spacemanidol commited on
Commit
1b49e31
1 Parent(s): 41d8c17

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1 -2803
README.md CHANGED
@@ -2799,2811 +2799,9 @@ model-index:
2799
  metrics:
2800
  - type: v_measure
2801
  value: 79.58576208710117
2802
-
2803
- ---
2804
- tags:
2805
- - mteb
2806
- - arctic
2807
- - arctic-embed
2808
- model-index:
2809
- - name: base
2810
- results:
2811
- - task:
2812
- type: Classification
2813
- dataset:
2814
- type: mteb/amazon_counterfactual
2815
- name: MTEB AmazonCounterfactualClassification (en)
2816
- config: en
2817
- split: test
2818
- revision: e8379541af4e31359cca9fbcf4b00f2671dba205
2819
- metrics:
2820
- - type: accuracy
2821
- value: 76.80597014925374
2822
- - type: ap
2823
- value: 39.31198155789558
2824
- - type: f1
2825
- value: 70.48198448222148
2826
- - task:
2827
- type: Classification
2828
- dataset:
2829
- type: mteb/amazon_polarity
2830
- name: MTEB AmazonPolarityClassification
2831
- config: default
2832
- split: test
2833
- revision: e2d317d38cd51312af73b3d32a06d1a08b442046
2834
- metrics:
2835
- - type: accuracy
2836
- value: 82.831525
2837
- - type: ap
2838
- value: 77.4474050181638
2839
- - type: f1
2840
- value: 82.77204845110204
2841
- - task:
2842
- type: Classification
2843
- dataset:
2844
- type: mteb/amazon_reviews_multi
2845
- name: MTEB AmazonReviewsClassification (en)
2846
- config: en
2847
- split: test
2848
- revision: 1399c76144fd37290681b995c656ef9b2e06e26d
2849
- metrics:
2850
- - type: accuracy
2851
- value: 38.93000000000001
2852
- - type: f1
2853
- value: 37.98013371053459
2854
- - task:
2855
- type: Retrieval
2856
- dataset:
2857
- type: mteb/arguana
2858
- name: MTEB ArguAna
2859
- config: default
2860
- split: test
2861
- revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
2862
- metrics:
2863
- - type: map_at_1
2864
- value: 31.223
2865
- - type: map_at_10
2866
- value: 47.43
2867
- - type: map_at_100
2868
- value: 48.208
2869
- - type: map_at_1000
2870
- value: 48.211
2871
- - type: map_at_3
2872
- value: 42.579
2873
- - type: map_at_5
2874
- value: 45.263999999999996
2875
- - type: mrr_at_1
2876
- value: 31.65
2877
- - type: mrr_at_10
2878
- value: 47.573
2879
- - type: mrr_at_100
2880
- value: 48.359
2881
- - type: mrr_at_1000
2882
- value: 48.362
2883
- - type: mrr_at_3
2884
- value: 42.734
2885
- - type: mrr_at_5
2886
- value: 45.415
2887
- - type: ndcg_at_1
2888
- value: 31.223
2889
- - type: ndcg_at_10
2890
- value: 56.436
2891
- - type: ndcg_at_100
2892
- value: 59.657000000000004
2893
- - type: ndcg_at_1000
2894
- value: 59.731
2895
- - type: ndcg_at_3
2896
- value: 46.327
2897
- - type: ndcg_at_5
2898
- value: 51.178000000000004
2899
- - type: precision_at_1
2900
- value: 31.223
2901
- - type: precision_at_10
2902
- value: 8.527999999999999
2903
- - type: precision_at_100
2904
- value: 0.991
2905
- - type: precision_at_1000
2906
- value: 0.1
2907
- - type: precision_at_3
2908
- value: 19.061
2909
- - type: precision_at_5
2910
- value: 13.797999999999998
2911
- - type: recall_at_1
2912
- value: 31.223
2913
- - type: recall_at_10
2914
- value: 85.277
2915
- - type: recall_at_100
2916
- value: 99.075
2917
- - type: recall_at_1000
2918
- value: 99.644
2919
- - type: recall_at_3
2920
- value: 57.18299999999999
2921
- - type: recall_at_5
2922
- value: 68.99
2923
- - task:
2924
- type: Clustering
2925
- dataset:
2926
- type: mteb/arxiv-clustering-p2p
2927
- name: MTEB ArxivClusteringP2P
2928
- config: default
2929
- split: test
2930
- revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
2931
- metrics:
2932
- - type: v_measure
2933
- value: 47.23625429411296
2934
- - task:
2935
- type: Clustering
2936
- dataset:
2937
- type: mteb/arxiv-clustering-s2s
2938
- name: MTEB ArxivClusteringS2S
2939
- config: default
2940
- split: test
2941
- revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
2942
- metrics:
2943
- - type: v_measure
2944
- value: 37.433880471403654
2945
- - task:
2946
- type: Reranking
2947
- dataset:
2948
- type: mteb/askubuntudupquestions-reranking
2949
- name: MTEB AskUbuntuDupQuestions
2950
- config: default
2951
- split: test
2952
- revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
2953
- metrics:
2954
- - type: map
2955
- value: 60.53175025582013
2956
- - type: mrr
2957
- value: 74.51160796728664
2958
- - task:
2959
- type: STS
2960
- dataset:
2961
- type: mteb/biosses-sts
2962
- name: MTEB BIOSSES
2963
- config: default
2964
- split: test
2965
- revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
2966
- metrics:
2967
- - type: cos_sim_pearson
2968
- value: 88.93746103286769
2969
- - type: cos_sim_spearman
2970
- value: 86.62245567912619
2971
- - type: euclidean_pearson
2972
- value: 87.154173907501
2973
- - type: euclidean_spearman
2974
- value: 86.62245567912619
2975
- - type: manhattan_pearson
2976
- value: 87.17682026633462
2977
- - type: manhattan_spearman
2978
- value: 86.74775973908348
2979
- - task:
2980
- type: Classification
2981
- dataset:
2982
- type: mteb/banking77
2983
- name: MTEB Banking77Classification
2984
- config: default
2985
- split: test
2986
- revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
2987
- metrics:
2988
- - type: accuracy
2989
- value: 80.33766233766232
2990
- - type: f1
2991
- value: 79.64931422442245
2992
- - task:
2993
- type: Clustering
2994
- dataset:
2995
- type: jinaai/big-patent-clustering
2996
- name: MTEB BigPatentClustering
2997
- config: default
2998
- split: test
2999
- revision: 62d5330920bca426ce9d3c76ea914f15fc83e891
3000
- metrics:
3001
- - type: v_measure
3002
- value: 19.116028913890613
3003
- - task:
3004
- type: Clustering
3005
- dataset:
3006
- type: mteb/biorxiv-clustering-p2p
3007
- name: MTEB BiorxivClusteringP2P
3008
- config: default
3009
- split: test
3010
- revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
3011
- metrics:
3012
- - type: v_measure
3013
- value: 36.966921852810174
3014
- - task:
3015
- type: Clustering
3016
- dataset:
3017
- type: mteb/biorxiv-clustering-s2s
3018
- name: MTEB BiorxivClusteringS2S
3019
- config: default
3020
- split: test
3021
- revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
3022
- metrics:
3023
- - type: v_measure
3024
- value: 31.98019698537654
3025
- - task:
3026
- type: Retrieval
3027
- dataset:
3028
- type: mteb/cqadupstack-android
3029
- name: MTEB CQADupstackAndroidRetrieval
3030
- config: default
3031
- split: test
3032
- revision: f46a197baaae43b4f621051089b82a364682dfeb
3033
- metrics:
3034
- - type: map_at_1
3035
- value: 34.079
3036
- - type: map_at_10
3037
- value: 46.35
3038
- - type: map_at_100
3039
- value: 47.785
3040
- - type: map_at_1000
3041
- value: 47.903
3042
- - type: map_at_3
3043
- value: 42.620999999999995
3044
- - type: map_at_5
3045
- value: 44.765
3046
- - type: mrr_at_1
3047
- value: 41.345
3048
- - type: mrr_at_10
3049
- value: 52.032000000000004
3050
- - type: mrr_at_100
3051
- value: 52.690000000000005
3052
- - type: mrr_at_1000
3053
- value: 52.727999999999994
3054
- - type: mrr_at_3
3055
- value: 49.428
3056
- - type: mrr_at_5
3057
- value: 51.093999999999994
3058
- - type: ndcg_at_1
3059
- value: 41.345
3060
- - type: ndcg_at_10
3061
- value: 53.027
3062
- - type: ndcg_at_100
3063
- value: 57.962
3064
- - type: ndcg_at_1000
3065
- value: 59.611999999999995
3066
- - type: ndcg_at_3
3067
- value: 47.687000000000005
3068
- - type: ndcg_at_5
3069
- value: 50.367
3070
- - type: precision_at_1
3071
- value: 41.345
3072
- - type: precision_at_10
3073
- value: 10.157
3074
- - type: precision_at_100
3075
- value: 1.567
3076
- - type: precision_at_1000
3077
- value: 0.199
3078
- - type: precision_at_3
3079
- value: 23.081
3080
- - type: precision_at_5
3081
- value: 16.738
3082
- - type: recall_at_1
3083
- value: 34.079
3084
- - type: recall_at_10
3085
- value: 65.93900000000001
3086
- - type: recall_at_100
3087
- value: 86.42699999999999
3088
- - type: recall_at_1000
3089
- value: 96.61
3090
- - type: recall_at_3
3091
- value: 50.56699999999999
3092
- - type: recall_at_5
3093
- value: 57.82000000000001
3094
- - task:
3095
- type: Retrieval
3096
- dataset:
3097
- type: mteb/cqadupstack-english
3098
- name: MTEB CQADupstackEnglishRetrieval
3099
- config: default
3100
- split: test
3101
- revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
3102
- metrics:
3103
- - type: map_at_1
3104
- value: 33.289
3105
- - type: map_at_10
3106
- value: 43.681
3107
- - type: map_at_100
3108
- value: 45.056000000000004
3109
- - type: map_at_1000
3110
- value: 45.171
3111
- - type: map_at_3
3112
- value: 40.702
3113
- - type: map_at_5
3114
- value: 42.292
3115
- - type: mrr_at_1
3116
- value: 41.146
3117
- - type: mrr_at_10
3118
- value: 49.604
3119
- - type: mrr_at_100
3120
- value: 50.28399999999999
3121
- - type: mrr_at_1000
3122
- value: 50.322
3123
- - type: mrr_at_3
3124
- value: 47.611
3125
- - type: mrr_at_5
3126
- value: 48.717
3127
- - type: ndcg_at_1
3128
- value: 41.146
3129
- - type: ndcg_at_10
3130
- value: 49.43
3131
- - type: ndcg_at_100
3132
- value: 54.01899999999999
3133
- - type: ndcg_at_1000
3134
- value: 55.803000000000004
3135
- - type: ndcg_at_3
3136
- value: 45.503
3137
- - type: ndcg_at_5
3138
- value: 47.198
3139
- - type: precision_at_1
3140
- value: 41.146
3141
- - type: precision_at_10
3142
- value: 9.268
3143
- - type: precision_at_100
3144
- value: 1.4749999999999999
3145
- - type: precision_at_1000
3146
- value: 0.19
3147
- - type: precision_at_3
3148
- value: 21.932
