spacemanidol commited on
Commit
7a3937a
1 Parent(s): 777c3ef

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2801 -1
README.md CHANGED
@@ -1,3 +1,2803 @@
1
  ---
2
  license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ tags:
4
+ - mteb
5
+ - arctic
6
+ - arctic-embed
7
+ model-index:
8
+ - name: med
9
+ results:
10
+ - task:
11
+ type: Classification
12
+ dataset:
13
+ type: mteb/amazon_counterfactual
14
+ name: MTEB AmazonCounterfactualClassification (en)
15
+ config: en
16
+ split: test
17
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
18
+ metrics:
19
+ - type: accuracy
20
+ value: 74.80597014925374
21
+ - type: ap
22
+ value: 37.911466766189875
23
+ - type: f1
24
+ value: 68.88606927542106
25
+ - task:
26
+ type: Classification
27
+ dataset:
28
+ type: mteb/amazon_polarity
29
+ name: MTEB AmazonPolarityClassification
30
+ config: default
31
+ split: test
32
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
33
+ metrics:
34
+ - type: accuracy
35
+ value: 78.402275
36
+ - type: ap
37
+ value: 73.03294793248114
38
+ - type: f1
39
+ value: 78.3147786132161
40
+ - task:
41
+ type: Classification
42
+ dataset:
43
+ type: mteb/amazon_reviews_multi
44
+ name: MTEB AmazonReviewsClassification (en)
45
+ config: en
46
+ split: test
47
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
48
+ metrics:
49
+ - type: accuracy
50
+ value: 36.717999999999996
51
+ - type: f1
52
+ value: 35.918044248787766
53
+ - task:
54
+ type: Retrieval
55
+ dataset:
56
+ type: mteb/arguana
57
+ name: MTEB ArguAna
58
+ config: default
59
+ split: test
60
+ revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
61
+ metrics:
62
+ - type: map_at_1
63
+ value: 34.495
64
+ - type: map_at_10
65
+ value: 50.236000000000004
66
+ - type: map_at_100
67
+ value: 50.944
68
+ - type: map_at_1000
69
+ value: 50.94499999999999
70
+ - type: map_at_3
71
+ value: 45.341
72
+ - type: map_at_5
73
+ value: 48.286
74
+ - type: mrr_at_1
75
+ value: 35.135
76
+ - type: mrr_at_10
77
+ value: 50.471
78
+ - type: mrr_at_100
79
+ value: 51.185
80
+ - type: mrr_at_1000
81
+ value: 51.187000000000005
82
+ - type: mrr_at_3
83
+ value: 45.602
84
+ - type: mrr_at_5
85
+ value: 48.468
86
+ - type: ndcg_at_1
87
+ value: 34.495
88
+ - type: ndcg_at_10
89
+ value: 59.086000000000006
90
+ - type: ndcg_at_100
91
+ value: 61.937
92
+ - type: ndcg_at_1000
93
+ value: 61.966
94
+ - type: ndcg_at_3
95
+ value: 49.062
96
+ - type: ndcg_at_5
97
+ value: 54.367
98
+ - type: precision_at_1
99
+ value: 34.495
100
+ - type: precision_at_10
101
+ value: 8.734
102
+ - type: precision_at_100
103
+ value: 0.9939999999999999
104
+ - type: precision_at_1000
105
+ value: 0.1
106
+ - type: precision_at_3
107
+ value: 19.962
108
+ - type: precision_at_5
109
+ value: 14.552000000000001
110
+ - type: recall_at_1
111
+ value: 34.495
112
+ - type: recall_at_10
113
+ value: 87.33999999999999
114
+ - type: recall_at_100
115
+ value: 99.431
116
+ - type: recall_at_1000
117
+ value: 99.644
118
+ - type: recall_at_3
119
+ value: 59.885999999999996
120
+ - type: recall_at_5
121
+ value: 72.76
122
+ - task:
123
+ type: Clustering
124
+ dataset:
125
+ type: mteb/arxiv-clustering-p2p
126
+ name: MTEB ArxivClusteringP2P
127
+ config: default
128
+ split: test
129
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
130
+ metrics:
131
+ - type: v_measure
132
+ value: 47.46440874635501
133
+ - task:
134
+ type: Clustering
135
+ dataset:
136
+ type: mteb/arxiv-clustering-s2s
137
+ name: MTEB ArxivClusteringS2S
138
+ config: default
139
+ split: test
140
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
141
+ metrics:
142
+ - type: v_measure
143
+ value: 38.28720154213723
144
+ - task:
145
+ type: Reranking
146
+ dataset:
147
+ type: mteb/askubuntudupquestions-reranking
148
+ name: MTEB AskUbuntuDupQuestions
149
+ config: default
150
+ split: test
151
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
152
+ metrics:
153
+ - type: map
154
+ value: 60.34614226394902
155
+ - type: mrr
156
+ value: 75.05628105351096
157
+ - task:
158
+ type: STS
159
+ dataset:
160
+ type: mteb/biosses-sts
161
+ name: MTEB BIOSSES
162
+ config: default
163
+ split: test
164
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
165
+ metrics:
166
+ - type: cos_sim_pearson
167
+ value: 87.41072716728198
168
+ - type: cos_sim_spearman
169
+ value: 86.34534093114372
170
+ - type: euclidean_pearson
171
+ value: 85.34009667750838
172
+ - type: euclidean_spearman
173
+ value: 86.34534093114372
174
+ - type: manhattan_pearson
175
+ value: 85.2158833586889
176
+ - type: manhattan_spearman
177
+ value: 86.60920236509224
178
+ - task:
179
+ type: Classification
180
+ dataset:
181
+ type: mteb/banking77
182
+ name: MTEB Banking77Classification
183
+ config: default
184
+ split: test
185
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
186
+ metrics:
187
+ - type: accuracy
188
+ value: 80.06493506493507
189
+ - type: f1
190
+ value: 79.28108600339833
191
+ - task:
192
+ type: Clustering
193
+ dataset:
194
+ type: jinaai/big-patent-clustering
195
+ name: MTEB BigPatentClustering
196
+ config: default
197
+ split: test
198
+ revision: 62d5330920bca426ce9d3c76ea914f15fc83e891
199
+ metrics:
200
+ - type: v_measure
201
+ value: 20.545049432417287
202
+ - task:
203
+ type: Clustering
204
+ dataset:
205
+ type: mteb/biorxiv-clustering-p2p
206
+ name: MTEB BiorxivClusteringP2P
207
+ config: default
208
+ split: test
209
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
210
+ metrics:
211
+ - type: v_measure
212
+ value: 37.54369718479804
213
+ - task:
214
+ type: Clustering
215
+ dataset:
216
+ type: mteb/biorxiv-clustering-s2s
217
+ name: MTEB BiorxivClusteringS2S
218
+ config: default
219
+ split: test
220
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
221
+ metrics:
222
+ - type: v_measure
223
+ value: 32.64941588219162
224
+ - task:
225
+ type: Retrieval
226
+ dataset:
227
+ type: mteb/cqadupstack-android
228
+ name: MTEB CQADupstackAndroidRetrieval
229
+ config: default
230
+ split: test
231
+ revision: f46a197baaae43b4f621051089b82a364682dfeb
232
+ metrics:
233
+ - type: map_at_1
234
+ value: 37.264
235
+ - type: map_at_10
236
+ value: 49.43
237
+ - type: map_at_100
238
+ value: 50.967
239
+ - type: map_at_1000
240
+ value: 51.08200000000001
241
+ - type: map_at_3
242
+ value: 45.742
243
+ - type: map_at_5
244
+ value: 47.764
245
+ - type: mrr_at_1
246
+ value: 44.921
247
+ - type: mrr_at_10
248
+ value: 54.879999999999995
249
+ - type: mrr_at_100
250
+ value: 55.525000000000006
251
+ - type: mrr_at_1000
252
+ value: 55.565
253
+ - type: mrr_at_3
254
+ value: 52.480000000000004
255
+ - type: mrr_at_5
256
+ value: 53.86
257
+ - type: ndcg_at_1
258
+ value: 44.921
259
+ - type: ndcg_at_10
260
+ value: 55.664
261
+ - type: ndcg_at_100
262
+ value: 60.488
263
+ - type: ndcg_at_1000
264
+ value: 62.138000000000005
265
+ - type: ndcg_at_3
266
+ value: 50.797000000000004
267
+ - type: ndcg_at_5
268
+ value: 52.94799999999999
269
+ - type: precision_at_1
270
+ value: 44.921
271
+ - type: precision_at_10
272
+ value: 10.587
273
+ - type: precision_at_100
274
+ value: 1.629
275
+ - type: precision_at_1000
276
+ value: 0.203
277
+ - type: precision_at_3
278
+ value: 24.034
279
+ - type: precision_at_5
280
+ value: 17.224999999999998
281
+ - type: recall_at_1
282
+ value: 37.264
283
+ - type: recall_at_10
284
+ value: 67.15
285
+ - type: recall_at_100
286
+ value: 86.811
287
+ - type: recall_at_1000
288
+ value: 97.172
289
+ - type: recall_at_3
290
+ value: 53.15800000000001
291
+ - type: recall_at_5
292
+ value: 59.116
293
+ - task:
294
+ type: Retrieval
295
+ dataset:
296
+ type: mteb/cqadupstack-english
297
+ name: MTEB CQADupstackEnglishRetrieval
298
+ config: default
299
+ split: test
300
+ revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
301
+ metrics:
302
+ - type: map_at_1
303
+ value: 36.237
304
+ - type: map_at_10
305
+ value: 47.941
306
+ - type: map_at_100
307
+ value: 49.131
308
+ - type: map_at_1000
309
+ value: 49.26
310
+ - type: map_at_3
311
+ value: 44.561
312
+ - type: map_at_5
313
+ value: 46.28
314
+ - type: mrr_at_1
315
+ value: 45.605000000000004
316
+ - type: mrr_at_10
317
+ value: 54.039
318
+ - type: mrr_at_100
319
+ value: 54.653
320
+ - type: mrr_at_1000
321
+ value: 54.688
322
+ - type: mrr_at_3
323
+ value: 52.006
324
+ - type: mrr_at_5
325
+ value: 53.096
326
+ - type: ndcg_at_1
327
+ value: 45.605000000000004
328
+ - type: ndcg_at_10
329
+ value: 53.916
330
+ - type: ndcg_at_100
331
+ value: 57.745999999999995
332
+ - type: ndcg_at_1000
333
+ value: 59.492999999999995
334
+ - type: ndcg_at_3
335
+ value: 49.774
336
+ - type: ndcg_at_5
337
+ value: 51.434999999999995
338
+ - type: precision_at_1
339
+ value: 45.605000000000004
340
+ - type: precision_at_10
341
+ value: 10.229000000000001
342
+ - type: precision_at_100
343
+ value: 1.55
344
+ - type: precision_at_1000
345
+ value: 0.2
346
+ - type: precision_at_3
347
+ value: 24.098
348
+ - type: precision_at_5
349
+ value: 16.726
350
+ - type: recall_at_1
351
+ value: 36.237
352
+ - type: recall_at_10
353
+ value: 64.03
354
+ - type: recall_at_100
355
+ value: 80.423
356
+ - type: recall_at_1000
357
+ value: 91.03
358
+ - type: recall_at_3
