0,
60
+ "use_sde": true,
61
+ "sde_sample_freq": -1,
62
+ "_current_progress_remaining": 0.0,
63
+ "_stats_window_size": 100,
64
+ "ep_info_buffer": {
65
+ ":type:": "<class 'collections.deque'>",
66
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKLKKkUKzAyMAWyUTegDjAF0lEdAqRzsSXdCV3V9lChoBkdAogqVzKcNIGgHTegDaAhHQKkjWSX+l0p1fZQoaAZHQKI85fWtlqdoB03oA2gIR0CpI8fuTibVdX2UKGgGR0CjMrXFcY65aAdN6ANoCEdAqSTetMfzSXV9lChoBkdAoHaMWIoE0WgHTegDaAhHQKkrN0Dlo111fZQoaAZHQKKMURFqi49oB03oA2gIR0CpK9IXj2i+dX2UKGgGR0Ci/Dmgi/wiaAdN6ANoCEdAqTKNBt1p03V9lChoBkdAo1gn2mHgxmgHTegDaAhHQKk0NxLCemN1fZQoaAZHQKFyLt6X0GxoB03oA2gIR0CpNtoyj59FdX2UKGgGR0CjKtgiFCb+aAdN6ANoCEdAqTuCSPluFnV9lChoBkdAoxr/Sc9W62gHTegDaAhHQKk7zYHxBmh1fZQoaAZHQKN4ImsNlRRoB03oA2gIR0CpPHt5D7ZWdX2UKGgGR0CjauWaDwpfaAdN6ANoCEdAqUJPD50r9XV9lChoBkdAosMcZLqUvGgHTegDaAhHQKlDOfSx7iR1fZQoaAZHQKOG+ZTho/RoB03oA2gIR0CpTJ5gG8mKdX2UKGgGR0CjHLmTTvy9aAdN6ANoCEdAqU4/kFOfunV9lChoBkdAnvrKF23az2gHTegDaAhHQKlQ+EAYHgR1fZQoaAZHQKN8hQCSzPdoB03oA2gIR0CpVdCKR+z/dX2UKGgGR0CjeOrzXjEOaAdN6ANoCEdAqVYcIX0oSnV9lChoBkdAoyKEiyIHkmgHTegDaAhHQKlW0ilBQep1fZQoaAZHQKMwTssxwhpoB03oA2gIR0CpW1b83uNQdX2UKGgGR0CjhmYNiH6/aAdN6ANoCEdAqVvqBVdX1nV9lChoBkdAokPvwkPcz2gHTegDaAhHQKlk6DdxhlV1fZQoaAZHQKHh37/n4fxoB03oA2gIR0CpZ4DHGS6ldX2UKGgGR0Cg2FrgGbCraAdN6ANoCEdAqWsnUF0PpnV9lChoBkdAogGUWbgCOmgHTegDaAhHQKlv3/R3NcJ1fZQoaAZHQKItmKrq+rVoB03oA2gIR0CpcChBAv+PdX2UKGgGR0ChdmHtOVPfaAdN6ANoCEdAqXDYMrmQsHV9lChoBkdAoeo+EAYHgWgHTegDaAhHQKl1TjGT9sJ1fZQoaAZHQKBVnx/d69loB03oA2gIR0CpdeZ6lchUdX2UKGgGR0ChTl8/lhgFaAdN6ANoCEdAqXyqOaOPvXV9lChoBkdAolUqFRHf/GgHTegDaAhHQKl+SBZpztF1fZQoaAZHQKHlQeXiR4hoB03oA2gIR0CpghZNXYDldX2UKGgGR0CiG6bqQiiZaAdN6ANoCEdAqYmclzEJjXV9lChoBkdAokfyrFOwgWgHTegDaAhHQKmKEqzZ6D51fZQoaAZHQKISGsmOU+toB03oA2gIR0Cpit+7L+xXdX2UKGgGR0ChzZwDV6NVaAdN6ANoCEdAqY9Hh4t6HHV9lChoBkdAoTsAF/x2CGgHTegDaAhHQKmP309QoCx1fZQoaAZHQKJezcTrVvxoB03oA2gIR0Cplrp9iMHbdX2UKGgGR0CiDEN+LFXJaAdN6ANoCEdAqZhhrxiG4HV9lChoBkdAoiKg4KhL5GgHTegDaAhHQKmbDe0ojOd1fZQoaAZHQKH7q6Lfk3loB03oA2gIR0CpoHXCj1wpdX2UKGgGR0ChvJAXEZR9aAdN6ANoCEdAqaDk78vVVnV9lChoBkdAoL1sjcEeQ2gHTegDaAhHQKmh7J/XoTx1fZQoaAZHQKElyU9pyp9oB03oA2gIR0CpqSDbJwKjdX2UKGgGR0CiTOP99+gEaAdN6ANoCEdAqaoaZhKDkHV9lChoBkdAocqGnqFAV2gHTegDaAhHQKmxG2nbZe11fZQoaAZHQKGEKTY/Vy5oB03oA2gIR0Cpsqk7nxJ/dX2UKGgGR0ChNpWtdRixaAdN6ANoCEdAqbVaZpi7TXV9lChoBkdAoFBvfj0cwWgHTegDaAhHQKm6WHVPN3Z1fZQoaAZHQJ+ao9KVY6poB03oA2gIR0CpuqIfbKzSdX2UKGgGR0CgyPW25QP7aAdN6ANoCEdAqbtWYfGMoHV9lChoBkdAnugr8zhxYWgHTegDaAhHQKnAjlrdnCh1fZQoaAZHQJx6f4k/r0JoB03oA2gIR0CpwXMd92HMdX2UKGgGR0Cgn+KCYkVvaAdN6ANoCEdAqcuN4C6pYXV9lChoBkdAnyV7V4HHFWgHTegDaAhHQKnNOwco6S11fZQoaAZHQJ/mbLOiWVxoB03oA2gIR0Cpz9ry1/lRdX2UKGgGR0CUe2QcghbGaAdN6ANoCEdAqdS47DEWI3V9lChoBkdAoRdI9zOopGgHTegDaAhHQKnU/YFJQLx1fZQoaAZHQKAJxvOQhfVoB03oA2gIR0Cp1ajUmUnpdX2UKGgGR0Cgb8c8La24aAdN6ANoCEdAqdoKPfbblHV9lChoBkdAof3kdFOO82gHTegDaAhHQKnarZX+2mZ1fZQoaAZHQKEblwbVBldoB03oA2gIR0Cp4tv/JeVtdX2UKGgGR0ChoCR0U47zaAdN6ANoCEdAqeVqYTj//HV9lChoBkdAoKniaVlf7mgHTegDaAhHQKnptLHuJDV1fZQoaAZHQKEWS72+PBBoB03oA2gIR0Cp7vcRcu8LdX2UKGgGR0CgmVOBtk4FaAdN6ANoCEdAqe9AkNWluXV9lChoBkdAoHmSqQzUJGgHTegDaAhHQKnv8njyWiV1fZQoaAZHQKDBDzVc2R9oB03oA2gIR0Cp9GYOlO45dX2UKGgGR0CiMB2ugYgraAdN6ANoCEdAqfUGgi/wiXV9lChoBkdAoihdgH/tIGgHTegDaAhHQKn71Ed/8VJ1fZQoaAZHQKJWBZ/Tb35oB03oA2gIR0Cp/YGc4HX3dX2UKGgGR0CiZmCe2/i6aAdN6ANoCEdAqgC3RNRFZ3V9lChoBkdAoS4U1l5GBmgHTegDaAhHQKoIFnyup0h1fZQoaAZHQKJUHx3FDOVoB03oA2gIR0CqCItGNJe3dX2UKGgGR0Ciwt7hWHUMaAdN6ANoCEdAqgmhJ/XoT3V9lChoBkdAoyFQhY/3WWgHTegDaAhHQKoOv4D9wWF1fZQoaAZHQKMhiTGHYYloB03oA2gIR0CqD2Sup0fYdX2UKGgGR0CjWmS7Xg+AaAdN6ANoCEdAqhYuCVbA13V9lChoBkdAozfuxOclPmgHTegDaAhHQKoXyo2GZeB1fZQoaAZHQKL/KhFmWdFoB03oA2gIR0CqGoRmCiAUdX2UKGgGR0Ch/zdnkDISaAdN6ANoCEdAqh9Z+KCQLnV9lChoBkdAormLtkWhy2gHTegDaAhHQKofx5dnkDJ1fZQoaAZHQKI/UoVmBe5oB03oA2gIR0CqIMo0ZWJadX2UKGgGR0ChFmuQ6p5vaAdN6ANoCEdAqie+KfnOjnV9lChoBkdAoMCX8EV32WgHTegDaAhHQKoouPXCj1x1fZQoaAZHQKIWq0b961NoB03oA2gIR0CqMG9NFjNIdX2UKGgGR0ChW2w2MsH0aAdN6ANoCEdAqjIabe/HpHV9lChoBkdAoh0jGecx02gHTegDaAhHQKo0yaOxSpB1fZQoaAZHQKISur4Fia1oB03oA2gIR0CqOZZXU6PsdX2UKGgGR0CiiQYBNmDlaAdN6ANoCEdAqjngDHOryXV9lChoBkdAoNfz8aXKKmgHTegDaAhHQKo6jbmEGqx1fZQoaAZHQKKkDAlfJFNoB03oA2gIR0CqPu85S3spdX2UKGgGR0CiufxWtEG8aAdN6ANoCEdAqj+U7p3X7XV9lChoBkdAoquM9IPK+2gHTegDaAhHQKpJ0EM9bHJ1fZQoaAZHQKMeNWattANoB03oA2gIR0CqTBF3pwCKdX2UKGgGR0Ci9RonrpqzaAdN6ANoCEdAqk6wnndO7HV9lChoBkdAow7FSOzY3GgHTegDaAhHQKpTeqEvkBF1fZQoaAZHQKL9nnSv1UVoB03oA2gIR0CqU8H58BuGdX2UKGgGR0Ci1fcZ1mrbaAdN6ANoCEdAqlR1TrE9+3VlLg=="
