Snim commited on
Commit
d29c3d4
1 Parent(s): 9d44898

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 241.15 +/- 14.43
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f33cb30aca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f33cb30ad30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f33cb30adc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f33cb30ae50>", "_build": "<function ActorCriticPolicy._build at 0x7f33cb30aee0>", "forward": "<function ActorCriticPolicy.forward at 0x7f33cb30af70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f33cb30c040>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f33cb30c0d0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f33cb30c160>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f33cb30c1f0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f33cb30c280>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f33cb30c310>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f33cb3078d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673713933326715984, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGuxh75BlII/o7URvxSGrL6crqG+YSRLvgAAAAAAAAAAc8tvPntrYj/tYec9lHmVvsDqyT5qCPO9AAAAAAAAAACaJuG9XnpQPyr1Bb21E3y+0Km4PDZppLwAAAAAAAAAAMIwjb4KKIs/eiPkuzZScL7Kf0O+Vj8vPgAAAAAAAAAAZkKGvCmkVLo+vGG6HvA9NQu4CLtyB4M5AACAPwAAgD9zdoG+7+JDPz1yFD6sGI++7T+QPdW9gb0AAAAAAAAAAGD7Kj5Oerg/SQQRP1Zpg74mY6Q+KD6EPgAAAAAAAAAAehUJvmW7Dj8zIJI9RkEpvhustT1QsLC9AAAAAAAAAAAAz+08FKihutDZn7peyWa1a2OkujJgtzkAAIA/AACAPwAzgbzwiLI/MAhKvi/YOr5jkzq81fG0vAAAAAAAAAAADRWSPZymkj4KnuU85+NqvkAHMD19Dgy+AAAAAAAAAAAaIZa9XHNrulsdrLpaRwq1rji3uqUYyDkAAIA/AACAP20aAT41feU+LC8svvtTCr7F1sW8p26ovAAAAAAAAAAA+hKAPsK5Rj8ApJI9ttDVvg7XuT5NEnu+AAAAAAAAAACNjLI936FSP8Dc9b0ehkO+PNk2PVgpXr0AAAAAAAAAAADUGr6DGJk/AhBHvmU+j77D6C2+DuWSPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIk+NO6aBycECUhpRSlIwBbJRNOwGMAXSUR0CQy36DoQnQdX2UKGgGaAloD0MIONibGJKucECUhpRSlGgVTXoBaBZHQJDNxwWFev91fZQoaAZoCWgPQwgw8UdRZy5uQJSGlFKUaBVNPQFoFkdAkNCk1Muez3V9lChoBmgJaA9DCNoDrcCQnmRAlIaUUpRoFU3oA2gWR0CQ0PUaQ3gldX2UKGgGaAloD0MIINPaNDYWbECUhpRSlGgVTYIBaBZHQJDREVSGahJ1fZQoaAZoCWgPQwgD6zh+aBpwQJSGlFKUaBVNlgFoFkdAkNFDjvNNanV9lChoBmgJaA9DCBhBYyaRBnFAlIaUUpRoFU2XAWgWR0CQ0eLUkOZtdX2UKGgGaAloD0MIYyZRL/gYN0CUhpRSlGgVTTYBaBZHQJDSSp84Pwx1fZQoaAZoCWgPQwgwKT4+IdpqQJSGlFKUaBVNTwFoFkdAkNSvmcOLBXV9lChoBmgJaA9DCO2BVmBIp2pAlIaUUpRoFU13AWgWR0CQ1xnLaEi/dX2UKGgGaAloD0MIHtydtdsQb0CUhpRSlGgVTYYBaBZHQJDrvpW3jMp1fZQoaAZoCWgPQwgKMZdUrYFwQJSGlFKUaBVNUAFoFkdAkOvf95yEMHV9lChoBmgJaA9DCGprRDCODXBAlIaUUpRoFU1mAWgWR0CQ7DqI7/4qdX2UKGgGaAloD0MIH2XEBeAccUCUhpRSlGgVTXkBaBZHQJDtIyHmA9V1fZQoaAZoCWgPQwjhlo+kJPFpQJSGlFKUaBVNAAJoFkdAkO8I4MnZ03V9lChoBmgJaA9DCD/EBgvn7XBAlIaUUpRoFU2LA2gWR0CQ73Pu5SWJdX2UKGgGaAloD0MIILWJk/vMb0CUhpRSlGgVTTwBaBZHQJDwDY9Pk7x1fZQoaAZoCWgPQwj/WfPjL0psQJSGlFKUaBVNwANoFkdAkPCf8yeqaXV9lChoBmgJaA9DCGlSCrr9+HFAlIaUUpRoFU2EAWgWR0CQ8t5S3soldX2UKGgGaAloD0MIBJKwb6eCcECUhpRSlGgVTYcBaBZHQJDzRNVR1ox1fZQoaAZoCWgPQwjeyafH9g9xQJSGlFKUaBVNgAFoFkdAkPOYe5nUUnV9lChoBmgJaA9DCLde04OC/m5AlIaUUpRoFU2WAWgWR0CQ9SLXL/0edX2UKGgGaAloD0MIAKq4cUvTcECUhpRSlGgVTYoBaBZHQJD30LNOdoZ1fZQoaAZoCWgPQwgKoYMu4eFuQJSGlFKUaBVNcwFoFkdAkPm2mxdIG3V9lChoBmgJaA9DCGWO5V016HBAlIaUUpRoFU1eAWgWR0CQ+ykcjqwAdX2UKGgGaAloD0MIcQLTad0WcECUhpRSlGgVTUkBaBZHQJD7046wMYx1fZQoaAZoCWgPQwjzyB8MvC5uQJSGlFKUaBVNeQFoFkdAkPyL5VOsT3V9lChoBmgJaA9DCA5LAz+qYnBAlIaUUpRoFU2wAmgWR0CQ/dVMEidKdX2UKGgGaAloD0MICTauf9cbbkCUhpRSlGgVTaIBaBZHQJD+w20iQkp1fZQoaAZoCWgPQwjBqKROQDFuQJSGlFKUaBVNVgFoFkdAkP+ZxiobXHV9lChoBmgJaA9DCGniHeBJ03FAlIaUUpRoFU1qAWgWR0CQ/83ueBhAdX2UKGgGaAloD0MIh29h3XiVb0CUhpRSlGgVTX0BaBZHQJEAJa8pTdd1fZQoaAZoCWgPQwhhwf2AB+VqQJSGlFKUaBVNWgFoFkdAkQBWfseGPHV9lChoBmgJaA9DCBtHrMWnK3BAlIaUUpRoFU1HAWgWR0CRAZhUipvQdX2UKGgGaAloD0MIi08BMB6YcECUhpRSlGgVTVkBaBZHQJECk+RoysV1fZQoaAZoCWgPQwgLJZNTuzNtQJSGlFKUaBVNTwFoFkdAkQOwmJFb3XV9lChoBmgJaA9DCNujN9xHPHFAlIaUUpRoFU2AAWgWR0CRBDekpI+XdX2UKGgGaAloD0MINC2xMhpdbECUhpRSlGgVTVcBaBZHQJEF7d2xIJ91fZQoaAZoCWgPQwjAriZPWQJxQJSGlFKUaBVNXQFoFkdAkQejEehf0HV9lChoBmgJaA9DCDAsf76tzm5AlIaUUpRoFU1ZAWgWR0CRCLb+cYqHdX2UKGgGaAloD0MIpfRMLzGJcUCUhpRSlGgVTWEBaBZHQJEJpqEeyRl1fZQoaAZoCWgPQwjL8+DurK1tQJSGlFKUaBVNcAFoFkdAkQxqLS/j83V9lChoBmgJaA9DCNbjvtU6g3BAlIaUUpRoFU1EAWgWR0CRDIQw9JSSdX2UKGgGaAloD0MIHvmDgefUUkCUhpRSlGgVTegDaBZHQJEMwaUA1el1fZQoaAZoCWgPQwj/5zBfXoRsQJSGlFKUaBVNZwFoFkdAkQz9LYf4h3V9lChoBmgJaA9DCCNJEK4AFnBAlIaUUpRoFU2CAWgWR0CRDwYukDZEdX2UKGgGaAloD0MIpONqZFcNbUCUhpRSlGgVTXcBaBZHQJEPJ81Gb1B1fZQoaAZoCWgPQwiUF5mAX3BxQJSGlFKUaBVN2QFoFkdAkQ+56dDpknV9lChoBmgJaA9DCKKyYU3lRW9AlIaUUpRoFU1bAWgWR0CREKOy3Td+dX2UKGgGaAloD0MIRmEXRQ/pbkCUhpRSlGgVTawBaBZHQJERQsg+yJN1fZQoaAZoCWgPQwhu+rMf6bJxQJSGlFKUaBVNZAFoFkdAkRITRIBikXV9lChoBmgJaA9DCKNAn8iT929AlIaUUpRoFU2pAWgWR0CREmurp7kXdX2UKGgGaAloD0MIsMivH+L4cUCUhpRSlGgVTWQBaBZHQJESk/LTx5N1fZQoaAZoCWgPQwgWiQlq+BRuQJSGlFKUaBVNYgFoFkdAkRQJGnXNDHV9lChoBmgJaA9DCF8M5US70W9AlIaUUpRoFU1iAWgWR0CRKB8xKxs3dX2UKGgGaAloD0MIHSEDeXYXb0CUhpRSlGgVTUEBaBZHQJEopoPCl8B1fZQoaAZoCWgPQwhVoYFYtpJuQJSGlFKUaBVNhQFoFkdAkSpbwe/5+HV9lChoBmgJaA9DCKuSyD6I8HBAlIaUUpRoFU1bAWgWR0CRLEv0RODbdX2UKGgGaAloD0MIOfJAZBHeb0CUhpRSlGgVTW8BaBZHQJEs7yFwkxB1fZQoaAZoCWgPQwgKvJNPj4duQJSGlFKUaBVNegFoFkdAkS1QxWT5f3V9lChoBmgJaA9DCLjIPV1dN25AlIaUUpRoFU2RAWgWR0CRLsabWmP6dX2UKGgGaAloD0MIca/MW3Uob0CUhpRSlGgVTV8BaBZHQJEux35eqrB1fZQoaAZoCWgPQwjluFM6mOtxQJSGlFKUaBVNVAFoFkdAkS7sRHww03V9lChoBmgJaA9DCL5muWz0inBAlIaUUpRoFU1sAWgWR0CRLx2exwAEdX2UKGgGaAloD0MIzXLZ6By2bUCUhpRSlGgVTTYBaBZHQJEvYTyrgfl1fZQoaAZoCWgPQwg3NdB8TmBxQJSGlFKUaBVNdQFoFkdAkTDYht+CsnV9lChoBmgJaA9DCPp8lBEXAm5AlIaUUpRoFU1QAWgWR0CRMU9q1w5vdX2UKGgGaAloD0MIca32sBe0a0CUhpRSlGgVTWcBaBZHQJExtr2xptd1fZQoaAZoCWgPQwh7EticA4tvQJSGlFKUaBVNcAFoFkdAkTJxVU+9rXV9lChoBmgJaA9DCH0lkBL7PXFAlIaUUpRoFU1DAWgWR0CRMnXzDn/2dX2UKGgGaAloD0MIH73hPvITb0CUhpRSlGgVTT4BaBZHQJEz+kwevIR1fZQoaAZoCWgPQwhwC5bqgrptQJSGlFKUaBVNbQFoFkdAkTT3n2ZiNXV9lChoBmgJaA9DCFitTPiloHFAlIaUUpRoFU2AAWgWR0CROAde6ZpjdX2UKGgGaAloD0MIat0GtR8DcUCUhpRSlGgVTWMBaBZHQJE4zkKeCkJ1fZQoaAZoCWgPQwgXZwxzgvBtQJSGlFKUaBVNVQFoFkdAkTjanvUjLXV9lChoBmgJaA9DCMO5hhka8WpAlIaUUpRoFU1sAWgWR0CROjIcBEKFdX2UKGgGaAloD0MIQBaiQ6AEcUCUhpRSlGgVTU8BaBZHQJE6cgA6uGN1fZQoaAZoCWgPQwhIiV3bW6trQJSGlFKUaBVNUAFoFkdAkTp9v0h/zHV9lChoBmgJaA9DCOI9B5ZjFXBAlIaUUpRoFU1cAWgWR0CRO1cebNKRdX2UKGgGaAloD0MIsOWV6y1VcECUhpRSlGgVTXYBaBZHQJE8niFTNt91fZQoaAZoCWgPQwi4eHjPgf1vQJSGlFKUaBVNYwFoFkdAkT2cpkPMCHV9lChoBmgJaA9DCJbMsbwrzmtAlIaUUpRoFU2fAWgWR0CRPa1vl2eQdX2UKGgGaAloD0MILxUb8zqHbUCUhpRSlGgVTWABaBZHQJE994oqkM11fZQoaAZoCWgPQwgyVTAqKd5uQJSGlFKUaBVNTwFoFkdAkT6S/wiJO3V9lChoBmgJaA9DCMUfRZ25dUVAlIaUUpRoFU0rAWgWR0CRPwkSElE7dX2UKGgGaAloD0MIjX+fcaGbcECUhpRSlGgVTYYBaBZHQJE/X/CIk7h1fZQoaAZoCWgPQwj44/bLpxZxQJSGlFKUaBVNiwFoFkdAkUAnktEofHV9lChoBmgJaA9DCHNk5ZdB7G1AlIaUUpRoFU1NAWgWR0CRQ8OMERradX2UKGgGaAloD0MIILWJk3tYbUCUhpRSlGgVTVEBaBZHQJFGi6pYLb51fZQoaAZoCWgPQwhmMbH5uLZuQJSGlFKUaBVNYQFoFkdAkUdjyjHn2nV9lChoBmgJaA9DCIUGYtmMoXBAlIaUUpRoFU2kAWgWR0CRSMA+IMz/dX2UKGgGaAloD0MI4E237BBeckCUhpRSlGgVTXEBaBZHQJFJXrxAjY91fZQoaAZoCWgPQwg9nMB0WsVtQJSGlFKUaBVNnQFoFkdAkUopGjKxLXV9lChoBmgJaA9DCP7Soj6JkHBAlIaUUpRoFU0zAmgWR0CRSwyD7IkrdX2UKGgGaAloD0MIIjgu46aPbECUhpRSlGgVTdIBaBZHQJFLGTwDvE11fZQoaAZoCWgPQwivsOB+AH5wQJSGlFKUaBVNfgFoFkdAkUuCn5zo2XV9lChoBmgJaA9DCGVUGcZdwnFAlIaUUpRoFU1OAWgWR0CRS+ySV4X5dX2UKGgGaAloD0MIZ3v0hnu3b0CUhpRSlGgVTXgBaBZHQJFMYGIKtxN1fZQoaAZoCWgPQwgs9MEyNqhvQJSGlFKUaBVNeQFoFkdAkUzE8zQ/o3V9lChoBmgJaA9DCO0t5XyxpmhAlIaUUpRoFU2WAWgWR0CRTWY7q6e5dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3f290418878b4ddb0c7ea977ad8b937bee78d79ad54cdc5a8252b35583c67ac
3
+ size 147424