359
+ value: 51.20400000000001
360
+ - type: recall_at_5
361
+ value: 56.298
362
+ - task:
363
+ type: Retrieval
364
+ dataset:
365
+ type: mteb/cqadupstack-gaming
366
+ name: MTEB CQADupstackGamingRetrieval
367
+ config: default
368
+ split: test
369
+ revision: 4885aa143210c98657558c04aaf3dc47cfb54340
370
+ metrics:
371
+ - type: map_at_1
372
+ value: 47.278
373
+ - type: map_at_10
374
+ value: 59.757000000000005
375
+ - type: map_at_100
376
+ value: 60.67
377
+ - type: map_at_1000
378
+ value: 60.714
379
+ - type: map_at_3
380
+ value: 56.714
381
+ - type: map_at_5
382
+ value: 58.453
383
+ - type: mrr_at_1
384
+ value: 53.73
385
+ - type: mrr_at_10
386
+ value: 62.970000000000006
387
+ - type: mrr_at_100
388
+ value: 63.507999999999996
389
+ - type: mrr_at_1000
390
+ value: 63.53
391
+ - type: mrr_at_3
392
+ value: 60.909
393
+ - type: mrr_at_5
394
+ value: 62.172000000000004
395
+ - type: ndcg_at_1
396
+ value: 53.73
397
+ - type: ndcg_at_10
398
+ value: 64.97
399
+ - type: ndcg_at_100
400
+ value: 68.394
401
+ - type: ndcg_at_1000
402
+ value: 69.255
403
+ - type: ndcg_at_3
404
+ value: 60.228
405
+ - type: ndcg_at_5
406
+ value: 62.617999999999995
407
+ - type: precision_at_1
408
+ value: 53.73
409
+ - type: precision_at_10
410
+ value: 10.056
411
+ - type: precision_at_100
412
+ value: 1.265
413
+ - type: precision_at_1000
414
+ value: 0.13699999999999998
415
+ - type: precision_at_3
416
+ value: 26.332
417
+ - type: precision_at_5
418
+ value: 17.743000000000002
419
+ - type: recall_at_1
420
+ value: 47.278
421
+ - type: recall_at_10
422
+ value: 76.86500000000001
423
+ - type: recall_at_100
424
+ value: 91.582
425
+ - type: recall_at_1000
426
+ value: 97.583
427
+ - type: recall_at_3
428
+ value: 64.443
429
+ - type: recall_at_5
430
+ value: 70.283
431
+ - task:
432
+ type: Retrieval
433
+ dataset:
434
+ type: mteb/cqadupstack-gis
435
+ name: MTEB CQADupstackGisRetrieval
436
+ config: default
437
+ split: test
438
+ revision: 5003b3064772da1887988e05400cf3806fe491f2
439
+ metrics:
440
+ - type: map_at_1
441
+ value: 29.702
442
+ - type: map_at_10
443
+ value: 39.463
444
+ - type: map_at_100
445
+ value: 40.508
446
+ - type: map_at_1000
447
+ value: 40.579
448
+ - type: map_at_3
449
+ value: 36.748999999999995
450
+ - type: map_at_5
451
+ value: 38.296
452
+ - type: mrr_at_1
453
+ value: 31.977
454
+ - type: mrr_at_10
455
+ value: 41.739
456
+ - type: mrr_at_100
457
+ value: 42.586
458
+ - type: mrr_at_1000
459
+ value: 42.636
460
+ - type: mrr_at_3
461
+ value: 39.096
462
+ - type: mrr_at_5
463
+ value: 40.695
464
+ - type: ndcg_at_1
465
+ value: 31.977
466
+ - type: ndcg_at_10
467
+ value: 44.855000000000004
468
+ - type: ndcg_at_100
469
+ value: 49.712
470
+ - type: ndcg_at_1000
471
+ value: 51.443000000000005
472
+ - type: ndcg_at_3
473
+ value: 39.585
474
+ - type: ndcg_at_5
475
+ value: 42.244
476
+ - type: precision_at_1
477
+ value: 31.977
478
+ - type: precision_at_10
479
+ value: 6.768000000000001
480
+ - type: precision_at_100
481
+ value: 0.9690000000000001
482
+ - type: precision_at_1000
483
+ value: 0.116
484
+ - type: precision_at_3
485
+ value: 16.761
486
+ - type: precision_at_5
487
+ value: 11.593
488
+ - type: recall_at_1
489
+ value: 29.702
490
+ - type: recall_at_10
491
+ value: 59.082
492
+ - type: recall_at_100
493
+ value: 80.92
494
+ - type: recall_at_1000
495
+ value: 93.728
496
+ - type: recall_at_3
497
+ value: 45.212
498
+ - type: recall_at_5
499
+ value: 51.449
500
+ - task:
501
+ type: Retrieval
502
+ dataset:
503
+ type: mteb/cqadupstack-mathematica
504
+ name: MTEB CQADupstackMathematicaRetrieval
505
+ config: default
506
+ split: test
507
+ revision: 90fceea13679c63fe563ded68f3b6f06e50061de
508
+ metrics:
509
+ - type: map_at_1
510
+ value: 21.336
511
+ - type: map_at_10
512
+ value: 30.137999999999998
513
+ - type: map_at_100
514
+ value: 31.385
515
+ - type: map_at_1000
516
+ value: 31.495
517
+ - type: map_at_3
518
+ value: 27.481
519
+ - type: map_at_5
520
+ value: 28.772
521
+ - type: mrr_at_1
522
+ value: 25.871
523
+ - type: mrr_at_10
524
+ value: 34.686
525
+ - type: mrr_at_100
526
+ value: 35.649
527
+ - type: mrr_at_1000
528
+ value: 35.705
529
+ - type: mrr_at_3
530
+ value: 32.09
531
+ - type: mrr_at_5
532
+ value: 33.52
533
+ - type: ndcg_at_1
534
+ value: 25.871
535
+ - type: ndcg_at_10
536
+ value: 35.617
537
+ - type: ndcg_at_100
538
+ value: 41.272999999999996
539
+ - type: ndcg_at_1000
540
+ value: 43.725
541
+ - type: ndcg_at_3
542
+ value: 30.653999999999996
543
+ - type: ndcg_at_5
544
+ value: 32.714
545
+ - type: precision_at_1
546
+ value: 25.871
547
+ - type: precision_at_10
548
+ value: 6.4799999999999995
549
+ - type: precision_at_100
550
+ value: 1.0699999999999998
551
+ - type: precision_at_1000
552
+ value: 0.13999999999999999
553
+ - type: precision_at_3
554
+ value: 14.469000000000001
555
+ - type: precision_at_5
556
+ value: 10.274
557
+ - type: recall_at_1
558
+ value: 21.336
559
+ - type: recall_at_10
560
+ value: 47.746
561
+ - type: recall_at_100
562
+ value: 71.773
563
+ - type: recall_at_1000
564
+ value: 89.05199999999999
565
+ - type: recall_at_3
566
+ value: 34.172999999999995
567
+ - type: recall_at_5
568
+ value: 39.397999999999996
569
+ - task:
570
+ type: Retrieval
571
+ dataset:
572
+ type: mteb/cqadupstack-physics
573
+ name: MTEB CQADupstackPhysicsRetrieval
574
+ config: default
575
+ split: test
576
+ revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
577
+ metrics:
578
+ - type: map_at_1
579
+ value: 34.424
580
+ - type: map_at_10
581
+ value: 45.647999999999996
582
+ - type: map_at_100
583
+ value: 46.907
584
+ - type: map_at_1000
585
+ value: 47.010999999999996
586
+ - type: map_at_3
587
+ value: 42.427
588
+ - type: map_at_5
589
+ value: 44.285000000000004
590
+ - type: mrr_at_1
591
+ value: 41.867
592
+ - type: mrr_at_10
593
+ value: 51.17699999999999
594
+ - type: mrr_at_100
595
+ value: 51.937
596
+ - type: mrr_at_1000
597
+ value: 51.975
598
+ - type: mrr_at_3
599
+ value: 48.941
600
+ - type: mrr_at_5
601
+ value: 50.322
602
+ - type: ndcg_at_1
603
+ value: 41.867
604
+ - type: ndcg_at_10
605
+ value: 51.534
606
+ - type: ndcg_at_100
607
+ value: 56.696999999999996
608
+ - type: ndcg_at_1000
609
+ value: 58.475
610
+ - type: ndcg_at_3
611
+ value: 46.835
612
+ - type: ndcg_at_5
613
+ value: 49.161
614
+ - type: precision_at_1
615
+ value: 41.867
616
+ - type: precision_at_10
617
+ value: 9.134
618
+ - type: precision_at_100
619
+ value: 1.362
620
+ - type: precision_at_1000
621
+ value: 0.17099999999999999
622
+ - type: precision_at_3
623
+ value: 22.073
624
+ - type: precision_at_5
625
+ value: 15.495999999999999
626
+ - type: recall_at_1
627
+ value: 34.424
628
+ - type: recall_at_10
629
+ value: 63.237
630
+ - type: recall_at_100
631
+ value: 84.774
632
+ - type: recall_at_1000
633
+ value: 95.987
634
+ - type: recall_at_3
635
+ value: 49.888
636
+ - type: recall_at_5
637
+ value: 55.940999999999995
638
+ - task:
639
+ type: Retrieval
640
+ dataset:
641
+ type: mteb/cqadupstack-programmers
642
+ name: MTEB CQADupstackProgrammersRetrieval
643
+ config: default
644
+ split: test
645
+ revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
646
+ metrics:
647
+ - type: map_at_1
648
+ value: 30.72
649
+ - type: map_at_10
650
+ value: 41.327999999999996
651
+ - type: map_at_100
652
+ value: 42.651
653
+ - type: map_at_1000
654
+ value: 42.739
655
+ - type: map_at_3
656
+ value: 38.223
657
+ - type: map_at_5
658
+ value: 40.053
659
+ - type: mrr_at_1
660
+ value: 37.9
661
+ - type: mrr_at_10
662
+ value: 46.857
663
+ - type: mrr_at_100
664
+ value: 47.673
665
+ - type: mrr_at_1000
666
+ value: 47.711999999999996
667
+ - type: mrr_at_3
668
+ value: 44.292
669
+ - type: mrr_at_5
670
+ value: 45.845
671
+ - type: ndcg_at_1
672
+ value: 37.9
673
+ - type: ndcg_at_10
674
+ value: 47.105999999999995
675
+ - type: ndcg_at_100
676
+ value: 52.56999999999999
677
+ - type: ndcg_at_1000
678
+ value: 54.37800000000001
679
+ - type: ndcg_at_3
680
+ value: 42.282
681
+ - type: ndcg_at_5
682
+ value: 44.646
683
+ - type: precision_at_1
684
+ value: 37.9
685
+ - type: precision_at_10
686
+ value: 8.368
687
+ - type: precision_at_100
688
+ value: 1.283
689
+ - type: precision_at_1000
690
+ value: 0.16
691
+ - type: precision_at_3
692
+ value: 20.015
693
+ - type: precision_at_5
694
+ value: 14.132
695
+ - type: recall_at_1
696
+ value: 30.72
697
+ - type: recall_at_10
698
+ value: 58.826
699
+ - type: recall_at_100
700
+ value: 82.104
701
+ - type: recall_at_1000
702
+ value: 94.194
703
+ - type: recall_at_3
704
+ value: 44.962999999999994
705
+ - type: recall_at_5
706
+ value: 51.426
707
+ - task:
708
+ type: Retrieval
709
+ dataset:
710
+ type: mteb/cqadupstack
711
+ name: MTEB CQADupstackRetrieval
712
+ config: default
713
+ split: test
714
+ revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
715
+ metrics:
716
+ - type: map_at_1
717
+ value: 31.656583333333334
718
+ - type: map_at_10
719
+ value: 41.59883333333333
720
+ - type: map_at_100
721
+ value: 42.80350000000001
722
+ - type: map_at_1000
723
+ value: 42.91075
724
+ - type: map_at_3
725
+ value: 38.68908333333333
726
+ - type: map_at_5
727
+ value: 40.27733333333334
728
+ - type: mrr_at_1
729
+ value: 37.23483333333334
730
+ - type: mrr_at_10
731
+ value: 45.782000000000004
732
+ - type: mrr_at_100
733
+ value: 46.577083333333334
734
+ - type: mrr_at_1000
735
+ value: 46.62516666666667
736
+ - type: mrr_at_3
737
+ value: 43.480666666666664
738
+ - type: mrr_at_5
739
+ value: 44.79833333333333
740
+ - type: ndcg_at_1
741
+ value: 37.23483333333334
742
+ - type: ndcg_at_10
743
+ value: 46.971500000000006
744
+ - type: ndcg_at_100
745
+ value: 51.90125
746
+ - type: ndcg_at_1000
747
+ value: 53.86366666666667
748
+ - type: ndcg_at_3
749
+ value: 42.31791666666667
750
+ - type: ndcg_at_5
751
+ value: 44.458666666666666
752
+ - type: precision_at_1
753
+ value: 37.23483333333334
754
+ - type: precision_at_10
755
+ value: 8.044583333333332
756
+ - type: precision_at_100
757
+ value: 1.2334166666666666
758
+ - type: precision_at_1000
759
+ value: 0.15925
760
+ - type: precision_at_3
761
+ value: 19.240833333333327
762
+ - type: precision_at_5
763
+ value: 13.435083333333333
764
+ - type: recall_at_1
765
+ value: 31.656583333333334
766
+ - type: recall_at_10
767
+ value: 58.44758333333333
768
+ - type: recall_at_100
769
+ value: 79.93658333333332
770
+ - type: recall_at_1000
771
+ value: 93.32491666666668
772
+ - type: recall_at_3
773
+ value: 45.44266666666667
774
+ - type: recall_at_5
775
+ value: 50.99866666666666
776
+ - task:
777
+ type: Retrieval
778
+ dataset:
779
+ type: mteb/cqadupstack-stats
780
+ name: MTEB CQADupstackStatsRetrieval
781
+ config: default
782
+ split: test
783
+ revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
784
+ metrics:
785
+ - type: map_at_1
786
+ value: 28.247
787
+ - type: map_at_10
788
+ value: 35.443999999999996
789
+ - type: map_at_100
790
+ value: 36.578
791
+ - type: map_at_1000
792
+ value: 36.675999999999995
793
+ - type: map_at_3
794
+ value: 33.276
795
+ - type: map_at_5
796
+ value: 34.536
797
+ - type: mrr_at_1
798
+ value: 31.747999999999998
799
+ - type: mrr_at_10
800
+ value: 38.413000000000004
801
+ - type: mrr_at_100
802
+ value: 39.327
803
+ - type: mrr_at_1000
804
+ value: 39.389
805
+ - type: mrr_at_3
806
+ value: 36.401
807
+ - type: mrr_at_5
808
+ value: 37.543
809
+ - type: ndcg_at_1
810
+ value: 31.747999999999998
811
+ - type: ndcg_at_10
812
+ value: 39.646
813
+ - type: ndcg_at_100
814
+ value: 44.861000000000004
815
+ - type: ndcg_at_1000
816
+ value: 47.197
817
+ - type: ndcg_at_3
818
+ value: 35.764
819
+ - type: ndcg_at_5
820
+ value: 37.635999999999996
821
+ - type: precision_at_1
822
+ value: 31.747999999999998
823
+ - type: precision_at_10
824
+ value: 6.12
825
+ - type: precision_at_100
826
+ value: 0.942
827
+ - type: precision_at_1000
828
+ value: 0.123
829
+ - type: precision_at_3
830
+ value: 15.235000000000001
831
+ - type: precision_at_5
832
+ value: 10.491
833
+ - type: recall_at_1
834
+ value: 28.247
835
+ - type: recall_at_10
836
+ value: 49.456
837
+ - type: recall_at_100
838
+ value: 73.02499999999999
839
+ - type: recall_at_1000
840
+ value: 89.898
841
+ - type: recall_at_3
842
+ value: 38.653999999999996
843
+ - type: recall_at_5
844
+ value: 43.259
845
+ - task:
846
+ type: Retrieval
847
+ dataset:
848
+ type: mteb/cqadupstack-tex
849
+ name: MTEB CQADupstackTexRetrieval
850
+ config: default
851
+ split: test
852
+ revision: 46989137a86843e03a6195de44b09deda022eec7
853
+ metrics:
854
+ - type: map_at_1
855
+ value: 22.45
856
+ - type: map_at_10
857
+ value: 30.476999999999997
858
+ - type: map_at_100
859
+ value: 31.630999999999997
860
+ - type: map_at_1000
861
+ value: 31.755
862
+ - type: map_at_3
863
+ value: 27.989000000000004
864
+ - type: map_at_5
865
+ value: 29.410999999999998
866
+ - type: mrr_at_1
867
+ value: 26.979
868
+ - type: mrr_at_10
869
+ value: 34.316
870
+ - type: mrr_at_100
871
+ value: 35.272999999999996
872
+ - type: mrr_at_1000
873
+ value: 35.342
874
+ - type: mrr_at_3
875
+ value: 32.14
876
+ - type: mrr_at_5
877
+ value: 33.405
878
+ - type: ndcg_at_1
879
+ value: 26.979
880
+ - type: ndcg_at_10
881
+ value: 35.166
882
+ - type: ndcg_at_100
883
+ value: 40.583000000000006
884
+ - type: ndcg_at_1000
885
+ value: 43.282
886
+ - type: ndcg_at_3
887
+ value: 30.916
888
+ - type: ndcg_at_5
889
+ value: 32.973
890
+ - type: precision_at_1
891
+ value: 26.979
892
+ - type: precision_at_10
893
+ value: 6.132
894
+ - type: precision_at_100
895
+ value: 1.047
896
+ - type: precision_at_1000
897
+ value: 0.145
898
+ - type: precision_at_3
899
+ value: 14.360999999999999
900
+ - type: precision_at_5
901
+ value: 10.227
902
+ - type: recall_at_1
903
+ value: 22.45
904
+ - type: recall_at_10
905
+ value: 45.348
906
+ - type: recall_at_100
907
+ value: 69.484
908
+ - type: recall_at_1000
909
+ value: 88.628
910
+ - type: recall_at_3
911
+ value: 33.338
912
+ - type: recall_at_5
913
+ value: 38.746
914
+ - task:
915
+ type: Retrieval
916
+ dataset:
917
+ type: mteb/cqadupstack-unix
918
+ name: MTEB CQADupstackUnixRetrieval
919
+ config: default
920
+ split: test
921
+ revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
922
+ metrics:
923
+ - type: map_at_1
924
+ value: 32.123000000000005
925
+ - type: map_at_10
926
+ value: 41.778
927
+ - type: map_at_100
928
+ value: 42.911
929
+ - type: map_at_1000
930
+ value: 42.994
931
+ - type: map_at_3
932
+ value: 38.558
933
+ - type: map_at_5
934
+ value: 40.318
935
+ - type: mrr_at_1
936
+ value: 37.687
937
+ - type: mrr_at_10
938
+ value: 45.889
939
+ - type: mrr_at_100
940
+ value: 46.672999999999995
941
+ - type: mrr_at_1000
942
+ value: 46.72
943
+ - type: mrr_at_3
944
+ value: 43.33
945
+ - type: mrr_at_5
946
+ value: 44.734
947
+ - type: ndcg_at_1
948
+ value: 37.687
949
+ - type: ndcg_at_10
950
+ value: 47.258
951
+ - type: ndcg_at_100
952
+ value: 52.331
953
+ - type: ndcg_at_1000
954
+ value: 54.152
955
+ - type: ndcg_at_3
956
+ value: 41.857
957
+ - type: ndcg_at_5
958
+ value: 44.283
959
+ - type: precision_at_1
960
+ value: 37.687
961
+ - type: precision_at_10
962
+ value: 7.892
963
+ - type: precision_at_100
964
+ value: 1.183
965
+ - type: precision_at_1000
966
+ value: 0.14300000000000002
967
+ - type: precision_at_3
968
+ value: 18.781
969
+ - type: precision_at_5
970
+ value: 13.134
971
+ - type: recall_at_1
972
+ value: 32.123000000000005
973
+ - type: recall_at_10
974
+ value: 59.760000000000005
975
+ - type: recall_at_100
976
+ value: 81.652
977
+ - type: recall_at_1000
978
+ value: 94.401
979
+ - type: recall_at_3
980
+ value: 44.996
981
+ - type: recall_at_5
982
+ value: 51.184
983
+ - task:
984
+ type: Retrieval
985
+ dataset:
986
+ type: mteb/cqadupstack-webmasters
987
+ name: MTEB CQADupstackWebmastersRetrieval
988
+ config: default
989
+ split: test
990
+ revision: 160c094312a0e1facb97e55eeddb698c0abe3571
991
+ metrics:
992
+ - type: map_at_1
993
+ value: 33.196999999999996
994
+ - type: map_at_10
995
+ value: 42.012
996
+ - type: map_at_100
997
+ value: 43.663999999999994
998
+ - type: map_at_1000
999
+ value: 43.883
1000
+ - type: map_at_3
1001
+ value: 39.33
1002
+ - type: map_at_5
1003
+ value: 40.586
1004
+ - type: mrr_at_1
1005
+ value: 39.328
1006
+ - type: mrr_at_10
1007
+ value: 46.57
1008
+ - type: mrr_at_100
1009
+ value: 47.508
1010
+ - type: mrr_at_1000
1011
+ value: 47.558
1012
+ - type: mrr_at_3
1013
+ value: 44.532
1014
+ - type: mrr_at_5
1015
+ value: 45.58
1016
+ - type: ndcg_at_1
1017
+ value: 39.328
1018
+ - type: ndcg_at_10
1019
+ value: 47.337
1020
+ - type: ndcg_at_100
1021
+ value: 52.989
1022
+ - type: ndcg_at_1000
1023
+ value: 55.224
1024
+ - type: ndcg_at_3
1025
+ value: 43.362
1026
+ - type: ndcg_at_5
1027
+ value: 44.866
1028
+ - type: precision_at_1
1029
+ value: 39.328
1030
+ - type: precision_at_10
1031
+ value: 8.577
1032
+ - type: precision_at_100
1033
+ value: 1.5789999999999997
1034
+ - type: precision_at_1000
1035
+ value: 0.25
1036
+ - type: precision_at_3
1037
+ value: 19.697
1038
+ - type: precision_at_5
1039
+ value: 13.755
1040
+ - type: recall_at_1
1041
+ value: 33.196999999999996
1042
+ - type: recall_at_10
1043
+ value: 56.635000000000005
1044
+ - type: recall_at_100
1045
+ value: 81.882
1046
+ - type: recall_at_1000
1047
+ value: 95.342
1048
+ - type: recall_at_3
1049
+ value: 44.969
1050
+ - type: recall_at_5
1051
+ value: 49.266
1052
+ - task:
1053
+ type: Retrieval
1054
+ dataset:
1055
+ type: mteb/cqadupstack-wordpress
1056
+ name: MTEB CQADupstackWordpressRetrieval
1057
+ config: default
1058
+ split: test
1059
+ revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
1060
+ metrics:
1061
+ - type: map_at_1
1062
+ value: 26.901000000000003
1063
+ - type: map_at_10
1064
+ value: 35.77
1065
+ - type: map_at_100
1066
+ value: 36.638999999999996
1067
+ - type: map_at_1000
1068
+ value: 36.741
1069
+ - type: map_at_3
1070
+ value: 33.219
1071
+ - type: map_at_5
1072
+ value: 34.574
1073
+ - type: mrr_at_1
1074
+ value: 29.205
1075
+ - type: mrr_at_10
1076
+ value: 37.848
1077
+ - type: mrr_at_100
1078
+ value: 38.613
1079
+ - type: mrr_at_1000
1080
+ value: 38.682
1081
+ - type: mrr_at_3
1082
+ value: 35.551
1083
+ - type: mrr_at_5
1084
+ value: 36.808
1085
+ - type: ndcg_at_1
1086
+ value: 29.205
1087
+ - type: ndcg_at_10
1088
+ value: 40.589
1089
+ - type: ndcg_at_100
1090
+ value: 45.171