3149
- - type: precision_at_5
3150
- value: 15.389
3151
- - type: recall_at_1
3152
- value: 33.289
3153
- - type: recall_at_10
3154
- value: 59.209999999999994
3155
- - type: recall_at_100
3156
- value: 78.676
3157
- - type: recall_at_1000
3158
- value: 89.84100000000001
3159
- - type: recall_at_3
3160
- value: 47.351
3161
- - type: recall_at_5
3162
- value: 52.178999999999995
3163
- - task:
3164
- type: Retrieval
3165
- dataset:
3166
- type: mteb/cqadupstack-gaming
3167
- name: MTEB CQADupstackGamingRetrieval
3168
- config: default
3169
- split: test
3170
- revision: 4885aa143210c98657558c04aaf3dc47cfb54340
3171
- metrics:
3172
- - type: map_at_1
3173
- value: 44.483
3174
- - type: map_at_10
3175
- value: 56.862
3176
- - type: map_at_100
3177
- value: 57.901
3178
- - type: map_at_1000
3179
- value: 57.948
3180
- - type: map_at_3
3181
- value: 53.737
3182
- - type: map_at_5
3183
- value: 55.64
3184
- - type: mrr_at_1
3185
- value: 50.658
3186
- - type: mrr_at_10
3187
- value: 60.281
3188
- - type: mrr_at_100
3189
- value: 60.946
3190
- - type: mrr_at_1000
3191
- value: 60.967000000000006
3192
- - type: mrr_at_3
3193
- value: 58.192
3194
- - type: mrr_at_5
3195
- value: 59.531
3196
- - type: ndcg_at_1
3197
- value: 50.658
3198
- - type: ndcg_at_10
3199
- value: 62.339
3200
- - type: ndcg_at_100
3201
- value: 66.28399999999999
3202
- - type: ndcg_at_1000
3203
- value: 67.166
3204
- - type: ndcg_at_3
3205
- value: 57.458
3206
- - type: ndcg_at_5
3207
- value: 60.112
3208
- - type: precision_at_1
3209
- value: 50.658
3210
- - type: precision_at_10
3211
- value: 9.762
3212
- - type: precision_at_100
3213
- value: 1.26
3214
- - type: precision_at_1000
3215
- value: 0.13799999999999998
3216
- - type: precision_at_3
3217
- value: 25.329
3218
- - type: precision_at_5
3219
- value: 17.254
3220
- - type: recall_at_1
3221
- value: 44.483
3222
- - type: recall_at_10
3223
- value: 74.819
3224
- - type: recall_at_100
3225
- value: 91.702
3226
- - type: recall_at_1000
3227
- value: 97.84
3228
- - type: recall_at_3
3229
- value: 62.13999999999999
3230
- - type: recall_at_5
3231
- value: 68.569
3232
- - task:
3233
- type: Retrieval
3234
- dataset:
3235
- type: mteb/cqadupstack-gis
3236
- name: MTEB CQADupstackGisRetrieval
3237
- config: default
3238
- split: test
3239
- revision: 5003b3064772da1887988e05400cf3806fe491f2
3240
- metrics:
3241
- - type: map_at_1
3242
- value: 26.489
3243
- - type: map_at_10
3244
- value: 37.004999999999995
3245
- - type: map_at_100
3246
- value: 38.001000000000005
3247
- - type: map_at_1000
3248
- value: 38.085
3249
- - type: map_at_3
3250
- value: 34.239999999999995
3251
- - type: map_at_5
3252
- value: 35.934
3253
- - type: mrr_at_1
3254
- value: 28.362
3255
- - type: mrr_at_10
3256
- value: 38.807
3257
- - type: mrr_at_100
3258
- value: 39.671
3259
- - type: mrr_at_1000
3260
- value: 39.736
3261
- - type: mrr_at_3
3262
- value: 36.29
3263
- - type: mrr_at_5
3264
- value: 37.906
3265
- - type: ndcg_at_1
3266
- value: 28.362
3267
- - type: ndcg_at_10
3268
- value: 42.510999999999996
3269
- - type: ndcg_at_100
3270
- value: 47.226
3271
- - type: ndcg_at_1000
3272
- value: 49.226
3273
- - type: ndcg_at_3
3274
- value: 37.295
3275
- - type: ndcg_at_5
3276
- value: 40.165
3277
- - type: precision_at_1
3278
- value: 28.362
3279
- - type: precision_at_10
3280
- value: 6.633
3281
- - type: precision_at_100
3282
- value: 0.9490000000000001
3283
- - type: precision_at_1000
3284
- value: 0.11499999999999999
3285
- - type: precision_at_3
3286
- value: 16.234
3287
- - type: precision_at_5
3288
- value: 11.434999999999999
3289
- - type: recall_at_1
3290
- value: 26.489
3291
- - type: recall_at_10
3292
- value: 57.457
3293
- - type: recall_at_100
3294
- value: 78.712
3295
- - type: recall_at_1000
3296
- value: 93.565
3297
- - type: recall_at_3
3298
- value: 43.748
3299
- - type: recall_at_5
3300
- value: 50.589
3301
- - task:
3302
- type: Retrieval
3303
- dataset:
3304
- type: mteb/cqadupstack-mathematica
3305
- name: MTEB CQADupstackMathematicaRetrieval
3306
- config: default
3307
- split: test
3308
- revision: 90fceea13679c63fe563ded68f3b6f06e50061de
3309
- metrics:
3310
- - type: map_at_1
3311
- value: 12.418999999999999
3312
- - type: map_at_10
3313
- value: 22.866
3314
- - type: map_at_100
3315
- value: 24.365000000000002
3316
- - type: map_at_1000
3317
- value: 24.479
3318
- - type: map_at_3
3319
- value: 19.965
3320
- - type: map_at_5
3321
- value: 21.684
3322
- - type: mrr_at_1
3323
- value: 14.677000000000001
3324
- - type: mrr_at_10
3325
- value: 26.316
3326
- - type: mrr_at_100
3327
- value: 27.514
3328
- - type: mrr_at_1000
3329
- value: 27.57
3330
- - type: mrr_at_3
3331
- value: 23.3
3332
- - type: mrr_at_5
3333
- value: 25.191000000000003
3334
- - type: ndcg_at_1
3335
- value: 14.677000000000001
3336
- - type: ndcg_at_10
3337
- value: 28.875
3338
- - type: ndcg_at_100
3339
- value: 35.607
3340
- - type: ndcg_at_1000
3341
- value: 38.237
3342
- - type: ndcg_at_3
3343
- value: 23.284
3344
- - type: ndcg_at_5
3345
- value: 26.226
3346
- - type: precision_at_1
3347
- value: 14.677000000000001
3348
- - type: precision_at_10
3349
- value: 5.771
3350
- - type: precision_at_100
3351
- value: 1.058
3352
- - type: precision_at_1000
3353
- value: 0.14200000000000002
3354
- - type: precision_at_3
3355
- value: 11.940000000000001
3356
- - type: precision_at_5
3357
- value: 9.229
3358
- - type: recall_at_1
3359
- value: 12.418999999999999
3360
- - type: recall_at_10
3361
- value: 43.333
3362
- - type: recall_at_100
3363
- value: 71.942
3364
- - type: recall_at_1000
3365
- value: 90.67399999999999
3366
- - type: recall_at_3
3367
- value: 28.787000000000003
3368
- - type: recall_at_5
3369
- value: 35.638
3370
- - task:
3371
- type: Retrieval
3372
- dataset:
3373
- type: mteb/cqadupstack-physics
3374
- name: MTEB CQADupstackPhysicsRetrieval
3375
- config: default
3376
- split: test
3377
- revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
3378
- metrics:
3379
- - type: map_at_1
3380
- value: 31.686999999999998
3381
- - type: map_at_10
3382
- value: 42.331
3383
- - type: map_at_100
3384
- value: 43.655
3385
- - type: map_at_1000
3386
- value: 43.771
3387
- - type: map_at_3
3388
- value: 38.944
3389
- - type: map_at_5
3390
- value: 40.991
3391
- - type: mrr_at_1
3392
- value: 37.921
3393
- - type: mrr_at_10
3394
- value: 47.534
3395
- - type: mrr_at_100
3396
- value: 48.362
3397
- - type: mrr_at_1000
3398
- value: 48.405
3399
- - type: mrr_at_3
3400
- value: 44.995000000000005
3401
- - type: mrr_at_5
3402
- value: 46.617
3403
- - type: ndcg_at_1
3404
- value: 37.921
3405
- - type: ndcg_at_10
3406
- value: 48.236000000000004
3407
- - type: ndcg_at_100
3408
- value: 53.705000000000005
3409
- - type: ndcg_at_1000
3410
- value: 55.596000000000004
3411
- - type: ndcg_at_3
3412
- value: 43.11
3413
- - type: ndcg_at_5
3414
- value: 45.862
3415
- - type: precision_at_1
3416
- value: 37.921
3417
- - type: precision_at_10
3418
- value: 8.643
3419
- - type: precision_at_100
3420
- value: 1.336
3421
- - type: precision_at_1000
3422
- value: 0.166
3423
- - type: precision_at_3
3424
- value: 20.308
3425
- - type: precision_at_5
3426
- value: 14.514
3427
- - type: recall_at_1
3428
- value: 31.686999999999998
3429
- - type: recall_at_10
3430
- value: 60.126999999999995
3431
- - type: recall_at_100
3432
- value: 83.10600000000001
3433
- - type: recall_at_1000
3434
- value: 95.15
3435
- - type: recall_at_3
3436
- value: 46.098
3437
- - type: recall_at_5
3438
- value: 53.179
3439
- - task:
3440
- type: Retrieval
3441
- dataset:
3442
- type: mteb/cqadupstack-programmers
3443
- name: MTEB CQADupstackProgrammersRetrieval
3444
- config: default
3445
- split: test
3446
- revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
3447
- metrics:
3448
- - type: map_at_1
3449
- value: 28.686
3450
- - type: map_at_10
3451
- value: 39.146
3452
- - type: map_at_100
3453
- value: 40.543
3454
- - type: map_at_1000
3455
- value: 40.644999999999996
3456
- - type: map_at_3
3457
- value: 36.195
3458
- - type: map_at_5
3459
- value: 37.919000000000004
3460
- - type: mrr_at_1
3461
- value: 35.160000000000004
3462
- - type: mrr_at_10
3463
- value: 44.711
3464
- - type: mrr_at_100
3465
- value: 45.609
3466
- - type: mrr_at_1000
3467
- value: 45.655
3468
- - type: mrr_at_3
3469
- value: 42.409
3470
- - type: mrr_at_5
3471
- value: 43.779
3472
- - type: ndcg_at_1
3473
- value: 35.160000000000004
3474
- - type: ndcg_at_10
3475
- value: 44.977000000000004
3476
- - type: ndcg_at_100
3477
- value: 50.663000000000004
3478
- - type: ndcg_at_1000
3479
- value: 52.794
3480
- - type: ndcg_at_3
3481
- value: 40.532000000000004
3482
- - type: ndcg_at_5
3483
- value: 42.641
3484
- - type: precision_at_1
3485
- value: 35.160000000000004
3486
- - type: precision_at_10
3487
- value: 8.014000000000001
3488
- - type: precision_at_100
3489
- value: 1.269
3490
- - type: precision_at_1000
3491
- value: 0.163
3492
- - type: precision_at_3
3493
- value: 19.444
3494
- - type: precision_at_5
3495
- value: 13.653
3496
- - type: recall_at_1
3497
- value: 28.686
3498
- - type: recall_at_10
3499
- value: 56.801
3500
- - type: recall_at_100
3501
- value: 80.559
3502
- - type: recall_at_1000
3503
- value: 95.052
3504
- - type: recall_at_3
3505
- value: 43.675999999999995
3506
- - type: recall_at_5
3507
- value: 49.703
3508
- - task:
3509
- type: Retrieval
3510
- dataset:
3511
- type: mteb/cqadupstack
3512
