Create ft.py
Browse files
ft.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#fine-tuning code
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, TrainerCallback
|
5 |
+
from peft import prepare_model_for_kbit_training, LoraConfig, get_peft_model
|
6 |
+
from datasets import Dataset
|
7 |
+
import json
|
8 |
+
from trl import SFTTrainer, SFTConfig
|
9 |
+
from transformers import TrainingArguments
|
10 |
+
import time
|
11 |
+
import os
|
12 |
+
|
13 |
+
class CustomCallback(TrainerCallback):
|
14 |
+
def __init__(self):
|
15 |
+
self.start_time = time.time()
|
16 |
+
|
17 |
+
def on_train_begin(self, args, state, control, **kwargs):
|
18 |
+
print("Training has begun!")
|
19 |
+
|
20 |
+
def on_step_end(self, args, state, control, **kwargs):
|
21 |
+
if state.global_step % args.logging_steps == 0:
|
22 |
+
elapsed_time = time.time() - self.start_time
|
23 |
+
if state.log_history:
|
24 |
+
loss = state.log_history[-1].get('loss', 0)
|
25 |
+
print(f"Step: {state.global_step}, Loss: {loss:.4f}, Time: {elapsed_time:.2f}s")
|
26 |
+
else:
|
27 |
+
print(f"Step: {state.global_step}, Loss: N/A, Time: {elapsed_time:.2f}s")
|
28 |
+
|
29 |
+
def on_train_end(self, args, state, control, **kwargs):
|
30 |
+
print("Training has ended!")
|
31 |
+
|
32 |
+
os.environ["CUDA_VISIBLE_DEVICES"] = "7"
|
33 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
34 |
+
|
35 |
+
|
36 |
+
model_path = "Google/gemma-2-9b-Instruct"
|
37 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
38 |
+
tokenizer.pad_token = tokenizer.eos_token
|
39 |
+
|
40 |
+
# (QLORA)
|
41 |
+
bnb_config = BitsAndBytesConfig(
|
42 |
+
load_in_4bit=True,
|
43 |
+
bnb_4bit_quant_type="nf4",
|
44 |
+
bnb_4bit_compute_dtype=torch.float16,
|
45 |
+
bnb_4bit_use_double_quant=True,
|
46 |
+
)
|
47 |
+
|
48 |
+
model = AutoModelForCausalLM.from_pretrained(
|
49 |
+
model_path,
|
50 |
+
quantization_config=bnb_config,
|
51 |
+
device_map="auto",
|
52 |
+
torch_dtype=torch.float16,
|
53 |
+
)
|
54 |
+
|
55 |
+
# PEFT
|
56 |
+
model = prepare_model_for_kbit_training(model)
|
57 |
+
lora_config = LoraConfig(
|
58 |
+
r=6,
|
59 |
+
lora_alpha=8,
|
60 |
+
lora_dropout=0.05,
|
61 |
+
target_modules=["q_proj", "o_proj", "k_proj", "v_proj", "gate_proj", "up_proj", "down_proj"],
|
62 |
+
task_type="CAUSAL_LM",
|
63 |
+
)
|
64 |
+
model = get_peft_model(model, lora_config)
|
65 |
+
|
66 |
+
# data
|
67 |
+
with open('en_ko_data', 'r', encoding='utf-8') as f:
|
68 |
+
data = json.load(f)
|
69 |
+
|
70 |
+
# prompt
|
71 |
+
def generate_prompt(en_text, ko_text):
|
72 |
+
return f"""<bos><start_of_turn>user
|
73 |
+
Please translate the following English colloquial expression into Korean.:
|
74 |
+
|
75 |
+
{en_text}<end_of_turn>
|
76 |
+
<start_of_turn>model
|
77 |
+
{ko_text}<end_of_turn><eos>"""
|
78 |
+
|
79 |
+
|
80 |
+
key = list(data.keys())[0]
|
81 |
+
dataset = [{"text": generate_prompt(item['en_original'], item['ko'])} for item in data[key]]
|
82 |
+
dataset = Dataset.from_list(dataset)
|
83 |
+
|
84 |
+
# training set
|
85 |
+
training_args = TrainingArguments(
|
86 |
+
output_dir="./results",
|
87 |
+
num_train_epochs=3,
|
88 |
+
per_device_train_batch_size=4,
|
89 |
+
gradient_accumulation_steps=4,
|
90 |
+
save_steps=100,
|
91 |
+
logging_steps=1,
|
92 |
+
learning_rate=2e-4,
|
93 |
+
weight_decay=0.01,
|
94 |
+
fp16=True,
|
95 |
+
optim="paged_adamw_8bit",
|
96 |
+
)
|
97 |
+
|
98 |
+
# SFTTrainer
|
99 |
+
trainer = SFTTrainer(
|
100 |
+
model=model,
|
101 |
+
train_dataset=dataset,
|
102 |
+
args=training_args,
|
103 |
+
tokenizer=tokenizer,
|
104 |
+
dataset_text_field="text",
|
105 |
+
max_seq_length=512,
|
106 |
+
)
|
107 |
+
|
108 |
+
|
109 |
+
trainer.add_callback(CustomCallback())
|
110 |
+
|
111 |
+
|
112 |
+
# train
|
113 |
+
trainer.train()
|
114 |
+
|
115 |
+
# save
|
116 |
+
trainer.save_model("./gemma2_9b_ko_translator")
|