1091
+ - type: ndcg_at_1000
1092
+ value: 47.602
1093
+ - type: ndcg_at_3
1094
+ value: 35.760999999999996
1095
+ - type: ndcg_at_5
1096
+ value: 37.980000000000004
1097
+ - type: precision_at_1
1098
+ value: 29.205
1099
+ - type: precision_at_10
1100
+ value: 6.192
1101
+ - type: precision_at_100
1102
+ value: 0.922
1103
+ - type: precision_at_1000
1104
+ value: 0.123
1105
+ - type: precision_at_3
1106
+ value: 15.034
1107
+ - type: precision_at_5
1108
+ value: 10.424999999999999
1109
+ - type: recall_at_1
1110
+ value: 26.901000000000003
1111
+ - type: recall_at_10
1112
+ value: 53.236000000000004
1113
+ - type: recall_at_100
1114
+ value: 74.809
1115
+ - type: recall_at_1000
1116
+ value: 92.884
1117
+ - type: recall_at_3
1118
+ value: 40.314
1119
+ - type: recall_at_5
1120
+ value: 45.617999999999995
1121
+ - task:
1122
+ type: Retrieval
1123
+ dataset:
1124
+ type: mteb/climate-fever
1125
+ name: MTEB ClimateFEVER
1126
+ config: default
1127
+ split: test
1128
+ revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
1129
+ metrics:
1130
+ - type: map_at_1
1131
+ value: 16.794999999999998
1132
+ - type: map_at_10
1133
+ value: 29.322
1134
+ - type: map_at_100
1135
+ value: 31.463
1136
+ - type: map_at_1000
1137
+ value: 31.643
1138
+ - type: map_at_3
1139
+ value: 24.517
1140
+ - type: map_at_5
1141
+ value: 27.237000000000002
1142
+ - type: mrr_at_1
1143
+ value: 37.655
1144
+ - type: mrr_at_10
1145
+ value: 50.952
1146
+ - type: mrr_at_100
1147
+ value: 51.581999999999994
1148
+ - type: mrr_at_1000
1149
+ value: 51.61
1150
+ - type: mrr_at_3
1151
+ value: 47.991
1152
+ - type: mrr_at_5
1153
+ value: 49.744
1154
+ - type: ndcg_at_1
1155
+ value: 37.655
1156
+ - type: ndcg_at_10
1157
+ value: 39.328
1158
+ - type: ndcg_at_100
1159
+ value: 46.358
1160
+ - type: ndcg_at_1000
1161
+ value: 49.245
1162
+ - type: ndcg_at_3
1163
+ value: 33.052
1164
+ - type: ndcg_at_5
1165
+ value: 35.407
1166
+ - type: precision_at_1
1167
+ value: 37.655
1168
+ - type: precision_at_10
1169
+ value: 12.202
1170
+ - type: precision_at_100
1171
+ value: 1.9789999999999999
1172
+ - type: precision_at_1000
1173
+ value: 0.252
1174
+ - type: precision_at_3
1175
+ value: 24.973
1176
+ - type: precision_at_5
1177
+ value: 19.075
1178
+ - type: recall_at_1
1179
+ value: 16.794999999999998
1180
+ - type: recall_at_10
1181
+ value: 45.716
1182
+ - type: recall_at_100
1183
+ value: 68.919
1184
+ - type: recall_at_1000
1185
+ value: 84.71600000000001
1186
+ - type: recall_at_3
1187
+ value: 30.135
1188
+ - type: recall_at_5
1189
+ value: 37.141999999999996
1190
+ - task:
1191
+ type: Retrieval
1192
+ dataset:
1193
+ type: mteb/dbpedia
1194
+ name: MTEB DBPedia
1195
+ config: default
1196
+ split: test
1197
+ revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
1198
+ metrics:
1199
+ - type: map_at_1
1200
+ value: 9.817
1201
+ - type: map_at_10
1202
+ value: 22.058
1203
+ - type: map_at_100
1204
+ value: 31.805
1205
+ - type: map_at_1000
1206
+ value: 33.562999999999995
1207
+ - type: map_at_3
1208
+ value: 15.537
1209
+ - type: map_at_5
1210
+ value: 18.199
1211
+ - type: mrr_at_1
1212
+ value: 72.75
1213
+ - type: mrr_at_10
1214
+ value: 79.804
1215
+ - type: mrr_at_100
1216
+ value: 80.089
1217
+ - type: mrr_at_1000
1218
+ value: 80.09100000000001
1219
+ - type: mrr_at_3
1220
+ value: 78.75
1221
+ - type: mrr_at_5
1222
+ value: 79.325
1223
+ - type: ndcg_at_1
1224
+ value: 59.875
1225
+ - type: ndcg_at_10
1226
+ value: 45.972
1227
+ - type: ndcg_at_100
1228
+ value: 51.092999999999996
1229
+ - type: ndcg_at_1000
1230
+ value: 58.048
1231
+ - type: ndcg_at_3
1232
+ value: 50.552
1233
+ - type: ndcg_at_5
1234
+ value: 47.672
1235
+ - type: precision_at_1
1236
+ value: 72.75
1237
+ - type: precision_at_10
1238
+ value: 37.05
1239
+ - type: precision_at_100
1240
+ value: 12.005
1241
+ - type: precision_at_1000
1242
+ value: 2.221
1243
+ - type: precision_at_3
1244
+ value: 54.083000000000006
1245
+ - type: precision_at_5
1246
+ value: 46.2
1247
+ - type: recall_at_1
1248
+ value: 9.817
1249
+ - type: recall_at_10
1250
+ value: 27.877000000000002
1251
+ - type: recall_at_100
1252
+ value: 57.974000000000004
1253
+ - type: recall_at_1000
1254
+ value: 80.085
1255
+ - type: recall_at_3
1256
+ value: 16.911
1257
+ - type: recall_at_5
1258
+ value: 20.689
1259
+ - task:
1260
+ type: Classification
1261
+ dataset:
1262
+ type: mteb/emotion
1263
+ name: MTEB EmotionClassification
1264
+ config: default
1265
+ split: test
1266
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1267
+ metrics:
1268
+ - type: accuracy
1269
+ value: 46.464999999999996
1270
+ - type: f1
1271
+ value: 42.759588662873796
1272
+ - task:
1273
+ type: Retrieval
1274
+ dataset:
1275
+ type: mteb/fever
1276
+ name: MTEB FEVER
1277
+ config: default
1278
+ split: test
1279
+ revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
1280
+ metrics:
1281
+ - type: map_at_1
1282
+ value: 75.82900000000001
1283
+ - type: map_at_10
1284
+ value: 84.613
1285
+ - type: map_at_100
1286
+ value: 84.845
1287
+ - type: map_at_1000
1288
+ value: 84.855
1289
+ - type: map_at_3
1290
+ value: 83.498
1291
+ - type: map_at_5
1292
+ value: 84.29299999999999
1293
+ - type: mrr_at_1
1294
+ value: 81.69800000000001
1295
+ - type: mrr_at_10
1296
+ value: 88.84100000000001
1297
+ - type: mrr_at_100
1298
+ value: 88.887
1299
+ - type: mrr_at_1000
1300
+ value: 88.888
1301
+ - type: mrr_at_3
1302
+ value: 88.179
1303
+ - type: mrr_at_5
1304
+ value: 88.69200000000001
1305
+ - type: ndcg_at_1
1306
+ value: 81.69800000000001
1307
+ - type: ndcg_at_10
1308
+ value: 88.21799999999999
1309
+ - type: ndcg_at_100
1310
+ value: 88.961
1311
+ - type: ndcg_at_1000
1312
+ value: 89.131
1313
+ - type: ndcg_at_3
1314
+ value: 86.591
1315
+ - type: ndcg_at_5
1316
+ value: 87.666
1317
+ - type: precision_at_1
1318
+ value: 81.69800000000001
1319
+ - type: precision_at_10
1320
+ value: 10.615
1321
+ - type: precision_at_100
1322
+ value: 1.125
1323
+ - type: precision_at_1000
1324
+ value: 0.11499999999999999
1325
+ - type: precision_at_3
1326
+ value: 33.208
1327
+ - type: precision_at_5
1328
+ value: 20.681
1329
+ - type: recall_at_1
1330
+ value: 75.82900000000001
1331
+ - type: recall_at_10
1332
+ value: 94.97
1333
+ - type: recall_at_100
1334
+ value: 97.786
1335
+ - type: recall_at_1000
1336
+ value: 98.809
1337
+ - type: recall_at_3
1338
+ value: 90.625
1339
+ - type: recall_at_5
1340
+ value: 93.345
1341
+ - task:
1342
+ type: Retrieval
1343
+ dataset:
1344
+ type: mteb/fiqa
1345
+ name: MTEB FiQA2018
1346
+ config: default
1347
+ split: test
1348
+ revision: 27a168819829fe9bcd655c2df245fb19452e8e06
1349
+ metrics:
1350
+ - type: map_at_1
1351
+ value: 22.788
1352
+ - type: map_at_10
1353
+ value: 36.71
1354
+ - type: map_at_100
1355
+ value: 38.527
1356
+ - type: map_at_1000
1357
+ value: 38.701
1358
+ - type: map_at_3
1359
+ value: 32.318999999999996
1360
+ - type: map_at_5
1361
+ value: 34.809
1362
+ - type: mrr_at_1
1363
+ value: 44.444
1364
+ - type: mrr_at_10
1365
+ value: 52.868
1366
+ - type: mrr_at_100
1367
+ value: 53.52400000000001
1368
+ - type: mrr_at_1000
1369
+ value: 53.559999999999995
1370
+ - type: mrr_at_3
1371
+ value: 50.153999999999996
1372
+ - type: mrr_at_5
1373
+ value: 51.651
1374
+ - type: ndcg_at_1
1375
+ value: 44.444
1376
+ - type: ndcg_at_10
1377
+ value: 44.707
1378
+ - type: ndcg_at_100
1379
+ value: 51.174
1380
+ - type: ndcg_at_1000
1381
+ value: 53.996
1382
+ - type: ndcg_at_3
1383
+ value: 40.855999999999995
1384
+ - type: ndcg_at_5
1385
+ value: 42.113
1386
+ - type: precision_at_1
1387
+ value: 44.444
1388
+ - type: precision_at_10
1389
+ value: 12.021999999999998
1390
+ - type: precision_at_100
1391
+ value: 1.8950000000000002
1392
+ - type: precision_at_1000
1393
+ value: 0.241
1394
+ - type: precision_at_3
1395
+ value: 26.8
1396
+ - type: precision_at_5
1397
+ value: 19.66
1398
+ - type: recall_at_1
1399
+ value: 22.788
1400
+ - type: recall_at_10
1401
+ value: 51.793
1402
+ - type: recall_at_100
1403
+ value: 75.69500000000001
1404
+ - type: recall_at_1000
1405
+ value: 92.292
1406
+ - type: recall_at_3
1407
+ value: 37.375
1408
+ - type: recall_at_5
1409
+ value: 43.682
1410
+ - task:
1411
+ type: Retrieval
1412
+ dataset:
1413
+ type: mteb/hotpotqa
1414
+ name: MTEB HotpotQA
1415
+ config: default
1416
+ split: test
1417
+ revision: ab518f4d6fcca38d87c25209f94beba119d02014
1418
+ metrics:
1419
+ - type: map_at_1
1420
+ value: 41.276
1421
+ - type: map_at_10
1422
+ value: 67.245
1423
+ - type: map_at_100
1424
+ value: 68.061
1425
+ - type: map_at_1000
1426
+ value: 68.11399999999999
1427
+ - type: map_at_3
1428
+ value: 63.693
1429
+ - type: map_at_5
1430
+ value: 65.90899999999999
1431
+ - type: mrr_at_1
1432
+ value: 82.552
1433
+ - type: mrr_at_10
1434
+ value: 87.741
1435
+ - type: mrr_at_100
1436
+ value: 87.868
1437
+ - type: mrr_at_1000
1438
+ value: 87.871
1439
+ - type: mrr_at_3
1440
+ value: 86.98599999999999
1441
+ - type: mrr_at_5
1442
+ value: 87.469
1443
+ - type: ndcg_at_1
1444
+ value: 82.552
1445
+ - type: ndcg_at_10
1446
+ value: 75.176
1447
+ - type: ndcg_at_100
1448
+ value: 77.902
1449
+ - type: ndcg_at_1000
1450
+ value: 78.852
1451
+ - type: ndcg_at_3