- name: MTEB CQADupstackRetrieval
3513
- config: default
3514
- split: test
3515
- revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
3516
- metrics:
3517
- - type: map_at_1
3518
- value: 28.173833333333338
3519
- - type: map_at_10
3520
- value: 38.202083333333334
3521
- - type: map_at_100
3522
- value: 39.47475
3523
- - type: map_at_1000
3524
- value: 39.586499999999994
3525
- - type: map_at_3
3526
- value: 35.17308333333334
3527
- - type: map_at_5
3528
- value: 36.914
3529
- - type: mrr_at_1
3530
- value: 32.92958333333333
3531
- - type: mrr_at_10
3532
- value: 42.16758333333333
3533
- - type: mrr_at_100
3534
- value: 43.04108333333333
3535
- - type: mrr_at_1000
3536
- value: 43.092499999999994
3537
- - type: mrr_at_3
3538
- value: 39.69166666666666
3539
- - type: mrr_at_5
3540
- value: 41.19458333333333
3541
- - type: ndcg_at_1
3542
- value: 32.92958333333333
3543
- - type: ndcg_at_10
3544
- value: 43.80583333333333
3545
- - type: ndcg_at_100
3546
- value: 49.060916666666664
3547
- - type: ndcg_at_1000
3548
- value: 51.127250000000004
3549
- - type: ndcg_at_3
3550
- value: 38.80383333333333
3551
- - type: ndcg_at_5
3552
- value: 41.29658333333333
3553
- - type: precision_at_1
3554
- value: 32.92958333333333
3555
- - type: precision_at_10
3556
- value: 7.655666666666666
3557
- - type: precision_at_100
3558
- value: 1.2094166666666668
3559
- - type: precision_at_1000
3560
- value: 0.15750000000000003
3561
- - type: precision_at_3
3562
- value: 17.87975
3563
- - type: precision_at_5
3564
- value: 12.741833333333332
3565
- - type: recall_at_1
3566
- value: 28.173833333333338
3567
- - type: recall_at_10
3568
- value: 56.219249999999995
3569
- - type: recall_at_100
3570
- value: 79.01416666666665
3571
- - type: recall_at_1000
3572
- value: 93.13425000000001
3573
- - type: recall_at_3
3574
- value: 42.39241666666667
3575
- - type: recall_at_5
3576
- value: 48.764833333333335
3577
- - task:
3578
- type: Retrieval
3579
- dataset:
3580
- type: mteb/cqadupstack-stats
3581
- name: MTEB CQADupstackStatsRetrieval
3582
- config: default
3583
- split: test
3584
- revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
3585
- metrics:
3586
- - type: map_at_1
3587
- value: 25.625999999999998
3588
- - type: map_at_10
3589
- value: 32.808
3590
- - type: map_at_100
3591
- value: 33.951
3592
- - type: map_at_1000
3593
- value: 34.052
3594
- - type: map_at_3
3595
- value: 30.536
3596
- - type: map_at_5
3597
- value: 31.77
3598
- - type: mrr_at_1
3599
- value: 28.374
3600
- - type: mrr_at_10
3601
- value: 35.527
3602
- - type: mrr_at_100
3603
- value: 36.451
3604
- - type: mrr_at_1000
3605
- value: 36.522
3606
- - type: mrr_at_3
3607
- value: 33.410000000000004
3608
- - type: mrr_at_5
3609
- value: 34.537
3610
- - type: ndcg_at_1
3611
- value: 28.374
3612
- - type: ndcg_at_10
3613
- value: 37.172
3614
- - type: ndcg_at_100
3615
- value: 42.474000000000004
3616
- - type: ndcg_at_1000
3617
- value: 44.853
3618
- - type: ndcg_at_3
3619
- value: 32.931
3620
- - type: ndcg_at_5
3621
- value: 34.882999999999996
3622
- - type: precision_at_1
3623
- value: 28.374
3624
- - type: precision_at_10
3625
- value: 5.813
3626
- - type: precision_at_100
3627
- value: 0.928
3628
- - type: precision_at_1000
3629
- value: 0.121
3630
- - type: precision_at_3
3631
- value: 14.008000000000001
3632
- - type: precision_at_5
3633
- value: 9.754999999999999
3634
- - type: recall_at_1
3635
- value: 25.625999999999998
3636
- - type: recall_at_10
3637
- value: 47.812
3638
- - type: recall_at_100
3639
- value: 71.61800000000001
3640
- - type: recall_at_1000
3641
- value: 88.881
3642
- - type: recall_at_3
3643
- value: 35.876999999999995
3644
- - type: recall_at_5
3645
- value: 40.839
3646
- - task:
3647
- type: Retrieval
3648
- dataset:
3649
- type: mteb/cqadupstack-tex
3650
- name: MTEB CQADupstackTexRetrieval
3651
- config: default
3652
- split: test
3653
- revision: 46989137a86843e03a6195de44b09deda022eec7
3654
- metrics:
3655
- - type: map_at_1
3656
- value: 18.233
3657
- - type: map_at_10
3658
- value: 26.375999999999998
3659
- - type: map_at_100
3660
- value: 27.575
3661
- - type: map_at_1000
3662
- value: 27.706999999999997
3663
- - type: map_at_3
3664
- value: 23.619
3665
- - type: map_at_5
3666
- value: 25.217
3667
- - type: mrr_at_1
3668
- value: 22.023
3669
- - type: mrr_at_10
3670
- value: 30.122
3671
- - type: mrr_at_100
3672
- value: 31.083
3673
- - type: mrr_at_1000
3674
- value: 31.163999999999998
3675
- - type: mrr_at_3
3676
- value: 27.541
3677
- - type: mrr_at_5
3678
- value: 29.061999999999998
3679
- - type: ndcg_at_1
3680
- value: 22.023
3681
- - type: ndcg_at_10
3682
- value: 31.476
3683
- - type: ndcg_at_100
3684
- value: 37.114000000000004
3685
- - type: ndcg_at_1000
3686
- value: 39.981
3687
- - type: ndcg_at_3
3688
- value: 26.538
3689
- - type: ndcg_at_5
3690
- value: 29.016
3691
- - type: precision_at_1
3692
- value: 22.023
3693
- - type: precision_at_10
3694
- value: 5.819
3695
- - type: precision_at_100
3696
- value: 1.018
3697
- - type: precision_at_1000
3698
- value: 0.14300000000000002
3699
- - type: precision_at_3
3700
- value: 12.583
3701
- - type: precision_at_5
3702
- value: 9.36
3703
- - type: recall_at_1
3704
- value: 18.233
3705
- - type: recall_at_10
3706
- value: 43.029
3707
- - type: recall_at_100
3708
- value: 68.253
3709
- - type: recall_at_1000
3710
- value: 88.319
3711
- - type: recall_at_3
3712
- value: 29.541
3713
- - type: recall_at_5
3714
- value: 35.783
3715
- - task:
3716
- type: Retrieval
3717
- dataset:
3718
- type: mteb/cqadupstack-unix
3719
- name: MTEB CQADupstackUnixRetrieval
3720
- config: default
3721
- split: test
3722
- revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
3723
- metrics:
3724
- - type: map_at_1
3725
- value: 28.923
3726
- - type: map_at_10
3727
- value: 39.231
3728
- - type: map_at_100
3729
- value: 40.483000000000004
3730
- - type: map_at_1000
3731
- value: 40.575
3732
- - type: map_at_3
3733
- value: 35.94
3734
- - type: map_at_5
3735
- value: 37.683
3736
- - type: mrr_at_1
3737
- value: 33.955
3738
- - type: mrr_at_10
3739
- value: 43.163000000000004
3740
- - type: mrr_at_100
3741
- value: 44.054
3742
- - type: mrr_at_1000
3743
- value: 44.099
3744
- - type: mrr_at_3
3745
- value: 40.361000000000004
3746
- - type: mrr_at_5
3747
- value: 41.905
3748
- - type: ndcg_at_1
3749
- value: 33.955
3750
- - type: ndcg_at_10
3751
- value: 45.068000000000005
3752
- - type: ndcg_at_100
3753
- value: 50.470000000000006
3754
- - type: ndcg_at_1000
3755
- value: 52.349000000000004
3756
- - type: ndcg_at_3
3757
- value: 39.298
3758
- - type: ndcg_at_5
3759
- value: 41.821999999999996
3760
- - type: precision_at_1
3761
- value: 33.955
3762
- - type: precision_at_10
3763
- value: 7.649
3764
- - type: precision_at_100
3765
- value: 1.173
3766
- - type: precision_at_1000
3767
- value: 0.14200000000000002
3768
- - type: precision_at_3
3769
- value: 17.817
3770
- - type: precision_at_5
3771
- value: 12.537
3772
- - type: recall_at_1
3773
- value: 28.923
3774
- - type: recall_at_10
3775
- value: 58.934
3776
- - type: recall_at_100
3777
- value: 81.809
3778
- - type: recall_at_1000
3779
- value: 94.71300000000001
3780
- - type: recall_at_3
3781
- value: 42.975
3782
- - type: recall_at_5
3783
- value: 49.501
3784
- - task:
3785
- type: Retrieval
3786
- dataset:
3787
- type: mteb/cqadupstack-webmasters
3788
- name: MTEB CQADupstackWebmastersRetrieval
3789
- config: default
3790
- split: test
3791
- revision: 160c094312a0e1facb97e55eeddb698c0abe3571
3792
- metrics:
3793
- - type: map_at_1
3794
- value: 28.596
3795
- - type: map_at_10
3796
- value: 38.735
3797
- - type: map_at_100
3798
- value: 40.264
3799
- - type: map_at_1000
3800
- value: 40.48
3801
- - type: map_at_3
3802
- value: 35.394999999999996
3803
- - type: map_at_5
3804
- value: 37.099
3805
- - type: mrr_at_1
3806
- value: 33.992
3807
- - type: mrr_at_10
3808
- value: 43.076
3809
- - type: mrr_at_100
3810
- value: 44.005
3811
- - type: mrr_at_1000
3812
- value: 44.043
3813
- - type: mrr_at_3
3814
- value: 40.415
3815
- - type: mrr_at_5
3816
- value: 41.957
3817
- - type: ndcg_at_1
3818
- value: 33.992
3819
- - type: ndcg_at_10
3820
- value: 44.896
3821
- - type: ndcg_at_100
3822
- value: 50.44499999999999
3823
- - type: ndcg_at_1000
3824
- value: 52.675000000000004
3825
- - type: ndcg_at_3
3826
- value: 39.783
3827
- - type: ndcg_at_5
3828
- value: 41.997
3829
- - type: precision_at_1
3830
- value: 33.992
3831
- - type: precision_at_10
3832
- value: 8.498
3833
- - type: precision_at_100
3834
- value: 1.585
3835
- - type: precision_at_1000
3836
- value: 0.248
3837
- - type: precision_at_3
3838
- value: 18.511
3839
- - type: precision_at_5
3840
- value: 13.241
3841
- - type: recall_at_1
3842
- value: 28.596
3843
- - type: recall_at_10
3844
- value: 56.885
3845
- - type: recall_at_100
3846
- value: 82.306
3847
- - type: recall_at_1000
3848
- value: 95.813
3849
- - type: recall_at_3
3850
- value: 42.168
3851
- - type: recall_at_5
3852
- value: 48.32
3853
- - task:
3854
- type: Retrieval
3855
- dataset:
3856
- type: mteb/cqadupstack-wordpress
3857
- name: MTEB CQADupstackWordpressRetrieval
3858
- config: default
3859
- split: test
3860
- revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
3861
- metrics:
3862
- - type: map_at_1
3863
- value: 25.576
3864
- - type: map_at_10
3865
- value: 33.034
3866
- - type: map_at_100
3867
- value: 34.117999999999995
3868
- - type: map_at_1000
3869
- value: 34.222
