--- base_model: Salesforce/xLAM-7b-r datasets: - Salesforce/xlam-function-calling-60k language: - en license: cc-by-nc-4.0 pipeline_tag: text-generation tags: - function-calling - LLM Agent - tool-use - mistral - pytorch - llama-cpp - gguf-my-repo extra_gated_heading: Acknowledge to follow corresponding license to access the repository extra_gated_button_content: Agree and access repository extra_gated_fields: First Name: text Last Name: text Country: country Affiliation: text --- # Solshine/xLAM-7b-r-Q2_K-GGUF This model was converted to GGUF format from [`Salesforce/xLAM-7b-r`](https://huggingface.co/Salesforce/xLAM-7b-r) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/Salesforce/xLAM-7b-r) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Solshine/xLAM-7b-r-Q2_K-GGUF --hf-file xlam-7b-r-q2_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Solshine/xLAM-7b-r-Q2_K-GGUF --hf-file xlam-7b-r-q2_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Solshine/xLAM-7b-r-Q2_K-GGUF --hf-file xlam-7b-r-q2_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Solshine/xLAM-7b-r-Q2_K-GGUF --hf-file xlam-7b-r-q2_k.gguf -c 2048 ```