67
+ },
68
+ "ep_success_buffer": {
69
+ ":type:": "<class 'collections.deque'>",
70
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
71
+ },
72
+ "_n_updates": 31250,
73
+ "n_steps": 8,
74
+ "gamma": 0.99,
75
+ "gae_lambda": 0.9,
76
+ "ent_coef": 0.0,
77
+ "vf_coef": 0.4,
78
+ "max_grad_norm": 0.5,
79
+ "normalize_advantage": false,
80
+ "observation_space": {
81
+ ":type:": "<class 'gym.spaces.box.Box'>",
82
+ ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
83
+ "dtype": "float32",
84
+ "_shape": [
85
+ 28
86
+ ],
87
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
88
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
89
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
90
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
91
+ "_np_random": null
92
+ },
93
+ "action_space": {
94
+ ":type:": "<class 'gym.spaces.box.Box'>",
95
+ ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
96
+ "dtype": "float32",
97
+ "_shape": [
98
+ 8
99
+ ],
100
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
101
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
102
+ "bounded_below": "[ True True True True True True True True]",
103
+ "bounded_above": "[ True True True True True True True True]",
104
+ "_np_random": null
105
+ },
106
+ "n_envs": 8
107
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f96420c283e667558335af936299d9d2ca482c92e258f26f80dfc3a08701333
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f88314e6a3983a6a8c6e0e93baf8f7e9d8ff89c2acab786d408abe0ce4cc44fa
3
+ size 56894
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
2
+ - Python: 3.10.11