3870
- - type: map_at_3
3871
- value: 30.183
3872
- - type: map_at_5
3873
- value: 31.974000000000004
3874
- - type: mrr_at_1
3875
- value: 27.542
3876
- - type: mrr_at_10
3877
- value: 34.838
3878
- - type: mrr_at_100
3879
- value: 35.824
3880
- - type: mrr_at_1000
3881
- value: 35.899
3882
- - type: mrr_at_3
3883
- value: 32.348
3884
- - type: mrr_at_5
3885
- value: 34.039
3886
- - type: ndcg_at_1
3887
- value: 27.542
3888
- - type: ndcg_at_10
3889
- value: 37.663000000000004
3890
- - type: ndcg_at_100
3891
- value: 42.762
3892
- - type: ndcg_at_1000
3893
- value: 45.235
3894
- - type: ndcg_at_3
3895
- value: 32.227
3896
- - type: ndcg_at_5
3897
- value: 35.27
3898
- - type: precision_at_1
3899
- value: 27.542
3900
- - type: precision_at_10
3901
- value: 5.840999999999999
3902
- - type: precision_at_100
3903
- value: 0.895
3904
- - type: precision_at_1000
3905
- value: 0.123
3906
- - type: precision_at_3
3907
- value: 13.370000000000001
3908
- - type: precision_at_5
3909
- value: 9.797
3910
- - type: recall_at_1
3911
- value: 25.576
3912
- - type: recall_at_10
3913
- value: 50.285000000000004
3914
- - type: recall_at_100
3915
- value: 73.06
3916
- - type: recall_at_1000
3917
- value: 91.15299999999999
3918
- - type: recall_at_3
3919
- value: 35.781
3920
- - type: recall_at_5
3921
- value: 43.058
3922
- - task:
3923
- type: Retrieval
3924
- dataset:
3925
- type: mteb/climate-fever
3926
- name: MTEB ClimateFEVER
3927
- config: default
3928
- split: test
3929
- revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
3930
- metrics:
3931
- - type: map_at_1
3932
- value: 17.061
3933
- - type: map_at_10
3934
- value: 29.464000000000002
3935
- - type: map_at_100
3936
- value: 31.552999999999997
3937
- - type: map_at_1000
3938
- value: 31.707
3939
- - type: map_at_3
3940
- value: 24.834999999999997
3941
- - type: map_at_5
3942
- value: 27.355
3943
- - type: mrr_at_1
3944
- value: 38.958
3945
- - type: mrr_at_10
3946
- value: 51.578
3947
- - type: mrr_at_100
3948
- value: 52.262
3949
- - type: mrr_at_1000
3950
- value: 52.283
3951
- - type: mrr_at_3
3952
- value: 48.599
3953
- - type: mrr_at_5
3954
- value: 50.404
3955
- - type: ndcg_at_1
3956
- value: 38.958
3957
- - type: ndcg_at_10
3958
- value: 39.367999999999995
3959
- - type: ndcg_at_100
3960
- value: 46.521
3961
- - type: ndcg_at_1000
3962
- value: 49.086999999999996
3963
- - type: ndcg_at_3
3964
- value: 33.442
3965
- - type: ndcg_at_5
3966
- value: 35.515
3967
- - type: precision_at_1
3968
- value: 38.958
3969
- - type: precision_at_10
3970
- value: 12.110999999999999
3971
- - type: precision_at_100
3972
- value: 1.982
3973
- - type: precision_at_1000
3974
- value: 0.247
3975
- - type: precision_at_3
3976
- value: 25.102999999999998
3977
- - type: precision_at_5
3978
- value: 18.971
3979
- - type: recall_at_1
3980
- value: 17.061
3981
- - type: recall_at_10
3982
- value: 45.198
3983
- - type: recall_at_100
3984
- value: 69.18900000000001
3985
- - type: recall_at_1000
3986
- value: 83.38499999999999
3987
- - type: recall_at_3
3988
- value: 30.241
3989
- - type: recall_at_5
3990
- value: 36.851
3991
- - task:
3992
- type: Retrieval
3993
- dataset:
3994
- type: mteb/dbpedia
3995
- name: MTEB DBPedia
3996
- config: default
3997
- split: test
3998
- revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
3999
- metrics:
4000
- - type: map_at_1
4001
- value: 9.398
4002
- - type: map_at_10
4003
- value: 21.421
4004
- - type: map_at_100
4005
- value: 31.649
4006
- - type: map_at_1000
4007
- value: 33.469
4008
- - type: map_at_3
4009
- value: 15.310000000000002
4010
- - type: map_at_5
4011
- value: 17.946
4012
- - type: mrr_at_1
4013
- value: 71
4014
- - type: mrr_at_10
4015
- value: 78.92099999999999
4016
- - type: mrr_at_100
4017
- value: 79.225
4018
- - type: mrr_at_1000
4019
- value: 79.23
4020
- - type: mrr_at_3
4021
- value: 77.792
4022
- - type: mrr_at_5
4023
- value: 78.467
4024
- - type: ndcg_at_1
4025
- value: 57.99999999999999
4026
- - type: ndcg_at_10
4027
- value: 44.733000000000004
4028
- - type: ndcg_at_100
4029
- value: 50.646
4030
- - type: ndcg_at_1000
4031
- value: 57.903999999999996
4032
- - type: ndcg_at_3
4033
- value: 49.175999999999995
4034
- - type: ndcg_at_5
4035
- value: 46.800999999999995
4036
- - type: precision_at_1
4037
- value: 71
4038
- - type: precision_at_10
4039
- value: 36.25
4040
- - type: precision_at_100
4041
- value: 12.135
4042
- - type: precision_at_1000
4043
- value: 2.26
4044
- - type: precision_at_3
4045
- value: 52.75
4046
- - type: precision_at_5
4047
- value: 45.65
4048
- - type: recall_at_1
4049
- value: 9.398
4050
- - type: recall_at_10
4051
- value: 26.596999999999998
4052
- - type: recall_at_100
4053
- value: 57.943
4054
- - type: recall_at_1000
4055
- value: 81.147
4056
- - type: recall_at_3
4057
- value: 16.634
4058
- - type: recall_at_5
4059
- value: 20.7
4060
- - task:
4061
- type: Classification
4062
- dataset:
4063
- type: mteb/emotion
4064
- name: MTEB EmotionClassification
4065
- config: default
4066
- split: test
4067
- revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
4068
- metrics:
4069
- - type: accuracy
4070
- value: 46.535000000000004
4071
- - type: f1
4072
- value: 42.53702746452163
4073
- - task:
4074
- type: Retrieval
4075
- dataset:
4076
- type: mteb/fever
4077
- name: MTEB FEVER
4078
- config: default
4079
- split: test
4080
- revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
4081
- metrics:
4082
- - type: map_at_1
4083
- value: 77.235
4084
- - type: map_at_10
4085
- value: 85.504
4086
- - type: map_at_100
4087
- value: 85.707
4088
- - type: map_at_1000
4089
- value: 85.718
4090
- - type: map_at_3
4091
- value: 84.425
4092
- - type: map_at_5
4093
- value: 85.13
4094
- - type: mrr_at_1
4095
- value: 83.363
4096
- - type: mrr_at_10
4097
- value: 89.916
4098
- - type: mrr_at_100
4099
- value: 89.955
4100
- - type: mrr_at_1000
4101
- value: 89.956
4102
- - type: mrr_at_3
4103
- value: 89.32600000000001
4104
- - type: mrr_at_5
4105
- value: 89.79
4106
- - type: ndcg_at_1
4107
- value: 83.363
4108
- - type: ndcg_at_10
4109
- value: 89.015
4110
- - type: ndcg_at_100
4111
- value: 89.649
4112
- - type: ndcg_at_1000
4113
- value: 89.825
4114
- - type: ndcg_at_3
4115
- value: 87.45100000000001
4116
- - type: ndcg_at_5
4117
- value: 88.39399999999999
4118
- - type: precision_at_1
4119
- value: 83.363
4120
- - type: precision_at_10
4121
- value: 10.659
4122
- - type: precision_at_100
4123
- value: 1.122
4124
- - type: precision_at_1000
4125
- value: 0.11499999999999999
4126
- - type: precision_at_3
4127
- value: 33.338
4128
- - type: precision_at_5
4129
- value: 20.671999999999997
4130
- - type: recall_at_1
4131
- value: 77.235
4132
- - type: recall_at_10
4133
- value: 95.389
4134
- - type: recall_at_100
4135
- value: 97.722
4136
- - type: recall_at_1000
4137
- value: 98.744
4138
- - type: recall_at_3
4139
- value: 91.19800000000001
4140
- - type: recall_at_5
4141
- value: 93.635
4142
- - task:
4143
- type: Retrieval
4144
- dataset:
4145
- type: mteb/fiqa
4146
- name: MTEB FiQA2018
4147
- config: default
4148
- split: test
4149
- revision: 27a168819829fe9bcd655c2df245fb19452e8e06
4150
- metrics:
4151
- - type: map_at_1
4152
- value: 20.835
4153
- - type: map_at_10
4154
- value: 34.459
4155
- - type: map_at_100
4156
- value: 36.335
4157
- - type: map_at_1000
4158
- value: 36.518
4159
- - type: map_at_3
4160
- value: 30.581000000000003
4161
- - type: map_at_5
4162
- value: 32.859
4163
- - type: mrr_at_1
4164
- value: 40.894999999999996
4165
- - type: mrr_at_10
4166
- value: 50.491
4167
- - type: mrr_at_100
4168
- value: 51.243
4169
- - type: mrr_at_1000
4170
- value: 51.286
4171
- - type: mrr_at_3
4172
- value: 47.994
4173
- - type: mrr_at_5
4174
- value: 49.429
4175
- - type: ndcg_at_1
4176
- value: 40.894999999999996
4177
- - type: ndcg_at_10
4178
- value: 42.403
4179
- - type: ndcg_at_100
4180
- value: 48.954
4181
- - type: ndcg_at_1000
4182
- value: 51.961
4183
- - type: ndcg_at_3
4184
- value: 39.11
4185
- - type: ndcg_at_5
4186
- value: 40.152
4187
- - type: precision_at_1
4188
- value: 40.894999999999996
4189
- - type: precision_at_10
4190
- value: 11.466
4191
- - type: precision_at_100
4192
- value: 1.833
4193
- - type: precision_at_1000
4194
- value: 0.23700000000000002
4195
- - type: precision_at_3
4196
- value: 25.874000000000002
4197
- - type: precision_at_5
4198
- value: 19.012
4199
- - type: recall_at_1
4200
- value: 20.835
4201
- - type: recall_at_10
4202
- value: 49.535000000000004
4203
- - type: recall_at_100
4204
- value: 73.39099999999999
4205
- - type: recall_at_1000
4206
- value: 91.01599999999999
4207
- - type: recall_at_3
4208
- value: 36.379
4209
- - type: recall_at_5
4210
- value: 42.059999999999995
4211
- - task:
4212
- type: Retrieval
4213
- dataset:
4214
- type: mteb/hotpotqa
4215
- name: MTEB HotpotQA
4216
- config: default
4217
- split: test
4218
- revision: ab518f4d6fcca38d87c25209f94beba119d02014
4219
- metrics:
4220
- - type: map_at_1
4221
- value: 40.945
4222
- - type: map_at_10
4223
- value: 65.376
4224
- - type: map_at_100
4225
- value: 66.278
4226
- - type: map_at_1000
4227
- value: 66.33
4228
- - type: map_at_3
4229
- value: 61.753
4230
- - type: map_at_5
4231
- value: 64.077
4232
- - type: mrr_at_1
4233
- value: 81.891
4234
- - type: mrr_at_10
4235
- value: 87.256
4236
- - type: mrr_at_100
4237
- value: 87.392
4238
- - type: mrr_at_1000
4239
- value: 87.395
4240
- - type: mrr_at_3
4241
- value: 86.442