1452
+ value: 70.30499999999999
1453
+ - type: ndcg_at_5
1454
+ value: 73.00999999999999
1455
+ - type: precision_at_1
1456
+ value: 82.552
1457
+ - type: precision_at_10
1458
+ value: 15.765
1459
+ - type: precision_at_100
1460
+ value: 1.788
1461
+ - type: precision_at_1000
1462
+ value: 0.191
1463
+ - type: precision_at_3
1464
+ value: 45.375
1465
+ - type: precision_at_5
1466
+ value: 29.360999999999997
1467
+ - type: recall_at_1
1468
+ value: 41.276
1469
+ - type: recall_at_10
1470
+ value: 78.825
1471
+ - type: recall_at_100
1472
+ value: 89.41900000000001
1473
+ - type: recall_at_1000
1474
+ value: 95.625
1475
+ - type: recall_at_3
1476
+ value: 68.062
1477
+ - type: recall_at_5
1478
+ value: 73.40299999999999
1479
+ - task:
1480
+ type: Classification
1481
+ dataset:
1482
+ type: mteb/imdb
1483
+ name: MTEB ImdbClassification
1484
+ config: default
1485
+ split: test
1486
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1487
+ metrics:
1488
+ - type: accuracy
1489
+ value: 72.876
1490
+ - type: ap
1491
+ value: 67.15477852410164
1492
+ - type: f1
1493
+ value: 72.65147370025373
1494
+ - task:
1495
+ type: Retrieval
1496
+ dataset:
1497
+ type: mteb/msmarco
1498
+ name: MTEB MSMARCO
1499
+ config: default
1500
+ split: dev
1501
+ revision: c5a29a104738b98a9e76336939199e264163d4a0
1502
+ metrics:
1503
+ - type: map_at_1
1504
+ value: 21.748
1505
+ - type: map_at_10
1506
+ value: 34.626000000000005
1507
+ - type: map_at_100
1508
+ value: 35.813
1509
+ - type: map_at_1000
1510
+ value: 35.859
1511
+ - type: map_at_3
1512
+ value: 30.753000000000004
1513
+ - type: map_at_5
1514
+ value: 33.049
1515
+ - type: mrr_at_1
1516
+ value: 22.35
1517
+ - type: mrr_at_10
1518
+ value: 35.23
1519
+ - type: mrr_at_100
1520
+ value: 36.359
1521
+ - type: mrr_at_1000
1522
+ value: 36.399
1523
+ - type: mrr_at_3
1524
+ value: 31.436999999999998
1525
+ - type: mrr_at_5
1526
+ value: 33.687
1527
+ - type: ndcg_at_1
1528
+ value: 22.364
1529
+ - type: ndcg_at_10
1530
+ value: 41.677
1531
+ - type: ndcg_at_100
1532
+ value: 47.355999999999995
1533
+ - type: ndcg_at_1000
1534
+ value: 48.494
1535
+ - type: ndcg_at_3
1536
+ value: 33.85
1537
+ - type: ndcg_at_5
1538
+ value: 37.942
1539
+ - type: precision_at_1
1540
+ value: 22.364
1541
+ - type: precision_at_10
1542
+ value: 6.6000000000000005
1543
+ - type: precision_at_100
1544
+ value: 0.9450000000000001
1545
+ - type: precision_at_1000
1546
+ value: 0.104
1547
+ - type: precision_at_3
1548
+ value: 14.527000000000001
1549
+ - type: precision_at_5
1550
+ value: 10.796999999999999
1551
+ - type: recall_at_1
1552
+ value: 21.748
1553
+ - type: recall_at_10
1554
+ value: 63.292
1555
+ - type: recall_at_100
1556
+ value: 89.427
1557
+ - type: recall_at_1000
1558
+ value: 98.13499999999999
1559
+ - type: recall_at_3
1560
+ value: 42.126000000000005
1561
+ - type: recall_at_5
1562
+ value: 51.968
1563
+ - task:
1564
+ type: Classification
1565
+ dataset:
1566
+ type: mteb/mtop_domain
1567
+ name: MTEB MTOPDomainClassification (en)
1568
+ config: en
1569
+ split: test
1570
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1571
+ metrics:
1572
+ - type: accuracy
1573
+ value: 92.62425900592795
1574
+ - type: f1
1575
+ value: 92.08497761553683
1576
+ - task:
1577
+ type: Classification
1578
+ dataset:
1579
+ type: mteb/mtop_intent
1580
+ name: MTEB MTOPIntentClassification (en)
1581
+ config: en
1582
+ split: test
1583
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1584
+ metrics:
1585
+ - type: accuracy
1586
+ value: 64.51436388508893
1587
+ - type: f1
1588
+ value: 45.884016531912906
1589
+ - task:
1590
+ type: Classification
1591
+ dataset:
1592
+ type: masakhane/masakhanews
1593
+ name: MTEB MasakhaNEWSClassification (eng)
1594
+ config: eng
1595
+ split: test
1596
+ revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
1597
+ metrics:
1598
+ - type: accuracy
1599
+ value: 76.57172995780591
1600
+ - type: f1
1601
+ value: 75.52979910878491
1602
+ - task:
1603
+ type: Clustering
1604
+ dataset:
1605
+ type: masakhane/masakhanews
1606
+ name: MTEB MasakhaNEWSClusteringP2P (eng)
1607
+ config: eng
1608
+ split: test
1609
+ revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
1610
+ metrics:
1611
+ - type: v_measure
1612
+ value: 44.84052695201612
1613
+ - task:
1614
+ type: Clustering
1615
+ dataset:
1616
+ type: masakhane/masakhanews
1617
+ name: MTEB MasakhaNEWSClusteringS2S (eng)
1618
+ config: eng
1619
+ split: test
1620
+ revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
1621
+ metrics:
1622
+ - type: v_measure
1623
+ value: 21.443971229936494
1624
+ - task:
1625
+ type: Classification
1626
+ dataset:
1627
+ type: mteb/amazon_massive_intent
1628
+ name: MTEB MassiveIntentClassification (en)
1629
+ config: en
1630
+ split: test
1631
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1632
+ metrics:
1633
+ - type: accuracy
1634
+ value: 65.79354404841965
1635
+ - type: f1
1636
+ value: 63.17260074126185
1637
+ - task:
1638
+ type: Classification
1639
+ dataset:
1640
+ type: mteb/amazon_massive_scenario
1641
+ name: MTEB MassiveScenarioClassification (en)
1642
+ config: en
1643
+ split: test
1644
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1645
+ metrics:
1646
+ - type: accuracy
1647
+ value: 71.09616677874916
1648
+ - type: f1
1649
+ value: 69.74285784421075
1650
+ - task:
1651
+ type: Clustering
1652
+ dataset:
1653
+ type: mteb/medrxiv-clustering-p2p
1654
+ name: MTEB MedrxivClusteringP2P
1655
+ config: default
1656
+ split: test
1657
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1658
+ metrics:
1659
+ - type: v_measure
1660
+ value: 31.474709231086184
1661
+ - task:
1662
+ type: Clustering
1663
+ dataset:
1664
+ type: mteb/medrxiv-clustering-s2s
1665
+ name: MTEB MedrxivClusteringS2S
1666
+ config: default
1667
+ split: test
1668
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1669
+ metrics:
1670
+ - type: v_measure
1671
+ value: 28.93630367824217
1672
+ - task:
1673
+ type: Reranking
1674
+ dataset:
1675
+ type: mteb/mind_small
1676
+ name: MTEB MindSmallReranking
1677
+ config: default
1678
+ split: test
1679
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1680
+ metrics:
1681
+ - type: map
1682
+ value: 29.08234393834005
1683
+ - type: mrr
1684
+ value: 29.740466971605432
1685
+ - task:
1686
+ type: Retrieval
1687
+ dataset:
1688
+ type: mteb/nfcorpus
1689
+ name: MTEB NFCorpus
1690
+ config: default
1691
+ split: test
1692
+ revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
1693
+ metrics:
1694
+ - type: map_at_1
1695
+ value: 6.2059999999999995
1696
+ - type: map_at_10
1697
+ value: 14.442
1698
+ - type: map_at_100
1699
+ value: 18.005
1700
+ - type: map_at_1000
1701
+ value: 19.488
1702
+ - type: map_at_3
1703
+ value: 10.666
1704
+ - type: map_at_5
1705
+ value: 12.45
1706
+ - type: mrr_at_1
1707
+ value: 47.678
1708
+ - type: mrr_at_10
1709
+ value: 57.519
1710
+ - type: mrr_at_100
1711
+ value: 58.13700000000001
1712
+ - type: mrr_at_1000
1713
+ value: 58.167
1714
+ - type: mrr_at_3
1715
+ value: 55.779
1716
+ - type: mrr_at_5
1717
+ value: 56.940000000000005
1718
+ - type: ndcg_at_1
1719
+ value: 45.82
1720
+ - type: ndcg_at_10
1721
+ value: 37.651
1722
+ - type: ndcg_at_100
1723
+ value: 34.001999999999995
1724
+ - type: ndcg_at_1000
1725
+ value: 42.626
1726
+ - type: ndcg_at_3
1727
+ value: 43.961
1728
+ - type: ndcg_at_5
1729
+ value: 41.461
1730
+ - type: precision_at_1
1731
+ value: 47.678
1732
+ - type: precision_at_10
1733
+ value: 27.584999999999997
1734
+ - type: precision_at_100
1735
+ value: 8.455
1736
+ - type: precision_at_1000
1737
+ value: 2.118
1738
+ - type: precision_at_3
1739
+ value: 41.692
1740
+ - type: precision_at_5
1741
+ value: 36.161
1742
+ - type: recall_at_1
1743
+ value: 6.2059999999999995
1744
+ - type: recall_at_10
1745
+ value: 18.599
1746
+ - type: recall_at_100
1747
+ value: 33.608
1748
+ - type: recall_at_1000
1749
+ value: 65.429
1750
+ - type: recall_at_3
1751
+ value: 12.126000000000001
1752
+ - type: recall_at_5
1753
+ value: 14.902000000000001
1754
+ - task:
1755
+ type: Retrieval
1756
+ dataset:
1757
+ type: mteb/nq
1758
+ name: MTEB NQ
1759
+ config: default
1760
+ split: test
1761
+ revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
1762
+ metrics:
1763
+ - type: map_at_1
1764
+ value: 39.117000000000004
1765
+ - type: map_at_10
1766
+ value: 55.535000000000004
1767
+ - type: map_at_100
1768
+ value: 56.32899999999999
1769
+ - type: map_at_1000
1770
+ value: 56.34400000000001
1771
+ - type: map_at_3
1772
+ value: 51.439
1773
+ - type: map_at_5
1774
+ value: 53.89699999999999
1775
+ - type: mrr_at_1
1776
+ value: 43.714
1777
+ - type: mrr_at_10
1778
+ value: 58.05200000000001
1779
+ - type: mrr_at_100
1780
+ value: 58.582
1781
+ - type: mrr_at_1000
1782
+ value: 58.592
1783
+ - type: mrr_at_3
1784
+ value: 54.896
1785
+ - type: mrr_at_5
1786
+ value: 56.874
1787
+ - type: ndcg_at_1
1788
+ value: 43.685
1789
+ - type: ndcg_at_10
1790
+ value: 63.108
1791
+ - type: ndcg_at_100
1792
+ value: 66.231
1793
+ - type: ndcg_at_1000
1794
+ value: 66.583
1795
+ - type: ndcg_at_3
1796
+ value: 55.659000000000006
1797
+ - type: ndcg_at_5
1798
+ value: 59.681
1799
+ - type: precision_at_1