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f2acaa16830>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f2acaa168c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f2acaa16950>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f2acaa169e0>", "_build": "<function ActorCriticPolicy._build at 0x7f2acaa16a70>", "forward": "<function ActorCriticPolicy.forward at 0x7f2acaa16b00>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f2acaa16b90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f2acaa16c20>", "_predict": "<function ActorCriticPolicy._predict at 0x7f2acaa16cb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f2acaa16d40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f2acaa16dd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f2acaa16e60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2acaa0fac0>"}, "verbose": 0, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1684936860409437496, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9QMAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAwAAAAAAAEtfij6D7IU/xoFVP8ytnj5RWT6/0TP1PkvtEr9xLze/AEpSvrLUIj/Jhxw/qL4OPm/9f7/tu0a/d4s4P5/y9Du7Xgi/dI1Uv7gzmD6XaZ8/fzeQv53OWTxbGOa8iOTyvnpPLz9WE6Q+weIcP2d1Z79gxGc+C15Yv67Mzb64ENQ/DmyCvx1Svz/7E1C/Y2t1vlUBoL8IGjE/uD3NPkVzYD/ibH4+MluKvtclOT/8wec8aLsqP6Rnxr8Q/KC/SfGOPdLCJr/cCXG/C7mNP75dlb96Ty8/VhOkPsHiHD9ndWe/2LchPwUWSL+vkJm+VE5nPzzgo76MzCvAvavjvlFQbTy4KWm+CpIQwEC8ur7f8s2/wPYmP1GE5b7lWDy+9kkXv7e1sz7qpMo/WYsCPegnTL1khFM/mWCKvySC3j7F8wJABOq6v1YTpD6I3dC/Z3Vnv2jBCj9h4Vi/3oLPvgXWnD+9Ury/Ngm/P8MNY7+sOOK+Goomv1xomD/hZSg/zwGMPvyu4z3E5Dm+8EY5PxP92DyV7Uc9t9Wqvya+oL8+Voo+41+Nv6sWkT4r844/7UQ4v3pPLz9WE6Q+weIcP2d1Z7/M+ls/M7ZBvyEohr7Gr9Q+ekMiv/B8/L+9O7W+iC+nvux0RT8N+p+/imGXPX0Xm788X9U+EON2P3h/xb1u/sK/0C+bvgVa1z/XKh++Bx4lvyaNVD+9eXw/eqxXPv6JtT4E6rq/VhOkPojd0L9ndWe/GQKpPrmvg7+JYD+/qJSNP/5Zpb+wVrk/1NF0v9zwP75yfqa/TEZYP/OE2D7IoS8/2ywqPvyGrj71QDk/PN/jPNuXhD2zqrG/Ny+sv9RtlT7zw3O/KTszPF5/Uz8S6oq/ek8vP1YTpD7B4hw/Z3Vnv0Ckkzyo4lS/kkrCvlWeaz+bZJm+KDk6v4kyl77yC7u9LyGNv31yE8BCraG+AXppPr1v8T45YyU+bZKjPg/82T8fe9w/Tx8aQPdoab67hIu/hnHePsBIsb/D0Us/2+uDPwTqur9WE6Q+iN3Qv16SjT969ZY/qkpMv5qupr6EnKs/ijVsvzELA78tPWy/DA1Dv8K0lz9MtgO/x+iVPbbq+z3Iuo++jzErPwZGAj8zgLq/1eyNv6A2NT+DLPC+oDL6P3siBT1BKX8/vYnYvNzVpL56Ty8/VhOkPsHiHD9ndWe/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksISxyGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9QMAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAwAAAAAAAAAAAAAMjHg1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA2qEsvQAAAAAnQuy/AAAAAFmsBz0AAAAA8SL/PwAAAAABf+e9AAAAAIVZ7T8AAAAACNWpvQAAAABZrd+/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAO1NstgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgAuvoD0AAAAAuSHnvwAAAABeTw0+AAAAAAZ25T8AAAAA2ff8vQAAAAB7weM/AAAAAFQEtD0AAAAA/wDlvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACkrFjYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDGgP28AAAAAJqt3r8AAAAAFJsXugAAAABIIeI/AAAAAGuMLD0AAAAAdxH/PwAAAAAuVMe8AAAAAI+n9r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACoST42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAMGTQPQAAAAC+LfW/AAAAAAh4cDwAAAAAkNzpPwAAAACvZsM9AAAAAOB24j8AAAAALZD2vQAAAABoJ9q/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYRS6tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKaVuLwAAAAABof6vwAAAAD02wK9AAAAAAQ07D8AAAAAkIWnvQAAAAAGges/AAAAALVaDj4AAAAA1WLivwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAALZbi7QAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBpIQC+AAAAAPs43L8AAAAAUHCEPQAAAABrmvg/AAAAAMEFuL0AAAAAyrboPwAAAAAfV+M9AAAAAAKCAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABcwuw1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAar22PQAAAADuo/O/AAAAAPIrSrsAAAAAdiPxPwAAAAC3y1Y9AAAAADzQ8T8AAAAAjdr1vQAAAADORP2/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA/YkOtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFAADr4AAAAAzfXqvwAAAAB14pG9AAAAAPQV4z8AAAAARDgPPQAAAAAP//s/AAAAANG9AT4AAAAADjj5vwAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksISxyGlIwBQ5R0lFKULg=="}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKLKKkUKzAyMAWyUTegDjAF0lEdAqRzsSXdCV3V9lChoBkdAogqVzKcNIGgHTegDaAhHQKkjWSX+l0p1fZQoaAZHQKI85fWtlqdoB03oA2gIR0CpI8fuTibVdX2UKGgGR0CjMrXFcY65aAdN6ANoCEdAqSTetMfzSXV9lChoBkdAoHaMWIoE0WgHTegDaAhHQKkrN0Dlo111fZQoaAZHQKKMURFqi49oB03oA2gIR0CpK9IXj2i+dX2UKGgGR0Ci/Dmgi/wiaAdN6ANoCEdAqTKNBt1p03V9lChoBkdAo1gn2mHgxmgHTegDaAhHQKk0NxLCemN1fZQoaAZHQKFyLt6X0GxoB03oA2gIR0CpNtoyj59FdX2UKGgGR0CjKtgiFCb+aAdN6ANoCEdAqTuCSPluFnV9lChoBkdAoxr/Sc9W62gHTegDaAhHQKk7zYHxBmh1fZQoaAZHQKN4ImsNlRRoB03oA2gIR0CpPHt5D7ZWdX2UKGgGR0CjauWaDwpfaAdN6ANoCEdAqUJPD50r9XV9lChoBkdAosMcZLqUvGgHTegDaAhHQKlDOfSx7iR1fZQoaAZHQKOG+ZTho/RoB03oA2gIR0CpTJ5gG8mKdX2UKGgGR0CjHLmTTvy9aAdN6ANoCEdAqU4/kFOfunV9lChoBkdAnvrKF23az2gHTegDaAhHQKlQ+EAYHgR1fZQoaAZHQKN8hQCSzPdoB03oA2gIR0CpVdCKR+z/dX2UKGgGR0CjeOrzXjEOaAdN6ANoCEdAqVYcIX0oSnV9lChoBkdAoyKEiyIHkmgHTegDaAhHQKlW0ilBQep1fZQoaAZHQKMwTssxwhpoB03oA2gIR0CpW1b83uNQdX2UKGgGR0CjhmYNiH6/aAdN6ANoCEdAqVvqBVdX1nV9lChoBkdAokPvwkPcz2gHTegDaAhHQKlk6DdxhlV1fZQoaAZHQKHh37/n4fxoB03oA2gIR0CpZ4DHGS6ldX2UKGgGR0Cg2FrgGbCraAdN6ANoCEdAqWsnUF0PpnV9lChoBkdAogGUWbgCOmgHTegDaAhHQKlv3/R3NcJ1fZQoaAZHQKItmKrq+rVoB03oA2gIR0CpcChBAv+PdX2UKGgGR0ChdmHtOVPfaAdN6ANoCEdAqXDYMrmQsHV9lChoBkdAoeo+EAYHgWgHTegDaAhHQKl1TjGT9sJ1fZQoaAZHQKBVnx/d69loB03oA2gIR0CpdeZ6lchUdX2UKGgGR0ChTl8/lhgFaAdN6ANoCEdAqXyqOaOPvXV9lChoBkdAolUqFRHf/GgHTegDaAhHQKl+SBZpztF1fZQoaAZHQKHlQeXiR4hoB03oA2gIR0CpghZNXYDldX2UKGgGR0CiG6bqQiiZaAdN6ANoCEdAqYmclzEJjXV9lChoBkdAokfyrFOwgWgHTegDaAhHQKmKEqzZ6D51fZQoaAZHQKISGsmOU+toB03oA2gIR0Cpit+7L+xXdX2UKGgGR0ChzZwDV6NVaAdN6ANoCEdAqY9Hh4t6HHV9lChoBkdAoTsAF/x2CGgHTegDaAhHQKmP309QoCx1fZQoaAZHQKJezcTrVvxoB03oA2gIR0Cplrp9iMHbdX2UKGgGR0CiDEN+LFXJaAdN6ANoCEdAqZhhrxiG4HV9lChoBkdAoiKg4KhL5GgHTegDaAhHQKmbDe0ojOd1fZQoaAZHQKH7q6Lfk3loB03oA2gIR0CpoHXCj1wpdX2UKGgGR0ChvJAXEZR9aAdN6ANoCEdAqaDk78vVVnV9lChoBkdAoL1sjcEeQ2gHTegDaAhHQKmh7J/XoTx1fZQoaAZHQKElyU9pyp9oB03oA2gIR0CpqSDbJwKjdX2UKGgGR0CiTOP99+gEaAdN6ANoCEdAqaoaZhKDkHV9lChoBkdAocqGnqFAV2gHTegDaAhHQKmxG2nbZe11fZQoaAZHQKGEKTY/Vy5oB03oA2gIR0Cpsqk7nxJ/dX2UKGgGR0ChNpWtdRixaAdN6ANoCEdAqbVaZpi7TXV9lChoBkdAoFBvfj0cwWgHTegDaAhHQKm6WHVPN3Z1fZQoaAZHQJ+ao9KVY6poB03oA2gIR0CpuqIfbKzSdX2UKGgGR0CgyPW25QP7aAdN6ANoCEdAqbtWYfGMoHV9lChoBkdAnugr8zhxYWgHTegDaAhHQKnAjlrdnCh1fZQoaAZHQJx6f4k/r0JoB03oA2gIR0CpwXMd92HMdX2UKGgGR0Cgn+KCYkVvaAdN6ANoCEdAqcuN4C6pYXV9lChoBkdAnyV7V4HHFWgHTegDaAhHQKnNOwco6S11fZQoaAZHQJ/mbLOiWVxoB03oA2gIR0Cpz9ry1/lRdX2UKGgGR0CUe2QcghbGaAdN6ANoCEdAqdS47DEWI3V9lChoBkdAoRdI9zOopGgHTegDaAhHQKnU/YFJQLx1fZQoaAZHQKAJxvOQhfVoB03oA2gIR0Cp1ajUmUnpdX2UKGgGR0Cgb8c8La24aAdN6ANoCEdAqdoKPfbblHV9lChoBkdAof3