4242
- - type: mrr_at_5
4243
- value: 86.991
4244
- - type: ndcg_at_1
4245
- value: 81.891
4246
- - type: ndcg_at_10
4247
- value: 73.654
4248
- - type: ndcg_at_100
4249
- value: 76.62299999999999
4250
- - type: ndcg_at_1000
4251
- value: 77.60000000000001
4252
- - type: ndcg_at_3
4253
- value: 68.71199999999999
4254
- - type: ndcg_at_5
4255
- value: 71.563
4256
- - type: precision_at_1
4257
- value: 81.891
4258
- - type: precision_at_10
4259
- value: 15.409
4260
- - type: precision_at_100
4261
- value: 1.77
4262
- - type: precision_at_1000
4263
- value: 0.19
4264
- - type: precision_at_3
4265
- value: 44.15
4266
- - type: precision_at_5
4267
- value: 28.732000000000003
4268
- - type: recall_at_1
4269
- value: 40.945
4270
- - type: recall_at_10
4271
- value: 77.04299999999999
4272
- - type: recall_at_100
4273
- value: 88.508
4274
- - type: recall_at_1000
4275
- value: 94.943
4276
- - type: recall_at_3
4277
- value: 66.226
4278
- - type: recall_at_5
4279
- value: 71.83
4280
- - task:
4281
- type: Classification
4282
- dataset:
4283
- type: mteb/imdb
4284
- name: MTEB ImdbClassification
4285
- config: default
4286
- split: test
4287
- revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
4288
- metrics:
4289
- - type: accuracy
4290
- value: 74.08200000000001
4291
- - type: ap
4292
- value: 68.10929101713998
4293
- - type: f1
4294
- value: 73.98447117652009
4295
- - task:
4296
- type: Retrieval
4297
- dataset:
4298
- type: mteb/msmarco
4299
- name: MTEB MSMARCO
4300
- config: default
4301
- split: dev
4302
- revision: c5a29a104738b98a9e76336939199e264163d4a0
4303
- metrics:
4304
- - type: map_at_1
4305
- value: 21.729000000000003
4306
- - type: map_at_10
4307
- value: 34.602
4308
- - type: map_at_100
4309
- value: 35.756
4310
- - type: map_at_1000
4311
- value: 35.803000000000004
4312
- - type: map_at_3
4313
- value: 30.619000000000003
4314
- - type: map_at_5
4315
- value: 32.914
4316
- - type: mrr_at_1
4317
- value: 22.364
4318
- - type: mrr_at_10
4319
- value: 35.183
4320
- - type: mrr_at_100
4321
- value: 36.287000000000006
4322
- - type: mrr_at_1000
4323
- value: 36.327999999999996
4324
- - type: mrr_at_3
4325
- value: 31.258000000000003
4326
- - type: mrr_at_5
4327
- value: 33.542
4328
- - type: ndcg_at_1
4329
- value: 22.364
4330
- - type: ndcg_at_10
4331
- value: 41.765
4332
- - type: ndcg_at_100
4333
- value: 47.293
4334
- - type: ndcg_at_1000
4335
- value: 48.457
4336
- - type: ndcg_at_3
4337
- value: 33.676
4338
- - type: ndcg_at_5
4339
- value: 37.783
4340
- - type: precision_at_1
4341
- value: 22.364
4342
- - type: precision_at_10
4343
- value: 6.662
4344
- - type: precision_at_100
4345
- value: 0.943
4346
- - type: precision_at_1000
4347
- value: 0.104
4348
- - type: precision_at_3
4349
- value: 14.435999999999998
4350
- - type: precision_at_5
4351
- value: 10.764999999999999
4352
- - type: recall_at_1
4353
- value: 21.729000000000003
4354
- - type: recall_at_10
4355
- value: 63.815999999999995
4356
- - type: recall_at_100
4357
- value: 89.265
4358
- - type: recall_at_1000
4359
- value: 98.149
4360
- - type: recall_at_3
4361
- value: 41.898
4362
- - type: recall_at_5
4363
- value: 51.76500000000001
4364
- - task:
4365
- type: Classification
4366
- dataset:
4367
- type: mteb/mtop_domain
4368
- name: MTEB MTOPDomainClassification (en)
4369
- config: en
4370
- split: test
4371
- revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
4372
- metrics:
4373
- - type: accuracy
4374
- value: 92.73141814865483
4375
- - type: f1
4376
- value: 92.17518476408004
4377
- - task:
4378
- type: Classification
4379
- dataset:
4380
- type: mteb/mtop_intent
4381
- name: MTEB MTOPIntentClassification (en)
4382
- config: en
4383
- split: test
4384
- revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
4385
- metrics:
4386
- - type: accuracy
4387
- value: 65.18011855905152
4388
- - type: f1
4389
- value: 46.70999638311856
4390
- - task:
4391
- type: Classification
4392
- dataset:
4393
- type: masakhane/masakhanews
4394
- name: MTEB MasakhaNEWSClassification (eng)
4395
- config: eng
4396
- split: test
4397
- revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
4398
- metrics:
4399
- - type: accuracy
4400
- value: 75.24261603375525
4401
- - type: f1
4402
- value: 74.07895183913367
4403
- - task:
4404
- type: Clustering
4405
- dataset:
4406
- type: masakhane/masakhanews
4407
- name: MTEB MasakhaNEWSClusteringP2P (eng)
4408
- config: eng
4409
- split: test
4410
- revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
4411
- metrics:
4412
- - type: v_measure
4413
- value: 28.43855875387446
4414
- - task:
4415
- type: Clustering
4416
- dataset:
4417
- type: masakhane/masakhanews
4418
- name: MTEB MasakhaNEWSClusteringS2S (eng)
4419
- config: eng
4420
- split: test
4421
- revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60
4422
- metrics:
4423
- - type: v_measure
4424
- value: 29.05331990256969
4425
- - task:
4426
- type: Classification
4427
- dataset:
4428
- type: mteb/amazon_massive_intent
4429
- name: MTEB MassiveIntentClassification (en)
4430
- config: en
4431
- split: test
4432
- revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
4433
- metrics:
4434
- - type: accuracy
4435
- value: 66.92333557498318
4436
- - type: f1
4437
- value: 64.29789389602692
4438
- - task:
4439
- type: Classification
4440
- dataset:
4441
- type: mteb/amazon_massive_scenario
4442
- name: MTEB MassiveScenarioClassification (en)
4443
- config: en
4444
- split: test
4445
- revision: 7d571f92784cd94a019292a1f45445077d0ef634
4446
- metrics:
4447
- - type: accuracy
4448
- value: 72.74714189643578
4449
- - type: f1
4450
- value: 71.672585608315
4451
- - task:
4452
- type: Clustering
4453
- dataset:
4454
- type: mteb/medrxiv-clustering-p2p
4455
- name: MTEB MedrxivClusteringP2P
4456
- config: default
4457
- split: test
4458
- revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
4459
- metrics:
4460
- - type: v_measure
4461
- value: 31.503564225501613
4462
- - task:
4463
- type: Clustering
4464
- dataset:
4465
- type: mteb/medrxiv-clustering-s2s
4466
- name: MTEB MedrxivClusteringS2S
4467
- config: default
4468
- split: test
4469
- revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
4470
- metrics:
4471
- - type: v_measure
4472
- value: 28.410225127136457
4473
- - task:
4474
- type: Reranking
4475
- dataset:
4476
- type: mteb/mind_small
4477
- name: MTEB MindSmallReranking
4478
- config: default
4479
- split: test
4480
- revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
4481
- metrics:
4482
- - type: map
4483
- value: 29.170019896091908
4484
- - type: mrr
4485
- value: 29.881276831500976
4486
- - task:
4487
- type: Retrieval
4488
- dataset:
4489
- type: mteb/nfcorpus
4490
- name: MTEB NFCorpus
4491
- config: default
4492
- split: test
4493
- revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
4494
- metrics:
4495
- - type: map_at_1
4496
- value: 6.544
4497
- - type: map_at_10
4498
- value: 14.116999999999999
4499
- - type: map_at_100
4500
- value: 17.522
4501
- - type: map_at_1000
4502
- value: 19
4503
- - type: map_at_3
4504
- value: 10.369
4505
- - type: map_at_5
4506
- value: 12.189
4507
- - type: mrr_at_1
4508
- value: 47.988
4509
- - type: mrr_at_10
4510
- value: 56.84
4511
- - type: mrr_at_100
4512
- value: 57.367000000000004
4513
- - type: mrr_at_1000
4514
- value: 57.403000000000006
4515
- - type: mrr_at_3
4516
- value: 54.592
4517
- - type: mrr_at_5
4518
- value: 56.233
4519
- - type: ndcg_at_1
4520
- value: 45.82
4521
- - type: ndcg_at_10
4522
- value: 36.767
4523
- - type: ndcg_at_100
4524
- value: 33.356
4525
- - type: ndcg_at_1000
4526
- value: 42.062
4527
- - type: ndcg_at_3
4528
- value: 42.15
4529
- - type: ndcg_at_5
4530
- value: 40.355000000000004
4531
- - type: precision_at_1
4532
- value: 47.988
4533
- - type: precision_at_10
4534
- value: 27.121000000000002
4535
- - type: precision_at_100
4536
- value: 8.455
4537
- - type: precision_at_1000
4538
- value: 2.103
4539
- - type: precision_at_3
4540
- value: 39.628
4541
- - type: precision_at_5
4542
- value: 35.356
4543
- - type: recall_at_1
4544
- value: 6.544
4545
- - type: recall_at_10
4546
- value: 17.928
4547
- - type: recall_at_100
4548
- value: 32.843
4549
- - type: recall_at_1000
4550
- value: 65.752
4551
- - type: recall_at_3
4552
- value: 11.297
4553
- - type: recall_at_5
4554
- value: 14.357000000000001
4555
- - task:
4556
- type: Retrieval
4557
- dataset:
4558
- type: mteb/nq
4559
- name: MTEB NQ
4560
- config: default
4561
- split: test
4562
- revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
4563
- metrics:
4564
- - type: map_at_1
4565
- value: 39.262
4566
- - type: map_at_10
4567
- value: 55.095000000000006
4568
- - type: map_at_100
4569
- value: 55.93900000000001
4570
- - type: map_at_1000
4571
- value: 55.955999999999996
4572
- - type: map_at_3
4573
- value: 50.93
4574
- - type: map_at_5
4575
- value: 53.491
4576
- - type: mrr_at_1
4577
- value: 43.598
4578
- - type: mrr_at_10
4579
- value: 57.379999999999995
4580
- - type: mrr_at_100
4581
- value: 57.940999999999995
4582
- - type: mrr_at_1000
4583
- value: 57.952000000000005
4584
- - type: mrr_at_3
4585
- value: 53.998000000000005
4586
- - type: mrr_at_5
4587
- value: 56.128
4588
- - type: ndcg_at_1
4589
- value: 43.598
4590
- - type: ndcg_at_10
4591
- value: 62.427
4592
- - type: ndcg_at_100
4593
- value: 65.759
4594
- - type: ndcg_at_1000
4595
- value: 66.133
4596
- - type: ndcg_at_3
4597
- value: 54.745999999999995