1800
+ value: 43.685
1801
+ - type: precision_at_10
1802
+ value: 9.962
1803
+ - type: precision_at_100
1804
+ value: 1.174
1805
+ - type: precision_at_1000
1806
+ value: 0.121
1807
+ - type: precision_at_3
1808
+ value: 24.961
1809
+ - type: precision_at_5
1810
+ value: 17.352
1811
+ - type: recall_at_1
1812
+ value: 39.117000000000004
1813
+ - type: recall_at_10
1814
+ value: 83.408
1815
+ - type: recall_at_100
1816
+ value: 96.553
1817
+ - type: recall_at_1000
1818
+ value: 99.136
1819
+ - type: recall_at_3
1820
+ value: 64.364
1821
+ - type: recall_at_5
1822
+ value: 73.573
1823
+ - task:
1824
+ type: Classification
1825
+ dataset:
1826
+ type: ag_news
1827
+ name: MTEB NewsClassification
1828
+ config: default
1829
+ split: test
1830
+ revision: eb185aade064a813bc0b7f42de02595523103ca4
1831
+ metrics:
1832
+ - type: accuracy
1833
+ value: 78.87763157894737
1834
+ - type: f1
1835
+ value: 78.69611753876177
1836
+ - task:
1837
+ type: PairClassification
1838
+ dataset:
1839
+ type: GEM/opusparcus
1840
+ name: MTEB OpusparcusPC (en)
1841
+ config: en
1842
+ split: test
1843
+ revision: 9e9b1f8ef51616073f47f306f7f47dd91663f86a
1844
+ metrics:
1845
+ - type: cos_sim_accuracy
1846
+ value: 99.89816700610999
1847
+ - type: cos_sim_ap
1848
+ value: 100
1849
+ - type: cos_sim_f1
1850
+ value: 99.9490575649516
1851
+ - type: cos_sim_precision
1852
+ value: 100
1853
+ - type: cos_sim_recall
1854
+ value: 99.89816700610999
1855
+ - type: dot_accuracy
1856
+ value: 99.89816700610999
1857
+ - type: dot_ap
1858
+ value: 100
1859
+ - type: dot_f1
1860
+ value: 99.9490575649516
1861
+ - type: dot_precision
1862
+ value: 100
1863
+ - type: dot_recall
1864
+ value: 99.89816700610999
1865
+ - type: euclidean_accuracy
1866
+ value: 99.89816700610999
1867
+ - type: euclidean_ap
1868
+ value: 100
1869
+ - type: euclidean_f1
1870
+ value: 99.9490575649516
1871
+ - type: euclidean_precision
1872
+ value: 100
1873
+ - type: euclidean_recall
1874
+ value: 99.89816700610999
1875
+ - type: manhattan_accuracy
1876
+ value: 99.89816700610999
1877
+ - type: manhattan_ap
1878
+ value: 100
1879
+ - type: manhattan_f1
1880
+ value: 99.9490575649516
1881
+ - type: manhattan_precision
1882
+ value: 100
1883
+ - type: manhattan_recall
1884
+ value: 99.89816700610999
1885
+ - type: max_accuracy
1886
+ value: 99.89816700610999
1887
+ - type: max_ap
1888
+ value: 100
1889
+ - type: max_f1
1890
+ value: 99.9490575649516
1891
+ - task:
1892
+ type: PairClassification
1893
+ dataset:
1894
+ type: paws-x
1895
+ name: MTEB PawsX (en)
1896
+ config: en
1897
+ split: test
1898
+ revision: 8a04d940a42cd40658986fdd8e3da561533a3646
1899
+ metrics:
1900
+ - type: cos_sim_accuracy
1901
+ value: 62
1902
+ - type: cos_sim_ap
1903
+ value: 62.26837791655737
1904
+ - type: cos_sim_f1
1905
+ value: 62.607449856733524
1906
+ - type: cos_sim_precision
1907
+ value: 46.36604774535809
1908
+ - type: cos_sim_recall
1909
+ value: 96.36163175303197
1910
+ - type: dot_accuracy
1911
+ value: 62
1912
+ - type: dot_ap
1913
+ value: 62.26736459439965
1914
+ - type: dot_f1
1915
+ value: 62.607449856733524
1916
+ - type: dot_precision
1917
+ value: 46.36604774535809
1918
+ - type: dot_recall
1919
+ value: 96.36163175303197
1920
+ - type: euclidean_accuracy
1921
+ value: 62
1922
+ - type: euclidean_ap
1923
+ value: 62.26826112548132
1924
+ - type: euclidean_f1
1925
+ value: 62.607449856733524
1926
+ - type: euclidean_precision
1927
+ value: 46.36604774535809
1928
+ - type: euclidean_recall
1929
+ value: 96.36163175303197
1930
+ - type: manhattan_accuracy
1931
+ value: 62
1932
+ - type: manhattan_ap
1933
+ value: 62.26223761507973
1934
+ - type: manhattan_f1
1935
+ value: 62.585034013605444
1936
+ - type: manhattan_precision
1937
+ value: 46.34146341463415
1938
+ - type: manhattan_recall
1939
+ value: 96.36163175303197
1940
+ - type: max_accuracy
1941
+ value: 62
1942
+ - type: max_ap
1943
+ value: 62.26837791655737
1944
+ - type: max_f1
1945
+ value: 62.607449856733524
1946
+ - task:
1947
+ type: Retrieval
1948
+ dataset:
1949
+ type: mteb/quora
1950
+ name: MTEB QuoraRetrieval
1951
+ config: default
1952
+ split: test
1953
+ revision: e4e08e0b7dbe3c8700f0daef558ff32256715259
1954
+ metrics:
1955
+ - type: map_at_1
1956
+ value: 69.90899999999999
1957
+ - type: map_at_10
1958
+ value: 83.56700000000001
1959
+ - type: map_at_100
1960
+ value: 84.19200000000001
1961
+ - type: map_at_1000
1962
+ value: 84.212
1963
+ - type: map_at_3
1964
+ value: 80.658
1965
+ - type: map_at_5
1966
+ value: 82.473
1967
+ - type: mrr_at_1
1968
+ value: 80.4
1969
+ - type: mrr_at_10
1970
+ value: 86.699
1971
+ - type: mrr_at_100
1972
+ value: 86.798
1973
+ - type: mrr_at_1000
1974
+ value: 86.80099999999999
1975
+ - type: mrr_at_3
1976
+ value: 85.677
1977
+ - type: mrr_at_5
1978
+ value: 86.354
1979
+ - type: ndcg_at_1
1980
+ value: 80.43
1981
+ - type: ndcg_at_10
1982
+ value: 87.41
1983
+ - type: ndcg_at_100
1984
+ value: 88.653
1985
+ - type: ndcg_at_1000
1986
+ value: 88.81599999999999
1987
+ - type: ndcg_at_3
1988
+ value: 84.516
1989
+ - type: ndcg_at_5
1990
+ value: 86.068
1991
+ - type: precision_at_1
1992
+ value: 80.43
1993
+ - type: precision_at_10
1994
+ value: 13.234000000000002
1995
+ - type: precision_at_100
1996
+ value: 1.513
1997
+ - type: precision_at_1000
1998
+ value: 0.156
1999
+ - type: precision_at_3
2000
+ value: 36.93
2001
+ - type: precision_at_5
2002
+ value: 24.26
2003
+ - type: recall_at_1
2004
+ value: 69.90899999999999
2005
+ - type: recall_at_10
2006
+ value: 94.687
2007
+ - type: recall_at_100
2008
+ value: 98.96000000000001
2009
+ - type: recall_at_1000
2010
+ value: 99.79599999999999
2011
+ - type: recall_at_3
2012
+ value: 86.25699999999999
2013
+ - type: recall_at_5
2014
+ value: 90.70700000000001
2015
+ - task:
2016
+ type: Clustering
2017
+ dataset:
2018
+ type: mteb/reddit-clustering
2019
+ name: MTEB RedditClustering
2020
+ config: default
2021
+ split: test
2022
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
2023
+ metrics:
2024
+ - type: v_measure
2025
+ value: 46.02256865360266
2026
+ - task:
2027
+ type: Clustering
2028
+ dataset:
2029
+ type: mteb/reddit-clustering-p2p
2030
+ name: MTEB RedditClusteringP2P
2031
+ config: default
2032
+ split: test
2033
+ revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
2034
+ metrics:
2035
+ - type: v_measure
2036
+ value: 62.43157528757563
2037
+ - task:
2038
+ type: Retrieval
2039
+ dataset:
2040
+ type: mteb/scidocs
2041
+ name: MTEB SCIDOCS
2042
+ config: default
2043
+ split: test
2044
+ revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88
2045
+ metrics:
2046
+ - type: map_at_1
2047
+ value: 5.093
2048
+ - type: map_at_10
2049
+ value: 12.982
2050
+ - type: map_at_100
2051
+ value: 15.031
2052
+ - type: map_at_1000
2053
+ value: 15.334
2054
+ - type: map_at_3
2055
+ value: 9.339
2056
+ - type: map_at_5
2057
+ value: 11.183
2058
+ - type: mrr_at_1
2059
+ value: 25.1
2060
+ - type: mrr_at_10
2061
+ value: 36.257
2062
+ - type: mrr_at_100
2063
+ value: 37.351
2064
+ - type: mrr_at_1000
2065
+ value: 37.409
2066
+ - type: mrr_at_3
2067
+ value: 33.050000000000004
2068
+ - type: mrr_at_5
2069
+ value: 35.205
2070
+ - type: ndcg_at_1
2071
+ value: 25.1
2072
+ - type: ndcg_at_10
2073
+ value: 21.361
2074
+ - type: ndcg_at_100
2075
+ value: 29.396
2076
+ - type: ndcg_at_1000
2077
+ value: 34.849999999999994
2078
+ - type: ndcg_at_3
2079
+ value: 20.704
2080
+ - type: ndcg_at_5
2081
+ value: 18.086
2082
+ - type: precision_at_1
2083
+ value: 25.1
2084
+ - type: precision_at_10
2085
+ value: 10.94
2086
+ - type: precision_at_100
2087
+ value: 2.257
2088
+ - type: precision_at_1000
2089
+ value: 0.358
2090
+ - type: precision_at_3
2091
+ value: 19.467000000000002
2092
+ - type: precision_at_5
2093
+ value: 15.98
2094
+ - type: recall_at_1
2095
+ value: 5.093
2096
+ - type: recall_at_10
2097
+ value: 22.177
2098
+ - type: recall_at_100
2099
+ value: 45.842
2100
+ - type: recall_at_1000
2101
+ value: 72.598
2102
+ - type: recall_at_3
2103
+ value: 11.833
2104
+ - type: recall_at_5
2105
+ value: 16.173000000000002
2106
+ - task:
2107
+ type: STS
2108
+ dataset:
2109
+ type: mteb/sickr-sts
2110
+ name: MTEB SICK-R
2111
+ config: default
2112
+ split: test
2113
+ revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
2114
+ metrics:
2115
+ - type: cos_sim_pearson
2116
+ value: 73.56535226754596
2117
+ - type: cos_sim_spearman
2118
+ value: 69.32425977603488
2119
+ - type: euclidean_pearson
2120
+ value: 71.32425703470898
2121
+ - type: euclidean_spearman
2122
+ value: 69.32425217267013
2123
+ - type: manhattan_pearson
2124
+ value: 71.25897281394246
2125
+ - type: manhattan_spearman
2126
+ value: 69.27132577049578
2127
+ - task:
2128
+ type: STS
2129
+ dataset:
2130
+ type: mteb/sts12-sts
2131
+ name: MTEB STS12
2132
+ config: default
2133
+ split: test
2134
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
2135
+ metrics:
2136
+ - type: cos_sim_pearson
2137
+ value: 69.66387868726018
2138
+ - type: cos_sim_spearman
2139
+ value: 67.85470749045027
2140
+ - type: euclidean_pearson
2141
+ value: 66.62075098063795
2142
+ - type: euclidean_spearman
2143
+ value: 67.85470749045027
2144
+ - type: manhattan_pearson
2145