kdFOO82gHTegDaAhHQKnarZX+2mZ1fZQoaAZHQKEblwbVBldoB03oA2gIR0Cp4tv/JeVtdX2UKGgGR0ChoCR0U47zaAdN6ANoCEdAqeVqYTj//HV9lChoBkdAoKniaVlf7mgHTegDaAhHQKnptLHuJDV1fZQoaAZHQKEWS72+PBBoB03oA2gIR0Cp7vcRcu8LdX2UKGgGR0CgmVOBtk4FaAdN6ANoCEdAqe9AkNWluXV9lChoBkdAoHmSqQzUJGgHTegDaAhHQKnv8njyWiV1fZQoaAZHQKDBDzVc2R9oB03oA2gIR0Cp9GYOlO45dX2UKGgGR0CiMB2ugYgraAdN6ANoCEdAqfUGgi/wiXV9lChoBkdAoihdgH/tIGgHTegDaAhHQKn71Ed/8VJ1fZQoaAZHQKJWBZ/Tb35oB03oA2gIR0Cp/YGc4HX3dX2UKGgGR0CiZmCe2/i6aAdN6ANoCEdAqgC3RNRFZ3V9lChoBkdAoS4U1l5GBmgHTegDaAhHQKoIFnyup0h1fZQoaAZHQKJUHx3FDOVoB03oA2gIR0CqCItGNJe3dX2UKGgGR0Ciwt7hWHUMaAdN6ANoCEdAqgmhJ/XoT3V9lChoBkdAoyFQhY/3WWgHTegDaAhHQKoOv4D9wWF1fZQoaAZHQKMhiTGHYYloB03oA2gIR0CqD2Sup0fYdX2UKGgGR0CjWmS7Xg+AaAdN6ANoCEdAqhYuCVbA13V9lChoBkdAozfuxOclPmgHTegDaAhHQKoXyo2GZeB1fZQoaAZHQKL/KhFmWdFoB03oA2gIR0CqGoRmCiAUdX2UKGgGR0Ch/zdnkDISaAdN6ANoCEdAqh9Z+KCQLnV9lChoBkdAormLtkWhy2gHTegDaAhHQKofx5dnkDJ1fZQoaAZHQKI/UoVmBe5oB03oA2gIR0CqIMo0ZWJadX2UKGgGR0ChFmuQ6p5vaAdN6ANoCEdAqie+KfnOjnV9lChoBkdAoMCX8EV32WgHTegDaAhHQKoouPXCj1x1fZQoaAZHQKIWq0b961NoB03oA2gIR0CqMG9NFjNIdX2UKGgGR0ChW2w2MsH0aAdN6ANoCEdAqjIabe/HpHV9lChoBkdAoh0jGecx02gHTegDaAhHQKo0yaOxSpB1fZQoaAZHQKISur4Fia1oB03oA2gIR0CqOZZXU6PsdX2UKGgGR0CiiQYBNmDlaAdN6ANoCEdAqjngDHOryXV9lChoBkdAoNfz8aXKKmgHTegDaAhHQKo6jbmEGqx1fZQoaAZHQKKkDAlfJFNoB03oA2gIR0CqPu85S3spdX2UKGgGR0CiufxWtEG8aAdN6ANoCEdAqj+U7p3X7XV9lChoBkdAoquM9IPK+2gHTegDaAhHQKpJ0EM9bHJ1fZQoaAZHQKMeNWattANoB03oA2gIR0CqTBF3pwCKdX2UKGgGR0Ci9RonrpqzaAdN6ANoCEdAqk6wnndO7HV9lChoBkdAow7FSOzY3GgHTegDaAhHQKpTeqEvkBF1fZQoaAZHQKL9nnSv1UVoB03oA2gIR0CqU8H58BuGdX2UKGgGR0Ci1fcZ1mrbaAdN6ANoCEdAqlR1TrE9+3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 8, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc870f1e90e9e07f5c75450d3900f991c2f991425572d6d2e588624d0e0abd56
3
+ size 1307715
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 2387.398973122722, "std_reward": 68.7268259666202, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-05-24T14:56:20.773743"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a6b045652fe1eb1bb1250fdc5a32432869022974c6aa9198d4d31f4ff007ecb
3
+ size 2176