4598
- - type: ndcg_at_5
4599
- value: 58.975
4600
- - type: precision_at_1
4601
- value: 43.598
4602
- - type: precision_at_10
4603
- value: 9.789
4604
- - type: precision_at_100
4605
- value: 1.171
4606
- - type: precision_at_1000
4607
- value: 0.121
4608
- - type: precision_at_3
4609
- value: 24.295
4610
- - type: precision_at_5
4611
- value: 17.028
4612
- - type: recall_at_1
4613
- value: 39.262
4614
- - type: recall_at_10
4615
- value: 82.317
4616
- - type: recall_at_100
4617
- value: 96.391
4618
- - type: recall_at_1000
4619
- value: 99.116
4620
- - type: recall_at_3
4621
- value: 62.621
4622
- - type: recall_at_5
4623
- value: 72.357
4624
- - task:
4625
- type: Classification
4626
- dataset:
4627
- type: ag_news
4628
- name: MTEB NewsClassification
4629
- config: default
4630
- split: test
4631
- revision: eb185aade064a813bc0b7f42de02595523103ca4
4632
- metrics:
4633
- - type: accuracy
4634
- value: 78.17500000000001
4635
- - type: f1
4636
- value: 78.01940892857273
4637
- - task:
4638
- type: PairClassification
4639
- dataset:
4640
- type: GEM/opusparcus
4641
- name: MTEB OpusparcusPC (en)
4642
- config: en
4643
- split: test
4644
- revision: 9e9b1f8ef51616073f47f306f7f47dd91663f86a
4645
- metrics:
4646
- - type: cos_sim_accuracy
4647
- value: 99.89816700610999
4648
- - type: cos_sim_ap
4649
- value: 100
4650
- - type: cos_sim_f1
4651
- value: 99.9490575649516
4652
- - type: cos_sim_precision
4653
- value: 100
4654
- - type: cos_sim_recall
4655
- value: 99.89816700610999
4656
- - type: dot_accuracy
4657
- value: 99.89816700610999
4658
- - type: dot_ap
4659
- value: 100
4660
- - type: dot_f1
4661
- value: 99.9490575649516
4662
- - type: dot_precision
4663
- value: 100
4664
- - type: dot_recall
4665
- value: 99.89816700610999
4666
- - type: euclidean_accuracy
4667
- value: 99.89816700610999
4668
- - type: euclidean_ap
4669
- value: 100
4670
- - type: euclidean_f1
4671
- value: 99.9490575649516
4672
- - type: euclidean_precision
4673
- value: 100
4674
- - type: euclidean_recall
4675
- value: 99.89816700610999
4676
- - type: manhattan_accuracy
4677
- value: 99.89816700610999
4678
- - type: manhattan_ap
4679
- value: 100
4680
- - type: manhattan_f1
4681
- value: 99.9490575649516
4682
- - type: manhattan_precision
4683
- value: 100
4684
- - type: manhattan_recall
4685
- value: 99.89816700610999
4686
- - type: max_accuracy
4687
- value: 99.89816700610999
4688
- - type: max_ap
4689
- value: 100
4690
- - type: max_f1
4691
- value: 99.9490575649516
4692
- - task:
4693
- type: PairClassification
4694
- dataset:
4695
- type: paws-x
4696
- name: MTEB PawsX (en)
4697
- config: en
4698
- split: test
4699
- revision: 8a04d940a42cd40658986fdd8e3da561533a3646
4700
- metrics:
4701
- - type: cos_sim_accuracy
4702
- value: 61
4703
- - type: cos_sim_ap
4704
- value: 59.630757252602464
4705
- - type: cos_sim_f1
4706
- value: 62.37521514629949
4707
- - type: cos_sim_precision
4708
- value: 45.34534534534534
4709
- - type: cos_sim_recall
4710
- value: 99.88974641675854
4711
- - type: dot_accuracy
4712
- value: 61
4713
- - type: dot_ap
4714
- value: 59.631527308059006
4715
- - type: dot_f1
4716
- value: 62.37521514629949
4717
- - type: dot_precision
4718
- value: 45.34534534534534
4719
- - type: dot_recall
4720
- value: 99.88974641675854
4721
- - type: euclidean_accuracy
4722
- value: 61
4723
- - type: euclidean_ap
4724
- value: 59.630757252602464
4725
- - type: euclidean_f1
4726
- value: 62.37521514629949
4727
- - type: euclidean_precision
4728
- value: 45.34534534534534
4729
- - type: euclidean_recall
4730
- value: 99.88974641675854
4731
- - type: manhattan_accuracy
4732
- value: 60.9
4733
- - type: manhattan_ap
4734
- value: 59.613947780462254
4735
- - type: manhattan_f1
4736
- value: 62.37521514629949
4737
- - type: manhattan_precision
4738
- value: 45.34534534534534
4739
- - type: manhattan_recall
4740
- value: 99.88974641675854
4741
- - type: max_accuracy
4742
- value: 61
4743
- - type: max_ap
4744
- value: 59.631527308059006
4745
- - type: max_f1
4746
- value: 62.37521514629949
4747
- - task:
4748
- type: Retrieval
4749
- dataset:
4750
- type: mteb/quora
4751
- name: MTEB QuoraRetrieval
4752
- config: default
4753
- split: test
4754
- revision: e4e08e0b7dbe3c8700f0daef558ff32256715259
4755
- metrics:
4756
- - type: map_at_1
4757
- value: 69.963
4758
- - type: map_at_10
4759
- value: 83.59400000000001
4760
- - type: map_at_100
4761
- value: 84.236
4762
- - type: map_at_1000
4763
- value: 84.255
4764
- - type: map_at_3
4765
- value: 80.69800000000001
4766
- - type: map_at_5
4767
- value: 82.568
4768
- - type: mrr_at_1
4769
- value: 80.58999999999999
4770
- - type: mrr_at_10
4771
- value: 86.78200000000001
4772
- - type: mrr_at_100
4773
- value: 86.89099999999999
4774
- - type: mrr_at_1000
4775
- value: 86.893
4776
- - type: mrr_at_3
4777
- value: 85.757
4778
- - type: mrr_at_5
4779
- value: 86.507
4780
- - type: ndcg_at_1
4781
- value: 80.60000000000001
4782
- - type: ndcg_at_10
4783
- value: 87.41799999999999
4784
- - type: ndcg_at_100
4785
- value: 88.723
4786
- - type: ndcg_at_1000
4787
- value: 88.875
4788
- - type: ndcg_at_3
4789
- value: 84.565
4790
- - type: ndcg_at_5
4791
- value: 86.236
4792
- - type: precision_at_1
4793
- value: 80.60000000000001
4794
- - type: precision_at_10
4795
- value: 13.239
4796
- - type: precision_at_100
4797
- value: 1.5150000000000001
4798
- - type: precision_at_1000
4799
- value: 0.156
4800
- - type: precision_at_3
4801
- value: 36.947
4802
- - type: precision_at_5
4803
- value: 24.354
4804
- - type: recall_at_1
4805
- value: 69.963
4806
- - type: recall_at_10
4807
- value: 94.553
4808
- - type: recall_at_100
4809
- value: 99.104
4810
- - type: recall_at_1000
4811
- value: 99.872
4812
- - type: recall_at_3
4813
- value: 86.317
4814
- - type: recall_at_5
4815
- value: 91.023
4816
- - task:
4817
- type: Clustering
4818
- dataset:
4819
- type: mteb/reddit-clustering
4820
- name: MTEB RedditClustering
4821
- config: default
4822
- split: test
4823
- revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
4824
- metrics:
4825
- - type: v_measure
4826
- value: 47.52890410998761
4827
- - task:
4828
- type: Clustering
4829
- dataset:
4830
- type: mteb/reddit-clustering-p2p
4831
- name: MTEB RedditClusteringP2P
4832
- config: default
4833
- split: test
4834
- revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
4835
- metrics:
4836
- - type: v_measure
4837
- value: 62.760692287940486
4838
- - task:
4839
- type: Retrieval
4840
- dataset:
4841
- type: mteb/scidocs
4842
- name: MTEB SCIDOCS
4843
- config: default
4844
- split: test
4845
- revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88
4846
- metrics:
4847
- - type: map_at_1
4848
- value: 5.093
4849
- - type: map_at_10
4850
- value: 12.695
4851
- - type: map_at_100
4852
- value: 14.824000000000002
4853
- - type: map_at_1000
4854
- value: 15.123000000000001
4855
- - type: map_at_3
4856
- value: 8.968
4857
- - type: map_at_5
4858
- value: 10.828
4859
- - type: mrr_at_1
4860
- value: 25.1
4861
- - type: mrr_at_10
4862
- value: 35.894999999999996
4863
- - type: mrr_at_100
4864
- value: 36.966
4865
- - type: mrr_at_1000
4866
- value: 37.019999999999996
4867
- - type: mrr_at_3
4868
- value: 32.467
4869
- - type: mrr_at_5
4870
- value: 34.416999999999994
4871
- - type: ndcg_at_1
4872
- value: 25.1
4873
- - type: ndcg_at_10
4874
- value: 21.096999999999998
4875
- - type: ndcg_at_100
4876
- value: 29.202
4877
- - type: ndcg_at_1000
4878
- value: 34.541
4879
- - type: ndcg_at_3
4880
- value: 19.875
4881
- - type: ndcg_at_5
4882
- value: 17.497
4883
- - type: precision_at_1
4884
- value: 25.1
4885
- - type: precision_at_10
4886
- value: 10.9
4887
- - type: precision_at_100
4888
- value: 2.255
4889
- - type: precision_at_1000
4890
- value: 0.35400000000000004
4891
- - type: precision_at_3
4892
- value: 18.367
4893
- - type: precision_at_5
4894
- value: 15.299999999999999
4895
- - type: recall_at_1
4896
- value: 5.093
4897
- - type: recall_at_10
4898
- value: 22.092
4899
- - type: recall_at_100
4900
- value: 45.778
4901
- - type: recall_at_1000
4902
- value: 71.985
4903
- - type: recall_at_3
4904
- value: 11.167
4905
- - type: recall_at_5
4906
- value: 15.501999999999999
4907
- - task:
4908
- type: STS
4909
- dataset:
4910
- type: mteb/sickr-sts
4911
- name: MTEB SICK-R
4912
- config: default
4913
- split: test
4914
- revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
4915
- metrics:
4916
- - type: cos_sim_pearson
4917
- value: 74.04386981759481
4918
- - type: cos_sim_spearman
4919
- value: 69.12484963763646
4920
- - type: euclidean_pearson
4921
- value: 71.49384353291062
4922
- - type: euclidean_spearman
4923
- value: 69.12484548317074
4924
- - type: manhattan_pearson
4925
- value: 71.49828173987272
4926
- - type: manhattan_spearman
4927
- value: 69.08350274367014
4928
- - task:
4929
- type: STS
4930
- dataset:
4931
- type: mteb/sts12-sts
4932
- name: MTEB STS12
4933
- config: default
4934
- split: test
4935
- revision: a0d554a64d88156834ff5ae9920b964011b16384
4936
- metrics:
4937
- - type: cos_sim_pearson
4938
- value: 66.95372527615659
4939
- - type: cos_sim_spearman
4940
- value: 66.96821894433991
4941
- - type: euclidean_pearson
4942
- value: 64.675348002074
4943
- - type: euclidean_spearman
4944
- value: 66.96821894433991
4945
- - type: manhattan_pearson
4946
- value: 64.5965887073831
4947
- - type: manhattan_spearman
4948
- value: 66.88569076794741
4949
- - task:
4950