+ value: 66.61455061901262
2146
+ - type: manhattan_spearman
2147
+ value: 67.87229618498695
2148
+ - task:
2149
+ type: STS
2150
+ dataset:
2151
+ type: mteb/sts13-sts
2152
+ name: MTEB STS13
2153
+ config: default
2154
+ split: test
2155
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
2156
+ metrics:
2157
+ - type: cos_sim_pearson
2158
+ value: 75.65731331392575
2159
+ - type: cos_sim_spearman
2160
+ value: 77.48991626780108
2161
+ - type: euclidean_pearson
2162
+ value: 77.19884738623692
2163
+ - type: euclidean_spearman
2164
+ value: 77.48985836619045
2165
+ - type: manhattan_pearson
2166
+ value: 77.0656684243772
2167
+ - type: manhattan_spearman
2168
+ value: 77.30289226582691
2169
+ - task:
2170
+ type: STS
2171
+ dataset:
2172
+ type: mteb/sts14-sts
2173
+ name: MTEB STS14
2174
+ config: default
2175
+ split: test
2176
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2177
+ metrics:
2178
+ - type: cos_sim_pearson
2179
+ value: 69.37003253666457
2180
+ - type: cos_sim_spearman
2181
+ value: 69.77157648098141
2182
+ - type: euclidean_pearson
2183
+ value: 69.39543876030432
2184
+ - type: euclidean_spearman
2185
+ value: 69.77157648098141
2186
+ - type: manhattan_pearson
2187
+ value: 69.29901600459745
2188
+ - type: manhattan_spearman
2189
+ value: 69.65074167527128
2190
+ - task:
2191
+ type: STS
2192
+ dataset:
2193
+ type: mteb/sts15-sts
2194
+ name: MTEB STS15
2195
+ config: default
2196
+ split: test
2197
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2198
+ metrics:
2199
+ - type: cos_sim_pearson
2200
+ value: 78.56777256540136
2201
+ - type: cos_sim_spearman
2202
+ value: 80.16458787843023
2203
+ - type: euclidean_pearson
2204
+ value: 80.16475730686916
2205
+ - type: euclidean_spearman
2206
+ value: 80.16458787843023
2207
+ - type: manhattan_pearson
2208
+ value: 80.12814463670401
2209
+ - type: manhattan_spearman
2210
+ value: 80.1357907984809
2211
+ - task:
2212
+ type: STS
2213
+ dataset:
2214
+ type: mteb/sts16-sts
2215
+ name: MTEB STS16
2216
+ config: default
2217
+ split: test
2218
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2219
+ metrics:
2220
+ - type: cos_sim_pearson
2221
+ value: 76.09572350919031
2222
+ - type: cos_sim_spearman
2223
+ value: 77.94490233429326
2224
+ - type: euclidean_pearson
2225
+ value: 78.36595251203524
2226
+ - type: euclidean_spearman
2227
+ value: 77.94490233429326
2228
+ - type: manhattan_pearson
2229
+ value: 78.41538768125166
2230
+ - type: manhattan_spearman
2231
+ value: 78.01244379569542
2232
+ - task:
2233
+ type: STS
2234
+ dataset:
2235
+ type: mteb/sts17-crosslingual-sts
2236
+ name: MTEB STS17 (en-en)
2237
+ config: en-en
2238
+ split: test
2239
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2240
+ metrics:
2241
+ - type: cos_sim_pearson
2242
+ value: 80.7843552187951
2243
+ - type: cos_sim_spearman
2244
+ value: 82.28085055047386
2245
+ - type: euclidean_pearson
2246
+ value: 82.37373672515267
2247
+ - type: euclidean_spearman
2248
+ value: 82.28085055047386
2249
+ - type: manhattan_pearson
2250
+ value: 82.39387241346917
2251
+ - type: manhattan_spearman
2252
+ value: 82.36503339515906
2253
+ - task:
2254
+ type: STS
2255
+ dataset:
2256
+ type: mteb/sts22-crosslingual-sts
2257
+ name: MTEB STS22 (en)
2258
+ config: en
2259
+ split: test
2260
+ revision: eea2b4fe26a775864c896887d910b76a8098ad3f
2261
+ metrics:
2262
+ - type: cos_sim_pearson
2263
+ value: 68.29963929962095
2264
+ - type: cos_sim_spearman
2265
+ value: 67.96868942546051
2266
+ - type: euclidean_pearson
2267
+ value: 68.93524903869285
2268
+ - type: euclidean_spearman
2269
+ value: 67.96868942546051
2270
+ - type: manhattan_pearson
2271
+ value: 68.79144468444811
2272
+ - type: manhattan_spearman
2273
+ value: 67.69311483884324
2274
+ - task:
2275
+ type: STS
2276
+ dataset:
2277
+ type: mteb/stsbenchmark-sts
2278
+ name: MTEB STSBenchmark
2279
+ config: default
2280
+ split: test
2281
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2282
+ metrics:
2283
+ - type: cos_sim_pearson
2284
+ value: 72.84789696700685
2285
+ - type: cos_sim_spearman
2286
+ value: 75.67875747588545
2287
+ - type: euclidean_pearson
2288
+ value: 75.07752300463038
2289
+ - type: euclidean_spearman
2290
+ value: 75.67875747588545
2291
+ - type: manhattan_pearson
2292
+ value: 74.97934248140928
2293
+ - type: manhattan_spearman
2294
+ value: 75.62525644178724
2295
+ - task:
2296
+ type: STS
2297
+ dataset:
2298
+ type: PhilipMay/stsb_multi_mt
2299
+ name: MTEB STSBenchmarkMultilingualSTS (en)
2300
+ config: en
2301
+ split: test
2302
+ revision: 93d57ef91790589e3ce9c365164337a8a78b7632
2303
+ metrics:
2304
+ - type: cos_sim_pearson
2305
+ value: 72.84789702519309
2306
+ - type: cos_sim_spearman
2307
+ value: 75.67875747588545
2308
+ - type: euclidean_pearson
2309
+ value: 75.07752310061133
2310
+ - type: euclidean_spearman
2311
+ value: 75.67875747588545
2312
+ - type: manhattan_pearson
2313
+ value: 74.97934257159595
2314
+ - type: manhattan_spearman
2315
+ value: 75.62525644178724
2316
+ - task:
2317
+ type: Reranking
2318
+ dataset:
2319
+ type: mteb/scidocs-reranking
2320
+ name: MTEB SciDocsRR
2321
+ config: default
2322
+ split: test
2323
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2324
+ metrics:
2325
+ - type: map
2326
+ value: 81.55557720431086
2327
+ - type: mrr
2328
+ value: 94.91178665198272
2329
+ - task:
2330
+ type: Retrieval
2331
+ dataset:
2332
+ type: mteb/scifact
2333
+ name: MTEB SciFact
2334
+ config: default
2335
+ split: test
2336
+ revision: 0228b52cf27578f30900b9e5271d331663a030d7
2337
+ metrics:
2338
+ - type: map_at_1
2339
+ value: 59.260999999999996
2340
+ - type: map_at_10
2341
+ value: 69.36099999999999
2342
+ - type: map_at_100
2343
+ value: 69.868
2344
+ - type: map_at_1000
2345
+ value: 69.877
2346
+ - type: map_at_3
2347
+ value: 66.617
2348
+ - type: map_at_5
2349
+ value: 68.061
2350
+ - type: mrr_at_1
2351
+ value: 62.333000000000006
2352
+ - type: mrr_at_10
2353
+ value: 70.533
2354
+ - type: mrr_at_100
2355
+ value: 70.966
2356
+ - type: mrr_at_1000
2357
+ value: 70.975
2358
+ - type: mrr_at_3
2359
+ value: 68.667
2360
+ - type: mrr_at_5
2361
+ value: 69.717
2362
+ - type: ndcg_at_1
2363
+ value: 62.333000000000006
2364
+ - type: ndcg_at_10
2365
+ value: 73.82300000000001
2366
+ - type: ndcg_at_100
2367
+ value: 76.122
2368
+ - type: ndcg_at_1000
2369
+ value: 76.374
2370
+ - type: ndcg_at_3
2371
+ value: 69.27499999999999
2372
+ - type: ndcg_at_5
2373
+ value: 71.33
2374
+ - type: precision_at_1
2375
+ value: 62.333000000000006
2376
+ - type: precision_at_10
2377
+ value: 9.8
2378
+ - type: precision_at_100
2379
+ value: 1.097
2380
+ - type: precision_at_1000
2381
+ value: 0.11199999999999999
2382
+ - type: precision_at_3
2383
+ value: 26.889000000000003
2384
+ - type: precision_at_5
2385
+ value: 17.599999999999998
2386
+ - type: recall_at_1
2387
+ value: 59.260999999999996
2388
+ - type: recall_at_10
2389
+ value: 86.2
2390
+ - type: recall_at_100
2391
+ value: 96.667
2392
+ - type: recall_at_1000
2393
+ value: 98.667
2394
+ - type: recall_at_3
2395
+ value: 74.006
2396
+ - type: recall_at_5
2397
+ value: 79.167
2398
+ - task:
2399
+ type: PairClassification
2400
+ dataset:
2401
+ type: mteb/sprintduplicatequestions-pairclassification
2402
+ name: MTEB SprintDuplicateQuestions
2403
+ config: default
2404
+ split: test
2405
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2406
+ metrics:
2407
+ - type: cos_sim_accuracy
2408
+ value: 99.81881188118813
2409
+ - type: cos_sim_ap
2410
+ value: 95.20169041096409
2411
+ - type: cos_sim_f1
2412
+ value: 90.76224129227664
2413
+ - type: cos_sim_precision
2414
+ value: 91.64118246687055
2415
+ - type: cos_sim_recall
2416
+ value: 89.9
2417
+ - type: dot_accuracy
2418
+ value: 99.81881188118813
2419
+ - type: dot_ap
2420
+ value: 95.20169041096409
2421
+ - type: dot_f1
2422
+ value: 90.76224129227664
2423
+ - type: dot_precision
2424
+ value: 91.64118246687055
2425
+ - type: dot_recall
2426
+ value: 89.9
2427
+ - type: euclidean_accuracy
2428
+ value: 99.81881188118813
2429
+ - type: euclidean_ap
2430
+ value: 95.2016904109641
2431
+ - type: euclidean_f1
2432
+ value: 90.76224129227664
2433
+ - type: euclidean_precision
2434
+ value: 91.64118246687055
2435
+ - type: euclidean_recall
2436
+ value: 89.9
2437
+ - type: manhattan_accuracy
2438
+ value: 99.81881188118813
2439
+ - type: manhattan_ap
2440
+ value: 95.22680188132777
2441
+ - type: manhattan_f1
2442
+ value: 90.79013588324108
2443
+ - type: manhattan_precision
2444
+ value: 91.38804457953394
2445
+ - type: manhattan_recall
2446
+ value: 90.2
2447
+ - type: max_accuracy
2448
+ value: 99.81881188118813
2449
+ - type: max_ap
2450
+ value: 95.22680188132777
2451
+ - type: max_f1
2452
+ value: 90.79013588324108
2453
+ - task:
2454
+ type: Clustering
2455
+ dataset:
2456
+ type: mteb/stackexchange-clustering
2457
+ name: MTEB StackExchangeClustering
2458
+ config: default
2459
+ split: test
2460
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2461
+ metrics:
2462
+ - type: v_measure
2463
+ value: 57.8638628701308
2464
+ - task:
2465
+ type: Clustering
2466
+ dataset:
2467
+ type: mteb/stackexchange-clustering-p2p
2468
+ name: MTEB StackExchangeClusteringP2P
