--- widget: - text: Cathill Industries AB - text: Gunnar Lingås Stiftelse - text: Föreningen Hjärtlung Alvesta - text: Picsous Fastigheter Norrtälje KB - text: Vreta klosters församling - text: Alvengren & Söner Handelsbolag - text: Svenska Förläggareföreningen ek. för. - text: Länsförsäkringar Jämtland - text: Hälsinglands Sparbank - text: Dalarnas Försäkringsbolag - text: Södra Dalarnas Sparbank AB - text: Bostadsrättsföreningen Bryggan - text: Garantimyndigheten, Riksgäldskontoret - text: Edsbergs Häradsallmänning - text: Bostadsrättsföreningen Vik 7 model-index: - name: Sociovestix/lenu_SE results: - task: type: text-classification name: Text Classification dataset: name: lenu type: Sociovestix/lenu config: SE split: test revision: 76da7696c49ebee8be7f521faa76ae99189bda34 metrics: - type: f1 value: 0.982643193652368 name: f1 - type: f1 value: 0.6254112182753564 name: f1 macro args: average: macro --- # LENU - Legal Entity Name Understanding for Sweden A [Swedish Bert](https://huggingface.co/KB/bert-base-swedish-cased) model fine-tuned on swedish legal entity names (jurisdiction SE) from the Global [Legal Entity Identifier](https://www.gleif.org/en/about-lei/introducing-the-legal-entity-identifier-lei) (LEI) System with the goal to detect [Entity Legal Form (ELF) Codes](https://www.gleif.org/en/about-lei/code-lists/iso-20275-entity-legal-forms-code-list). ---------------


in collaboration with


--------------- ## Model Description The model has been created as part of a collaboration of the [Global Legal Entity Identifier Foundation](https://gleif.org) (GLEIF) and [Sociovestix Labs](https://sociovestix.com) with the goal to explore how Machine Learning can support in detecting the ELF Code solely based on an entity's legal name and legal jurisdiction. See also the open source python library [lenu](https://github.com/Sociovestix/lenu), which supports in this task. The model has been trained on the dataset [lenu](https://huggingface.co/datasets/Sociovestix), with a focus on swedish legal entities and ELF Codes within the Jurisdiction "SE". - **Developed by:** [GLEIF](https://gleif.org) and [Sociovestix Labs](https://huggingface.co/Sociovestix) - **License:** Creative Commons (CC0) license - **Finetuned from model [optional]:** KB/bert-base-swedish-cased - **Resources for more information:** [Press Release](https://www.gleif.org/en/newsroom/press-releases/machine-learning-new-open-source-tool-developed-by-gleif-and-sociovestix-labs-enables-organizations-everywhere-to-automatically-) # Uses An entity's legal form is a crucial component when verifying and screening organizational identity. The wide variety of entity legal forms that exist within and between jurisdictions, however, has made it difficult for large organizations to capture legal form as structured data. The Jurisdiction specific models of [lenu](https://github.com/Sociovestix/lenu), trained on entities from GLEIF’s Legal Entity Identifier (LEI) database of over two million records, will allow banks, investment firms, corporations, governments, and other large organizations to retrospectively analyze their master data, extract the legal form from the unstructured text of the legal name and uniformly apply an ELF code to each entity type, according to the ISO 20275 standard. # Licensing Information This model, which is trained on LEI data, is available under Creative Commons (CC0) license. See [gleif.org/en/about/open-data](https://gleif.org/en/about/open-data). # Recommendations Users should always consider the score of the suggested ELF Codes. For low score values it may be necessary to manually review the affected entities.