- type: STS
4951
- dataset:
4952
- type: mteb/sts13-sts
4953
- name: MTEB STS13
4954
- config: default
4955
- split: test
4956
- revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
4957
- metrics:
4958
- - type: cos_sim_pearson
4959
- value: 77.34698437961983
4960
- - type: cos_sim_spearman
4961
- value: 79.1153001117325
4962
- - type: euclidean_pearson
4963
- value: 78.53562874696966
4964
- - type: euclidean_spearman
4965
- value: 79.11530018205724
4966
- - type: manhattan_pearson
4967
- value: 78.46484988944093
4968
- - type: manhattan_spearman
4969
- value: 79.01416027493104
4970
- - task:
4971
- type: STS
4972
- dataset:
4973
- type: mteb/sts14-sts
4974
- name: MTEB STS14
4975
- config: default
4976
- split: test
4977
- revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
4978
- metrics:
4979
- - type: cos_sim_pearson
4980
- value: 68.81220371935373
4981
- - type: cos_sim_spearman
4982
- value: 68.50538405089604
4983
- - type: euclidean_pearson
4984
- value: 68.69204272683749
4985
- - type: euclidean_spearman
4986
- value: 68.50534223912419
4987
- - type: manhattan_pearson
4988
- value: 68.67300120149523
4989
- - type: manhattan_spearman
4990
- value: 68.45404301623115
4991
- - task:
4992
- type: STS
4993
- dataset:
4994
- type: mteb/sts15-sts
4995
- name: MTEB STS15
4996
- config: default
4997
- split: test
4998
- revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
4999
- metrics:
5000
- - type: cos_sim_pearson
5001
- value: 78.2464678879813
5002
- - type: cos_sim_spearman
5003
- value: 79.92003940566667
5004
- - type: euclidean_pearson
5005
- value: 79.8080778793964
5006
- - type: euclidean_spearman
5007
- value: 79.92003940566667
5008
- - type: manhattan_pearson
5009
- value: 79.80153621444681
5010
- - type: manhattan_spearman
5011
- value: 79.91293261418134
5012
- - task:
5013
- type: STS
5014
- dataset:
5015
- type: mteb/sts16-sts
5016
- name: MTEB STS16
5017
- config: default
5018
- split: test
5019
- revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
5020
- metrics:
5021
- - type: cos_sim_pearson
5022
- value: 76.31179207708662
5023
- - type: cos_sim_spearman
5024
- value: 78.65597349856115
5025
- - type: euclidean_pearson
5026
- value: 78.76937027472678
5027
- - type: euclidean_spearman
5028
- value: 78.65597349856115
5029
- - type: manhattan_pearson
5030
- value: 78.77129513300605
5031
- - type: manhattan_spearman
5032
- value: 78.62640467680775
5033
- - task:
5034
- type: STS
5035
- dataset:
5036
- type: mteb/sts17-crosslingual-sts
5037
- name: MTEB STS17 (en-en)
5038
- config: en-en
5039
- split: test
5040
- revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
5041
- metrics:
5042
- - type: cos_sim_pearson
5043
- value: 79.43158429552561
5044
- - type: cos_sim_spearman
5045
- value: 81.46108646565362
5046
- - type: euclidean_pearson
5047
- value: 81.47071791452292
5048
- - type: euclidean_spearman
5049
- value: 81.46108646565362
5050
- - type: manhattan_pearson
5051
- value: 81.56920643846031
5052
- - type: manhattan_spearman
5053
- value: 81.42226241399516
5054
- - task:
5055
- type: STS
5056
- dataset:
5057
- type: mteb/sts22-crosslingual-sts
5058
- name: MTEB STS22 (en)
5059
- config: en
5060
- split: test
5061
- revision: eea2b4fe26a775864c896887d910b76a8098ad3f
5062
- metrics:
5063
- - type: cos_sim_pearson
5064
- value: 66.89546474141514
5065
- - type: cos_sim_spearman
5066
- value: 65.8393752170531
5067
- - type: euclidean_pearson
5068
- value: 67.2580522762307
5069
- - type: euclidean_spearman
5070
- value: 65.8393752170531
5071
- - type: manhattan_pearson
5072
- value: 67.45157729300522
5073
- - type: manhattan_spearman
5074
- value: 66.19470854403802
5075
- - task:
5076
- type: STS
5077
- dataset:
5078
- type: mteb/stsbenchmark-sts
5079
- name: MTEB STSBenchmark
5080
- config: default
5081
- split: test
5082
- revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
5083
- metrics:
5084
- - type: cos_sim_pearson
5085
- value: 71.39566306334434
5086
- - type: cos_sim_spearman
5087
- value: 74.0981396086974
5088
- - type: euclidean_pearson
5089
- value: 73.7834496259745
5090
- - type: euclidean_spearman
5091
- value: 74.09803741302046
5092
- - type: manhattan_pearson
5093
- value: 73.79958138780945
5094
- - type: manhattan_spearman
5095
- value: 74.09894837555905
5096
- - task:
5097
- type: STS
5098
- dataset:
5099
- type: PhilipMay/stsb_multi_mt
5100
- name: MTEB STSBenchmarkMultilingualSTS (en)
5101
- config: en
5102
- split: test
5103
- revision: 93d57ef91790589e3ce9c365164337a8a78b7632
5104
- metrics:
5105
- - type: cos_sim_pearson
5106
- value: 71.39566311006806
5107
- - type: cos_sim_spearman
5108
- value: 74.0981396086974
5109
- - type: euclidean_pearson
5110
- value: 73.78344970897099
5111
- - type: euclidean_spearman
5112
- value: 74.09803741302046
5113
- - type: manhattan_pearson
5114
- value: 73.79958147136705
5115
- - type: manhattan_spearman
5116
- value: 74.09894837555905
5117
- - task:
5118
- type: Reranking
5119
- dataset:
5120
- type: mteb/scidocs-reranking
5121
- name: MTEB SciDocsRR
5122
- config: default
5123
- split: test
5124
- revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
5125
- metrics:
5126
- - type: map
5127
- value: 80.81059564334683
5128
- - type: mrr
5129
- value: 94.62696617108381
5130
- - task:
5131
- type: Retrieval
5132
- dataset:
5133
- type: mteb/scifact
5134
- name: MTEB SciFact
5135
- config: default
5136
- split: test
5137
- revision: 0228b52cf27578f30900b9e5271d331663a030d7
5138
- metrics:
5139
- - type: map_at_1
5140
- value: 57.760999999999996
5141
- - type: map_at_10
5142
- value: 68.614
5143
- - type: map_at_100
5144
- value: 69.109
5145
- - type: map_at_1000
5146
- value: 69.134
5147
- - type: map_at_3
5148
- value: 65.735
5149
- - type: map_at_5
5150
- value: 67.42099999999999
5151
- - type: mrr_at_1
5152
- value: 60.667
5153
- - type: mrr_at_10
5154
- value: 69.94200000000001
5155
- - type: mrr_at_100
5156
- value: 70.254
5157
- - type: mrr_at_1000
5158
- value: 70.28
5159
- - type: mrr_at_3
5160
- value: 67.72200000000001
5161
- - type: mrr_at_5
5162
- value: 69.18900000000001
5163
- - type: ndcg_at_1
5164
- value: 60.667
5165
- - type: ndcg_at_10
5166
- value: 73.548
5167
- - type: ndcg_at_100
5168
- value: 75.381
5169
- - type: ndcg_at_1000
5170
- value: 75.991
5171
- - type: ndcg_at_3
5172
- value: 68.685
5173
- - type: ndcg_at_5
5174
- value: 71.26
5175
- - type: precision_at_1
5176
- value: 60.667
5177
- - type: precision_at_10
5178
- value: 9.833
5179
- - type: precision_at_100
5180
- value: 1.08
5181
- - type: precision_at_1000
5182
- value: 0.11299999999999999
5183
- - type: precision_at_3
5184
- value: 26.889000000000003
5185
- - type: precision_at_5
5186
- value: 17.8
5187
- - type: recall_at_1
5188
- value: 57.760999999999996
5189
- - type: recall_at_10
5190
- value: 87.13300000000001
5191
- - type: recall_at_100
5192
- value: 95
5193
- - type: recall_at_1000
5194
- value: 99.667
5195
- - type: recall_at_3
5196
- value: 74.211
5197
- - type: recall_at_5
5198
- value: 80.63900000000001
5199
- - task:
5200
- type: PairClassification
5201
- dataset:
5202
- type: mteb/sprintduplicatequestions-pairclassification
5203
- name: MTEB SprintDuplicateQuestions
5204
- config: default
5205
- split: test
5206
- revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
5207
- metrics:
5208
- - type: cos_sim_accuracy
5209
- value: 99.81881188118813
5210
- - type: cos_sim_ap
5211
- value: 95.21196473745837
5212
- - type: cos_sim_f1
5213
- value: 90.69767441860465
5214
- - type: cos_sim_precision
5215
- value: 91.71779141104295
5216
- - type: cos_sim_recall
5217
- value: 89.7
5218
- - type: dot_accuracy
5219
- value: 99.81881188118813
5220
- - type: dot_ap
5221
- value: 95.21196473745837
5222
- - type: dot_f1
5223
- value: 90.69767441860465
5224
- - type: dot_precision
5225
- value: 91.71779141104295
5226
- - type: dot_recall
5227
- value: 89.7
5228
- - type: euclidean_accuracy
5229
- value: 99.81881188118813
5230
- - type: euclidean_ap
5231
- value: 95.21196473745839
5232
- - type: euclidean_f1
5233
- value: 90.69767441860465
5234
- - type: euclidean_precision
5235
- value: 91.71779141104295
5236
- - type: euclidean_recall
5237
- value: 89.7
5238
- - type: manhattan_accuracy
5239
- value: 99.81287128712871
5240
- - type: manhattan_ap
5241
- value: 95.16667174835017
5242
- - type: manhattan_f1
5243
- value: 90.41095890410959
5244
- - type: manhattan_precision
5245
- value: 91.7610710607621
5246
- - type: manhattan_recall
5247
- value: 89.1
5248
- - type: max_accuracy
5249
- value: 99.81881188118813
5250
- - type: max_ap
5251
- value: 95.21196473745839
5252
- - type: max_f1
5253
- value: 90.69767441860465
5254
- - task:
5255
- type: Clustering
5256
- dataset:
5257
- type: mteb/stackexchange-clustering
5258
- name: MTEB StackExchangeClustering
5259
- config: default
5260
- split: test
5261
- revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
5262
- metrics:
5263
- - type: v_measure
5264
- value: 59.54942204515638
5265
- - task:
5266
- type: Clustering
5267
- dataset:
5268
- type: mteb/stackexchange-clustering-p2p
5269
- name: MTEB StackExchangeClusteringP2P
5270
- config: default
5271
- split: test
5272
- revision: 815ca46b2622cec33ccafc3735d572c266efdb44
5273
- metrics:
5274
- - type: v_measure
5275
- value: 39.42892282672948
5276
- - task:
5277
- type: Reranking
5278
- dataset:
5279
- type: mteb/stackoverflowdupquestions-reranking
5280
- name: MTEB StackOverflowDupQuestions