2469
+ config: default
2470
+ split: test
2471
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2472
+ metrics:
2473
+ - type: v_measure
2474
+ value: 37.82028248106046
2475
+ - task:
2476
+ type: Reranking
2477
+ dataset:
2478
+ type: mteb/stackoverflowdupquestions-reranking
2479
+ name: MTEB StackOverflowDupQuestions
2480
+ config: default
2481
+ split: test
2482
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2483
+ metrics:
2484
+ - type: map
2485
+ value: 50.870860210170946
2486
+ - type: mrr
2487
+ value: 51.608084521687466
2488
+ - task:
2489
+ type: Summarization
2490
+ dataset:
2491
+ type: mteb/summeval
2492
+ name: MTEB SummEval
2493
+ config: default
2494
+ split: test
2495
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2496
+ metrics:
2497
+ - type: cos_sim_pearson
2498
+ value: 31.60384207444685
2499
+ - type: cos_sim_spearman
2500
+ value: 30.84047452209471
2501
+ - type: dot_pearson
2502
+ value: 31.60384104417333
2503
+ - type: dot_spearman
2504
+ value: 30.84047452209471
2505
+ - task:
2506
+ type: Retrieval
2507
+ dataset:
2508
+ type: mteb/trec-covid
2509
+ name: MTEB TRECCOVID
2510
+ config: default
2511
+ split: test
2512
+ revision: bb9466bac8153a0349341eb1b22e06409e78ef4e
2513
+ metrics:
2514
+ - type: map_at_1
2515
+ value: 0.246
2516
+ - type: map_at_10
2517
+ value: 2.051
2518
+ - type: map_at_100
2519
+ value: 13.129
2520
+ - type: map_at_1000
2521
+ value: 31.56
2522
+ - type: map_at_3
2523
+ value: 0.681
2524
+ - type: map_at_5
2525
+ value: 1.105
2526
+ - type: mrr_at_1
2527
+ value: 94
2528
+ - type: mrr_at_10
2529
+ value: 97
2530
+ - type: mrr_at_100
2531
+ value: 97
2532
+ - type: mrr_at_1000
2533
+ value: 97
2534
+ - type: mrr_at_3
2535
+ value: 97
2536
+ - type: mrr_at_5
2537
+ value: 97
2538
+ - type: ndcg_at_1
2539
+ value: 87
2540
+ - type: ndcg_at_10
2541
+ value: 80.716
2542
+ - type: ndcg_at_100
2543
+ value: 63.83
2544
+ - type: ndcg_at_1000
2545
+ value: 56.215
2546
+ - type: ndcg_at_3
2547
+ value: 84.531
2548
+ - type: ndcg_at_5
2549
+ value: 84.777
2550
+ - type: precision_at_1
2551
+ value: 94
2552
+ - type: precision_at_10
2553
+ value: 84.6
2554
+ - type: precision_at_100
2555
+ value: 66.03999999999999
2556
+ - type: precision_at_1000
2557
+ value: 24.878
2558
+ - type: precision_at_3
2559
+ value: 88.667
2560
+ - type: precision_at_5
2561
+ value: 89.60000000000001
2562
+ - type: recall_at_1
2563
+ value: 0.246
2564
+ - type: recall_at_10
2565
+ value: 2.2079999999999997
2566
+ - type: recall_at_100
2567
+ value: 15.895999999999999
2568
+ - type: recall_at_1000
2569
+ value: 52.683
2570
+ - type: recall_at_3
2571
+ value: 0.7040000000000001
2572
+ - type: recall_at_5
2573
+ value: 1.163
2574
+ - task:
2575
+ type: Retrieval
2576
+ dataset:
2577
+ type: mteb/touche2020
2578
+ name: MTEB Touche2020
2579
+ config: default
2580
+ split: test
2581
+ revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
2582
+ metrics:
2583
+ - type: map_at_1
2584
+ value: 3.852
2585
+ - type: map_at_10
2586
+ value: 14.316
2587
+ - type: map_at_100
2588
+ value: 20.982
2589
+ - type: map_at_1000
2590
+ value: 22.58
2591
+ - type: map_at_3
2592
+ value: 7.767
2593
+ - type: map_at_5
2594
+ value: 10.321
2595
+ - type: mrr_at_1
2596
+ value: 51.019999999999996
2597
+ - type: mrr_at_10
2598
+ value: 66.365
2599
+ - type: mrr_at_100
2600
+ value: 66.522
2601
+ - type: mrr_at_1000
2602
+ value: 66.522
2603
+ - type: mrr_at_3
2604
+ value: 62.925
2605
+ - type: mrr_at_5
2606
+ value: 64.762
2607
+ - type: ndcg_at_1
2608
+ value: 46.939
2609
+ - type: ndcg_at_10
2610
+ value: 34.516999999999996
2611
+ - type: ndcg_at_100
2612
+ value: 44.25
2613
+ - type: ndcg_at_1000
2614
+ value: 54.899
2615
+ - type: ndcg_at_3
2616
+ value: 40.203
2617
+ - type: ndcg_at_5
2618
+ value: 37.004
2619
+ - type: precision_at_1
2620
+ value: 51.019999999999996
2621
+ - type: precision_at_10
2622
+ value: 29.796
2623
+ - type: precision_at_100
2624
+ value: 8.633000000000001
2625
+ - type: precision_at_1000
2626
+ value: 1.584
2627
+ - type: precision_at_3
2628
+ value: 40.816
2629
+ - type: precision_at_5
2630
+ value: 35.918
2631
+ - type: recall_at_1
2632
+ value: 3.852
2633
+ - type: recall_at_10
2634
+ value: 20.891000000000002
2635
+ - type: recall_at_100
2636
+ value: 52.428
2637
+ - type: recall_at_1000
2638
+ value: 84.34899999999999
2639
+ - type: recall_at_3
2640
+ value: 8.834
2641
+ - type: recall_at_5
2642
+ value: 12.909
2643
+ - task:
2644
+ type: Classification
2645
+ dataset:
2646
+ type: mteb/toxic_conversations_50k
2647
+ name: MTEB ToxicConversationsClassification
2648
+ config: default
2649
+ split: test
2650
+ revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
2651
+ metrics:
2652
+ - type: accuracy
2653
+ value: 64.7092
2654
+ - type: ap
2655
+ value: 11.972915012305819
2656
+ - type: f1
2657
+ value: 49.91050149892115
2658
+ - task:
2659
+ type: Classification
2660
+ dataset:
2661
+ type: mteb/tweet_sentiment_extraction
2662
+ name: MTEB TweetSentimentExtractionClassification
2663
+ config: default
2664
+ split: test
2665
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2666
+ metrics:
2667
+ - type: accuracy
2668
+ value: 56.737408036219584
2669
+ - type: f1
2670
+ value: 57.07235266246011
2671
+ - task:
2672
+ type: Clustering
2673
+ dataset:
2674
+ type: mteb/twentynewsgroups-clustering
2675
+ name: MTEB TwentyNewsgroupsClustering
2676
+ config: default
2677
+ split: test
2678
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2679
+ metrics:
2680
+ - type: v_measure
2681
+ value: 35.9147539025798
2682
+ - task:
2683
+ type: PairClassification
2684
+ dataset:
2685
+ type: mteb/twittersemeval2015-pairclassification
2686
+ name: MTEB TwitterSemEval2015
2687
+ config: default
2688
+ split: test
2689
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2690
+ metrics:
2691
+ - type: cos_sim_accuracy
2692
+ value: 82.52369315133814
2693
+ - type: cos_sim_ap
2694
+ value: 62.34858091376534
2695
+ - type: cos_sim_f1
2696
+ value: 58.18225190839694
2697
+ - type: cos_sim_precision
2698
+ value: 53.09098824553766
2699
+ - type: cos_sim_recall
2700
+ value: 64.35356200527704
2701
+ - type: dot_accuracy
2702
+ value: 82.52369315133814
2703
+ - type: dot_ap
2704
+ value: 62.34857753814992
2705
+ - type: dot_f1
2706
+ value: 58.18225190839694
2707
+ - type: dot_precision
2708
+ value: 53.09098824553766
2709
+ - type: dot_recall
2710
+ value: 64.35356200527704
2711
+ - type: euclidean_accuracy
2712
+ value: 82.52369315133814
2713
+ - type: euclidean_ap
2714
+ value: 62.34857756663386
2715
+ - type: euclidean_f1
2716
+ value: 58.18225190839694
2717
+ - type: euclidean_precision
2718
+ value: 53.09098824553766
2719
+ - type: euclidean_recall
2720
+ value: 64.35356200527704
2721
+ - type: manhattan_accuracy
2722
+ value: 82.49389044525243
2723
+ - type: manhattan_ap
2724
+ value: 62.32245347238179
2725
+ - type: manhattan_f1
2726
+ value: 58.206309819213054
2727
+ - type: manhattan_precision
2728
+ value: 52.70704044511021
2729
+ - type: manhattan_recall
2730
+ value: 64.9868073878628
2731
+ - type: max_accuracy
2732
+ value: 82.52369315133814
2733
+ - type: max_ap
2734
+ value: 62.34858091376534
2735
+ - type: max_f1
2736
+ value: 58.206309819213054
2737
+ - task:
2738
+ type: PairClassification
2739
+ dataset:
2740
+ type: mteb/twitterurlcorpus-pairclassification
2741
+ name: MTEB TwitterURLCorpus
2742
+ config: default
2743
+ split: test
2744
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2745
+ metrics:
2746
+ - type: cos_sim_accuracy
2747
+ value: 88.34555827220863
2748
+ - type: cos_sim_ap
2749
+ value: 84.84152481680071
2750
+ - type: cos_sim_f1
2751
+ value: 76.860456739428
2752
+ - type: cos_sim_precision
2753
+ value: 72.21470150263978
2754
+ - type: cos_sim_recall
2755
+ value: 82.14505697566985
2756
+ - type: dot_accuracy
2757
+ value: 88.34555827220863
2758
+ - type: dot_ap
2759
+ value: 84.84152743322608
2760
+ - type: dot_f1
2761
+ value: 76.860456739428
2762
+ - type: dot_precision
2763
+ value: 72.21470150263978
2764
+ - type: dot_recall
2765
+ value: 82.14505697566985
2766
+ - type: euclidean_accuracy
2767
+ value: 88.34555827220863
2768
+ - type: euclidean_ap
2769
+ value: 84.84152589453169
2770
+ - type: euclidean_f1
2771
+ value: 76.860456739428
2772
+ - type: euclidean_precision
2773
+ value: 72.21470150263978
2774
+ - type: euclidean_recall
2775
+ value: 82.14505697566985
2776
+ - type: manhattan_accuracy
2777
+ value: 88.38242713548337
2778
+ - type: manhattan_ap
2779
+ value: 84.8112124970968
2780
+ - type: manhattan_f1
2781
+ value: 76.83599206057487
2782
+ - type: manhattan_precision
2783
+ value: 73.51244900829934
2784
+ - type: manhattan_recall
2785
+ value: 80.47428395441946
2786
+ - type: max_accuracy
2787
+ value: 88.38242713548337
2788
+ - type: max_ap
2789
+ value: 84.84152743322608
2790
+ - type: max_f1
2791
+ value: 76.860456739428
2792
+ - task:
2793
+ type: Clustering
2794
+ dataset:
2795
+ type: jinaai/cities_wiki_clustering
2796
+ name: MTEB WikiCitiesClustering
2797
+ config: default
2798
+ split: test
2799
+ revision: ddc9ee9242fa65332597f70e967ecc38b9d734fa
2800
+ metrics:
2801
+ - type: v_measure
2802
+ value: 85.5314389263015
2803
+ ---