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f33cb30aca0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f33cb30ad30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f33cb30adc0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f33cb30ae50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f33cb30aee0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f33cb30af70>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f33cb30c040>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f33cb30c0d0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f33cb30c160>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f33cb30c1f0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f33cb30c280>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f33cb30c310>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f33cb3078d0>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 1015808,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673713933326715984,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGuxh75BlII/o7URvxSGrL6crqG+YSRLvgAAAAAAAAAAc8tvPntrYj/tYec9lHmVvsDqyT5qCPO9AAAAAAAAAACaJuG9XnpQPyr1Bb21E3y+0Km4PDZppLwAAAAAAAAAAMIwjb4KKIs/eiPkuzZScL7Kf0O+Vj8vPgAAAAAAAAAAZkKGvCmkVLo+vGG6HvA9NQu4CLtyB4M5AACAPwAAgD9zdoG+7+JDPz1yFD6sGI++7T+QPdW9gb0AAAAAAAAAAGD7Kj5Oerg/SQQRP1Zpg74mY6Q+KD6EPgAAAAAAAAAAehUJvmW7Dj8zIJI9RkEpvhustT1QsLC9AAAAAAAAAAAAz+08FKihutDZn7peyWa1a2OkujJgtzkAAIA/AACAPwAzgbzwiLI/MAhKvi/YOr5jkzq81fG0vAAAAAAAAAAADRWSPZymkj4KnuU85+NqvkAHMD19Dgy+AAAAAAAAAAAaIZa9XHNrulsdrLpaRwq1rji3uqUYyDkAAIA/AACAP20aAT41feU+LC8svvtTCr7F1sW8p26ovAAAAAAAAAAA+hKAPsK5Rj8ApJI9ttDVvg7XuT5NEnu+AAAAAAAAAACNjLI936FSP8Dc9b0ehkO+PNk2PVgpXr0AAAAAAAAAAADUGr6DGJk/AhBHvmU+j77D6C2+DuWSPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.015808000000000044,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIk+NO6aBycECUhpRSlIwBbJRNOwGMAXSUR0CQy36DoQnQdX2UKGgGaAloD0MIONibGJKucECUhpRSlGgVTXoBaBZHQJDNxwWFev91fZQoaAZoCWgPQwgw8UdRZy5uQJSGlFKUaBVNPQFoFkdAkNCk1Muez3V9lChoBmgJaA9DCNoDrcCQnmRAlIaUUpRoFU3oA2gWR0CQ0PUaQ3gldX2UKGgGaAloD0MIINPaNDYWbECUhpRSlGgVTYIBaBZHQJDREVSGahJ1fZQoaAZoCWgPQwgD6zh+aBpwQJSGlFKUaBVNlgFoFkdAkNFDjvNNanV9lChoBmgJaA9DCBhBYyaRBnFAlIaUUpRoFU2XAWgWR0CQ0eLUkOZtdX2UKGgGaAloD0MIYyZRL/gYN0CUhpRSlGgVTTYBaBZHQJDSSp84Pwx1fZQoaAZoCWgPQwgwKT4+IdpqQJSGlFKUaBVNTwFoFkdAkNSvmcOLBXV9lChoBmgJaA9DCO2BVmBIp2pAlIaUUpRoFU13AWgWR0CQ1xnLaEi/dX2UKGgGaAloD0MIHtydtdsQb0CUhpRSlGgVTYYBaBZHQJDrvpW3jMp1fZQoaAZoCWgPQwgKMZdUrYFwQJSGlFKUaBVNUAFoFkdAkOvf95yEMHV9lChoBmgJaA9DCGprRDCODXBAlIaUUpRoFU1mAWgWR0CQ7DqI7/4qdX2UKGgGaAloD0MIH2XEBeAccUCUhpRSlGgVTXkBaBZHQJDtIyHmA9V1fZQoaAZoCWgPQwjhlo+kJPFpQJSGlFKUaBVNAAJoFkdAkO8I4MnZ03V9lChoBmgJaA9DCD/EBgvn7XBAlIaUUpRoFU2LA2gWR0CQ73Pu5SWJdX2UKGgGaAloD0MIILWJk/vMb0CUhpRSlGgVTTwBaBZHQJDwDY9Pk7x1fZQoaAZoCWgPQwj/WfPjL0psQJSGlFKUaBVNwANoFkdAkPCf8yeqaXV9lChoBmgJaA9DCGlSCrr9+HFAlIaUUpRoFU2EAWgWR0CQ8t5S3soldX2UKGgGaAloD0MIBJKwb6eCcECUhpRSlGgVTYcBaBZHQJDzRNVR1ox1fZQoaAZoCWgPQwjeyafH9g9xQJSGlFKUaBVNgAFoFkdAkPOYe5nUUnV9lChoBmgJaA9DCLde04OC/m5AlIaUUpRoFU2WAWgWR0CQ9SLXL/0edX2UKGgGaAloD0MIAKq4cUvTcECUhpRSlGgVTYoBaBZHQJD30LNOdoZ1fZQoaAZoCWgPQwgKoYMu4eFuQJSGlFKUaBVNcwFoFkdAkPm2mxdIG3V9lChoBmgJaA9DCGWO5V016HBAlIaUUpRoFU1eAWgWR0CQ+ykcjqwAdX2UKGgGaAloD0MIcQLTad0WcECUhpRSlGgVTUkBaBZHQJD7046wMYx1fZQoaAZoCWgPQwjzyB8MvC5uQJSGlFKUaBVNeQFoFkdAkPyL5VOsT3V9lChoBmgJaA9DCA5LAz+qYnBAlIaUUpRoFU2wAmgWR0CQ/dVMEidKdX2UKGgGaAloD0MICTauf9cbbkCUhpRSlGgVTaIBaBZHQJD+w20iQkp1fZQoaAZoCWgPQwjBqKROQDFuQJSGlFKUaBVNVgFoFkdAkP+ZxiobXHV9lChoBmgJaA9DCGniHeBJ03FAlIaUUpRoFU1qAWgWR0CQ/83ueBhAdX2UKGgGaAloD0MIh29h3XiVb0CUhpRSlGgVTX0BaBZHQJEAJa8pTdd1fZQoaAZoCWgPQwhhwf2AB+VqQJSGlFKUaBVNWgFoFkdAkQBWfseGPHV9lChoBmgJaA9DCBtHrMWnK3BAlIaUUpRoFU1HAWgWR0CRAZhUipvQdX2UKGgGaAloD0MIi08BMB6YcECUhpRSlGgVTVkBaBZHQJECk+RoysV1fZQoaAZoCWgPQwgLJZNTuzNtQJSGlFKUaBVNTwFoFkdAkQOwmJFb3XV9lChoBmgJaA9DCNujN9xHPHFAlIaUUpRoFU2AAWgWR0CRBDekpI+XdX2UKGgGaAloD0MINC2xMhpdbECUhpRSlGgVTVcBaBZHQJEF7d2xIJ91fZQoaAZoCWgPQwjAriZPWQJxQJSGlFKUaBVNXQFoFkdAkQejEehf0HV9lChoBmgJaA9DCDAsf76tzm5AlIaUUpRoFU1ZAWgWR0CRCLb+cYqHdX2UKGgGaAloD0MIpfRMLzGJcUCUhpRSlGgVTWEBaBZHQJEJpqEeyRl1fZQoaAZoCWgPQwjL8+DurK1tQJSGlFKUaBVNcAFoFkdAkQxqLS/j83V9lChoBmgJaA9DCNbjvtU6g3BAlIaUUpRoFU1EAWgWR0CRDIQw9JSSdX2UKGgGaAloD0MIHvmDgefUUkCUhpRSlGgVTegDaBZHQJEMwaUA1el1fZQoaAZoCWgPQwj/5zBfXoRsQJSGlFKUaBVNZwFoFkdAkQz9LYf4h3V9lChoBmgJaA9DCCNJEK4AFnBAlIaUUpRoFU2CAWgWR0CRDwYukDZEdX2UKGgGaAloD0MIpONqZFcNbUCUhpRSlGgVTXcBaBZHQJEPJ81Gb1B1fZQoaAZoCWgPQwiUF5mAX3BxQJSGlFKUaBVN2QFoFkdAkQ+56dDpknV9lChoBmgJaA9DCKKyYU3lRW9AlIaUUpRoFU1bAWgWR0CREKOy3Td+dX2UKGgGaAloD0MIRmEXRQ/pbkCUhpRSlGgVTawBaBZHQJERQsg+yJN1fZQoaAZoCWgPQwhu+rMf6bJxQJSGlFKUaBVNZAFoFkdAkRITRIBikXV9lChoBmgJaA9DCKNAn8iT929AlIaUUpRoFU2pAWgWR0CREmurp7kXdX2UKGgGaAloD0MIsMivH+L4cUCUhpRSlGgVTWQBaBZHQJESk/LTx5N1fZQoaAZoCWgPQwgWiQlq+BRuQJSGlFKUaBVNYgFoFkdAkRQJGnXNDHV9lChoBmgJaA9DCF8M5US70W9AlIaUUpRoFU1iAWgWR0CRKB8xKxs3dX2UKGgGaAloD0MIHSEDeXYXb0CUhpRSlGgVTUEBaBZHQJEopoPCl8B1fZQoaAZoCWgPQwhVoYFYtpJuQJSGlFKUaBVNhQFoFkdAkSpbwe/5+HV9lChoBmgJaA9DCKuSyD6I8HBAlIaUUpRoFU1bAWgWR0CRLEv0RODbdX2UKGgGaAloD0MIOfJAZBHeb0CUhpRSlGgVTW8BaBZHQJEs7yFwkxB1fZQoaAZoCWgPQwgKvJNPj4duQJSGlFKUaBVNegFoFkdAkS1QxWT5f3V9lChoBmgJaA9DCLjIPV1dN25AlIaUUpRoFU2RAWgWR0CRLsabWmP6dX2UKGgGaAloD0MIca/MW3Uob0CUhpRSlGgVTV8BaBZHQJEux35eqrB1fZQoaAZoCWgPQwjluFM6mOtxQJSGlFKUaBVNVAFoFkdAkS7sRHww03V9lChoBmgJaA9DCL5muWz0inBAlIaUUpRoFU1sAWgWR0CRLx2exwAEdX2UKGgGaAloD0MIzXLZ6By2bUCUhpRSlGgVTTYBaBZHQJEvYTyrgfl1fZQoaAZoCWgPQwg3NdB8TmBxQJSGlFKUaBVNdQFoFkdAkTDYht+CsnV9lChoBmgJaA9DCPp8lBEXAm5AlIaUUpRoFU1QAWgWR0CRMU9q1w5vdX2UKGgGaAloD0MIca32sBe0a0CUhpRSlGgVTWcBaBZHQJExtr2xptd1fZQoaAZoCWgPQwh7EticA4tvQJSGlFKUaBVNcAFoFkdAkTJxVU+9rXV9lChoBmgJaA9DCH0lkBL7PXFAlIaUUpRoFU1DAWgWR0CRMnXzDn/2dX2UKGgGaAloD0MIH73hPvITb0CUhpRSlGgVTT4BaBZHQJEz+kwevIR1fZQoaAZoCWgPQwhwC5bqgrptQJSGlFKUaBVNbQFoFkdAkTT3n2ZiNXV9lChoBmgJaA9DCFitTPiloHFAlIaUUpRoFU2AAWgWR0CROAde6ZpjdX2UKGgGaAloD0MIat0GtR8DcUCUhpRSlGgVTWMBaBZHQJE4zkKeCkJ1fZQoaAZoCWgPQwgXZwxzgvBtQJSGlFKUaBVNVQFoFkdAkTjanvUjLXV9lChoBmgJaA9DCMO5hhka8WpAlIaUUpRoFU1sAWgWR0CROjIcBEKFdX2UKGgGaAloD0MIQBaiQ6AEcUCUhpRSlGgVTU8BaBZHQJE6cgA6uGN1fZQoaAZoCWgPQwhIiV3bW6trQJSGlFKUaBVNUAFoFkdAkTp9v0h/zHV9lChoBmgJaA9DCOI9B5ZjFXBAlIaUUpRoFU1cAWgWR0CRO1cebNKRdX2UKGgGaAloD0MIsOWV6y1VcECUhpRSlGgVTXYBaBZHQJE8niFTNt91fZQoaAZoCWgPQwi4eHjPgf1vQJSGlFKUaBVNYwFoFkdAkT2cpkPMCHV9lChoBmgJaA9DCJbMsbwrzmtAlIaUUpRoFU2fAWgWR0CRPa1vl2eQdX2UKGgGaAloD0MILxUb8zqHbUCUhpRSlGgVTWABaBZHQJE994oqkM11fZQoaAZoCWgPQwgyVTAqKd5uQJSGlFKUaBVNTwFoFkdAkT6S/wiJO3V9lChoBmgJaA9DCMUfRZ25dUVAlIaUUpRoFU0rAWgWR0CRPwkSElE7dX2UKGgGaAloD0MIjX+fcaGbcECUhpRSlGgVTYYBaBZHQJE/X/CIk7h1fZQoaAZoCWgPQwj44/bLpxZxQJSGlFKUaBVNiwFoFkdAkUAnktEofHV9lChoBmgJaA9DCHNk5ZdB7G1AlIaUUpRoFU1NAWgWR0CRQ8OMERradX2UKGgGaAloD0MIILWJk3tYbUCUhpRSlGgVTVEBaBZHQJFGi6pYLb51fZQoaAZoCWgPQwhmMbH5uLZuQJSGlFKUaBVNYQFoFkdAkUdjyjHn2nV9lChoBmgJaA9DCIUGYtmMoXBAlIaUUpRoFU2kAWgWR0CRSMA+IMz/dX2UKGgGaAloD0MI4E237BBeckCUhpRSlGgVTXEBaBZHQJFJXrxAjY91fZQoaAZoCWgPQwg9nMB0WsVtQJSGlFKUaBVNnQFoFkdAkUopGjKxLXV9lChoBmgJaA9DCP7Soj6JkHBAlIaUUpRoFU0zAmgWR0CRSwyD7IkrdX2UKGgGaAloD0MIIjgu46aPbECUhpRSlGgVTdIBaBZHQJFLGTwDvE11fZQoaAZoCWgPQwivsOB+AH5wQJSGlFKUaBVNfgFoFkdAkUuCn5zo2XV9lChoBmgJaA9DCGVUGcZdwnFAlIaUUpRoFU1OAWgWR0CRS+ySV4X5dX2UKGgGaAloD0MIZ3v0hnu3b0CUhpRSlGgVTXgBaBZHQJFMYGIKtxN1fZQoaAZoCWgPQwgs9MEyNqhvQJSGlFKUaBVNeQFoFkdAkUzE8zQ/o3V9lChoBmgJaA9DCO0t5XyxpmhAlIaUUpRoFU2WAWgWR0CRTWY7q6e5dWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 248,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49df47b33a08873f68f473abb1f4b70690de1eebc3cc4f42e3c424e7216b5f11
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd87209bdeb2a5b858eefc548ae288dea87543ccece528d70fc2a35d6c268d71
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (207 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 241.15104999349006, "std_reward": 14.427027994940126, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-14T16:53:53.234229"}