5281
- config: default
5282
- split: test
5283
- revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
5284
- metrics:
5285
- - type: map
5286
- value: 51.189033075914324
5287
- - type: mrr
5288
- value: 51.97014790764791
5289
- - task:
5290
- type: Summarization
5291
- dataset:
5292
- type: mteb/summeval
5293
- name: MTEB SummEval
5294
- config: default
5295
- split: test
5296
- revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
5297
- metrics:
5298
- - type: cos_sim_pearson
5299
- value: 30.09466569775977
5300
- - type: cos_sim_spearman
5301
- value: 30.31058660775912
5302
- - type: dot_pearson
5303
- value: 30.09466438861689
5304
- - type: dot_spearman
5305
- value: 30.31058660775912
5306
- - task:
5307
- type: Retrieval
5308
- dataset:
5309
- type: mteb/trec-covid
5310
- name: MTEB TRECCOVID
5311
- config: default
5312
- split: test
5313
- revision: bb9466bac8153a0349341eb1b22e06409e78ef4e
5314
- metrics:
5315
- - type: map_at_1
5316
- value: 0.253
5317
- - type: map_at_10
5318
- value: 2.07
5319
- - type: map_at_100
5320
- value: 12.679000000000002
5321
- - type: map_at_1000
5322
- value: 30.412
5323
- - type: map_at_3
5324
- value: 0.688
5325
- - type: map_at_5
5326
- value: 1.079
5327
- - type: mrr_at_1
5328
- value: 96
5329
- - type: mrr_at_10
5330
- value: 98
5331
- - type: mrr_at_100
5332
- value: 98
5333
- - type: mrr_at_1000
5334
- value: 98
5335
- - type: mrr_at_3
5336
- value: 98
5337
- - type: mrr_at_5
5338
- value: 98
5339
- - type: ndcg_at_1
5340
- value: 89
5341
- - type: ndcg_at_10
5342
- value: 79.646
5343
- - type: ndcg_at_100
5344
- value: 62.217999999999996
5345
- - type: ndcg_at_1000
5346
- value: 55.13400000000001
5347
- - type: ndcg_at_3
5348
- value: 83.458
5349
- - type: ndcg_at_5
5350
- value: 80.982
5351
- - type: precision_at_1
5352
- value: 96
5353
- - type: precision_at_10
5354
- value: 84.6
5355
- - type: precision_at_100
5356
- value: 64.34
5357
- - type: precision_at_1000
5358
- value: 24.534
5359
- - type: precision_at_3
5360
- value: 88.667
5361
- - type: precision_at_5
5362
- value: 85.6
5363
- - type: recall_at_1
5364
- value: 0.253
5365
- - type: recall_at_10
5366
- value: 2.253
5367
- - type: recall_at_100
5368
- value: 15.606
5369
- - type: recall_at_1000
5370
- value: 51.595
5371
- - type: recall_at_3
5372
- value: 0.7100000000000001
5373
- - type: recall_at_5
5374
- value: 1.139
5375
- - task:
5376
- type: Retrieval
5377
- dataset:
5378
- type: mteb/touche2020
5379
- name: MTEB Touche2020
5380
- config: default
5381
- split: test
5382
- revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
5383
- metrics:
5384
- - type: map_at_1
5385
- value: 3.0540000000000003
5386
- - type: map_at_10
5387
- value: 13.078999999999999
5388
- - type: map_at_100
5389
- value: 19.468
5390
- - type: map_at_1000
5391
- value: 21.006
5392
- - type: map_at_3
5393
- value: 6.8629999999999995
5394
- - type: map_at_5
5395
- value: 9.187
5396
- - type: mrr_at_1
5397
- value: 42.857
5398
- - type: mrr_at_10
5399
- value: 56.735
5400
- - type: mrr_at_100
5401
- value: 57.352000000000004
5402
- - type: mrr_at_1000
5403
- value: 57.352000000000004
5404
- - type: mrr_at_3
5405
- value: 52.721
5406
- - type: mrr_at_5
5407
- value: 54.66
5408
- - type: ndcg_at_1
5409
- value: 38.775999999999996
5410
- - type: ndcg_at_10
5411
- value: 31.469
5412
- - type: ndcg_at_100
5413
- value: 42.016999999999996
5414
- - type: ndcg_at_1000
5415
- value: 52.60399999999999
5416
- - type: ndcg_at_3
5417
- value: 35.894
5418
- - type: ndcg_at_5
5419
- value: 33.873
5420
- - type: precision_at_1
5421
- value: 42.857
5422
- - type: precision_at_10
5423
- value: 27.346999999999998
5424
- - type: precision_at_100
5425
- value: 8.327
5426
- - type: precision_at_1000
5427
- value: 1.551
5428
- - type: precision_at_3
5429
- value: 36.735
5430
- - type: precision_at_5
5431
- value: 33.469
5432
- - type: recall_at_1
5433
- value: 3.0540000000000003
5434
- - type: recall_at_10
5435
- value: 19.185
5436
- - type: recall_at_100
5437
- value: 51.056000000000004
5438
- - type: recall_at_1000
5439
- value: 82.814
5440
- - type: recall_at_3
5441
- value: 7.961
5442
- - type: recall_at_5
5443
- value: 11.829
5444
- - task:
5445
- type: Classification
5446
- dataset:
5447
- type: mteb/toxic_conversations_50k
5448
- name: MTEB ToxicConversationsClassification
5449
- config: default
5450
- split: test
5451
- revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
5452
- metrics:
5453
- - type: accuracy
5454
- value: 64.9346
5455
- - type: ap
5456
- value: 12.121605736777527
5457
- - type: f1
5458
- value: 50.169902005887955
5459
- - task:
5460
- type: Classification
5461
- dataset:
5462
- type: mteb/tweet_sentiment_extraction
5463
- name: MTEB TweetSentimentExtractionClassification
5464
- config: default
5465
- split: test
5466
- revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
5467
- metrics:
5468
- - type: accuracy
5469
- value: 56.72608941709111
5470
- - type: f1
5471
- value: 57.0702928875253
5472
- - task:
5473
- type: Clustering
5474
- dataset:
5475
- type: mteb/twentynewsgroups-clustering
5476
- name: MTEB TwentyNewsgroupsClustering
5477
- config: default
5478
- split: test
5479
- revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
5480
- metrics:
5481
- - type: v_measure
5482
- value: 37.72671554400943
5483
- - task:
5484
- type: PairClassification
5485
- dataset:
5486
- type: mteb/twittersemeval2015-pairclassification
5487
- name: MTEB TwitterSemEval2015
5488
- config: default
5489
- split: test
5490
- revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
5491
- metrics:
5492
- - type: cos_sim_accuracy
5493
- value: 82.84556237706384
5494
- - type: cos_sim_ap
5495
- value: 63.28364215788651
5496
- - type: cos_sim_f1
5497
- value: 60.00000000000001
5498
- - type: cos_sim_precision
5499
- value: 54.45161290322581
5500
- - type: cos_sim_recall
5501
- value: 66.80738786279683
5502
- - type: dot_accuracy
5503
- value: 82.84556237706384
5504
- - type: dot_ap
5505
- value: 63.28364302860433
5506
- - type: dot_f1
5507
- value: 60.00000000000001
5508
- - type: dot_precision
5509
- value: 54.45161290322581
5510
- - type: dot_recall
5511
- value: 66.80738786279683
5512
- - type: euclidean_accuracy
5513
- value: 82.84556237706384
5514
- - type: euclidean_ap
5515
- value: 63.28363625097978
5516
- - type: euclidean_f1
5517
- value: 60.00000000000001
5518
- - type: euclidean_precision
5519
- value: 54.45161290322581
5520
- - type: euclidean_recall
5521
- value: 66.80738786279683
5522
- - type: manhattan_accuracy
5523
- value: 82.86940454193241
5524
- - type: manhattan_ap
5525
- value: 63.244773709836764
5526
- - type: manhattan_f1
5527
- value: 60.12680942696495
5528
- - type: manhattan_precision
5529
- value: 55.00109433136353
5530
- - type: manhattan_recall
5531
- value: 66.3060686015831
5532
- - type: max_accuracy
5533
- value: 82.86940454193241
5534
- - type: max_ap
5535
- value: 63.28364302860433
5536
- - type: max_f1
5537
- value: 60.12680942696495
5538
- - task:
5539
- type: PairClassification
5540
- dataset:
5541
- type: mteb/twitterurlcorpus-pairclassification
5542
- name: MTEB TwitterURLCorpus
5543
- config: default
5544
- split: test
5545
- revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
5546
- metrics:
5547
- - type: cos_sim_accuracy
5548
- value: 88.32033220786278
5549
- - type: cos_sim_ap
5550
- value: 84.71928176006863
5551
- - type: cos_sim_f1
5552
- value: 76.51483333969684
5553
- - type: cos_sim_precision
5554
- value: 75.89184276300841
5555
- - type: cos_sim_recall
5556
- value: 77.14813674160764
5557
- - type: dot_accuracy
5558
- value: 88.32033220786278
5559
- - type: dot_ap
5560
- value: 84.71928330149228
5561
- - type: dot_f1
5562
- value: 76.51483333969684
5563
- - type: dot_precision
5564
- value: 75.89184276300841
5565
- - type: dot_recall
5566
- value: 77.14813674160764
5567
- - type: euclidean_accuracy
5568
- value: 88.32033220786278
5569
- - type: euclidean_ap
5570
- value: 84.71928045384345
5571
- - type: euclidean_f1
5572
- value: 76.51483333969684
5573
- - type: euclidean_precision
5574
- value: 75.89184276300841
5575
- - type: euclidean_recall
5576
- value: 77.14813674160764
5577
- - type: manhattan_accuracy
5578
- value: 88.27570147863545
5579
- - type: manhattan_ap
5580
- value: 84.68523541579755
5581
- - type: manhattan_f1
5582
- value: 76.51512269355146
5583
- - type: manhattan_precision
5584
- value: 75.62608107091825
5585
- - type: manhattan_recall
5586
- value: 77.42531567600862
5587
- - type: max_accuracy
5588
- value: 88.32033220786278
5589
- - type: max_ap
5590
- value: 84.71928330149228
5591
- - type: max_f1
5592
- value: 76.51512269355146
5593
- - task:
5594
- type: Clustering
5595
- dataset:
5596
- type: jinaai/cities_wiki_clustering
5597
- name: MTEB WikiCitiesClustering
5598
- config: default
5599
- split: test
5600
- revision: ddc9ee9242fa65332597f70e967ecc38b9d734fa
5601
- metrics:
5602
- - type: v_measure
5603
- value: 85.30624598674467
5604
  license: apache-2.0
5605
  ---
5606
- <h1 align="center">Snowflake's Artic-embed-</h1>
5607
  <h4 align="center">
5608
  <p>
5609
  <a href=#news>News</a> |
 
2799
  metrics:
2800
  - type: v_measure
2801
  value: 79.58576208710117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2802
  license: apache-2.0
2803
  ---
2804
+ <h1 align="center">Snowflake's Artic-embed-s</h1>
2805
  <h4 align="center">
2806
  <p>
2807
  <a href=#news>News</a> |