Sosties commited on
Commit
a4ac0a6
1 Parent(s): 1c7b01c

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 281.88 +/- 12.83
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c2cd9306560>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c2cd93065f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c2cd9306680>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c2cd9306710>", "_build": "<function ActorCriticPolicy._build at 0x7c2cd93067a0>", "forward": "<function ActorCriticPolicy.forward at 0x7c2cd9306830>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c2cd93068c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c2cd9306950>", "_predict": "<function ActorCriticPolicy._predict at 0x7c2cd93069e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c2cd9306a70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c2cd9306b00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c2cd9306b90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c2cd92ba740>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1718684935509508497, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJo7xD0PvwG8o4JJvHkwjDyiRFI9jgtrvQAAAAAAAIA/GmvTvvZyaz8wV509VcTLvokdl74aoKY9AAAAAAAAAAAWwoC+Zo5bP+fSPb0qN8K+AMtrvi7pfz0AAAAAAAAAANqsTj7uV+68Sfq1ujS+qjlVMFC+S2MfOgAAgD8AAIA/s6pIPeESvD84hn4+68PTvSR32rxamnU8AAAAAAAAAACTA38+1oHDPlzEoL6EaKO+bz+qPSh0wb0AAAAAAAAAADMZVLzDyV+6o5RLsxYCya9uPoA6GhTNMwAAgD8AAIA/ZrAtPo4Psj/LF+Y+9Rr2vpspTD7b+G0+AAAAAAAAAACzqli963ywPxCedb4ygqa+PP7tvKjn+L0AAAAAAAAAAJoZPjq4/pK5lYYXOTPrITLJ0r+7Q401uAAAgD8AAIA/IK4NPqQacT5NUNO+7Wxpvs6S8L3S9629AAAAAAAAAAAz35q866juPR7ARLxZhoy+mehfvBK3p7wAAAAAAAAAADNgjbwUFZk+Y2wEPRXNq77VGt66CCFlOgAAAAAAAAAAM5spPGoBmz5qCDq8G8Kfvk7lwLyTxea8AAAAAAAAAADNgKs9MANzP9BKSz4YZQa/MnwOPhZegT0AAAAAAAAAAK1dCr7vzCc/T6MmPi6hr74hIJe9qxhuvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVCgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFQPR3NcGGMAWyUS/iMAXSUR0C5QGVdC3PSdX2UKGgGR0BzF+nvUjLTaAdL0WgIR0C5QHFHz6JqdX2UKGgGR0BN0SWqtHQQaAdLuWgIR0C5QJ7PD50sdX2UKGgGR0Bx9Z5prULEaAdNBwFoCEdAuUC3SqlxfnV9lChoBkdAc5Znf2saKmgHS+poCEdAuUDHb9If83V9lChoBkdAcfoO9nK4hGgHTQIBaAhHQLlA2nL7oB91fZQoaAZHQHJl9zfaYeFoB0v5aAhHQLlBAogmqo91fZQoaAZHQG6013+uNgloB0vtaAhHQLlBEODJ2dN1fZQoaAZHQHEiVz6rNnpoB00CAWgIR0C5QSFwcYIjdX2UKGgGR0BwIewLVnVYaAdL6WgIR0C5QSrI91U3dX2UKGgGR0ByhGEeyRjjaAdL4mgIR0C5QVj67/XHdX2UKGgGR0BySuAmReTnaAdL9WgIR0C5QYyHh0hedX2UKGgGR0BwDLRplBhQaAdL4GgIR0C5Qb/mknCwdX2UKGgGR0BUC0Z3s5XEaAdLnWgIR0C5QcLeuV5bdX2UKGgGR0BwO6mygPEsaAdNHwFoCEdAuUIfgiu+y3V9lChoBkdAcYLInjQzDWgHTQkBaAhHQLlCklKbrkd1fZQoaAZHQHHMLJCBwuNoB0vlaAhHQLlCoiTt9hJ1fZQoaAZHQHBprRfF72NoB0veaAhHQLlCvLrX18N1fZQoaAZHQHMnqsIVuaZoB00cAWgIR0C5QvArxy4ndX2UKGgGR0Bzu+yUs4DLaAdL8WgIR0C5Qv7Z8KG+dX2UKGgGR0ByzgT6BRQ8aAdL7GgIR0C5Qx9JFspHdX2UKGgGR0BzP/mbLEDRaAdL7GgIR0C5Q02i+L3sdX2UKGgGR0Bx2iZof0VaaAdL92gIR0C5Q09MsYl6dX2UKGgGR0BypjNOdoWYaAdNJQFoCEdAuUNi9PDYRXV9lChoBkdAcxeEZiuuBGgHTQABaAhHQLlDfCI1tO51fZQoaAZHQHBIjNdJJ5FoB00AAWgIR0C5Q8cXFcY7dX2UKGgGR0ByfvPeHi3oaAdL6mgIR0C5Q9FvMr3CdX2UKGgGR0Bxh/8GcFyJaAdL62gIR0C5RB4GhVU/dX2UKGgGR0BytbH4oJAuaAdNIwFoCEdAuUS9k9U0enV9lChoBkdAcoC1KXfIjmgHTQgBaAhHQLlE6TZQHiZ1fZQoaAZHQHF+ObVjI7xoB0vgaAhHQLlFAdk8Rth1fZQoaAZHQHLXfDYRNAVoB0vnaAhHQLlFUX7tRel1fZQoaAZHQHFSTdgv115oB0v3aAhHQLlFZYcNpdt1fZQoaAZHQHBrb2USqVBoB00DAWgIR0C5RfQG0NSZdX2UKGgGR0ByLHhwVCXyaAdL4WgIR0C5RgBZU1htdX2UKGgGR0ByQ0R3/xUeaAdNCwFoCEdAuUYpj9XLeXV9lChoBkdAceTnmq5sj2gHTQIBaAhHQLlGN0h/y5J1fZQoaAZHQG+HSVnmJWNoB0voaAhHQLlGUkona391fZQoaAZHQG+OuDjBEa5oB0v6aAhHQLlGWglWwNd1fZQoaAZHQHF52etjkMloB0vqaAhHQLlLTy5Zr591fZQoaAZHQHAd0rwvxpdoB00pAWgIR0C5S4hXCCSSdX2UKGgGR0Bx3FAbADaHaAdNIgFoCEdAuUvSPMjeK3V9lChoBkdAbwhJFLFn7GgHTQ8BaAhHQLlL5bR4QjF1fZQoaAZHQHMv9ga3qiZoB0v3aAhHQLlMKK9wm3R1fZQoaAZHQHGLnhXKbKBoB0vzaAhHQLlMQutwJgN1fZQoaAZHQHCEQNwzch1oB0vzaAhHQLlMUrNW2gF1fZQoaAZHQGJksuOCGvhoB03oA2gIR0C5TF/JeVs2dX2UKGgGR0Bxl9oCdSVGaAdL42gIR0C5TGz5CWu6dX2UKGgGR0BxrnoTwlSkaAdL8mgIR0C5TPEaZQYUdX2UKGgGR0BucGP5pJwsaAdL6mgIR0C5TPhrJr+HdX2UKGgGR0BxvXxCpm29aAdL/WgIR0C5TS8H8jzJdX2UKGgGR0BwWX04BFNMaAdNQQFoCEdAuU0yEf1YhnV9lChoBkdAcNeiwjdHlWgHTRIBaAhHQLlNNRzzVc51fZQoaAZHQHMDgiiZfD1oB00PAWgIR0C5TWfM8ox6dX2UKGgGR0BwcFcs189faAdL+2gIR0C5TXlrAP/adX2UKGgGR0By2XHmzSkTaAdL/WgIR0C5TbWhdt2tdX2UKGgGR0BzNDp2U0N0aAdL4mgIR0C5Tja8Yht+dX2UKGgGR0BxX1Jg9eQdaAdNcgFoCEdAuU5Nn8Koh3V9lChoBkdAbQLWSU1Q7GgHS/NoCEdAuU6D4N7SiXV9lChoBkdAc0wQfZElV2gHS/9oCEdAuU6R9c8klnV9lChoBkdAccOY+B6KL2gHTRMBaAhHQLlOmIqLCN11fZQoaAZHQHDYldonKGNoB00KAWgIR0C5TsaNZNfxdX2UKGgGR0Bybrlnyup0aAdNTAFoCEdAuU7THq/ucHV9lChoBkdAcNJzu4PPLWgHS9ZoCEdAuU8W2BreqXV9lChoBkdAcSRxPwd8zGgHS/ZoCEdAuU8eU6gdwXV9lChoBkdAcdcajesPrmgHS/NoCEdAuU9SbiIcinV9lChoBkdAcvli0v4/NmgHS/doCEdAuU9d4Z/CqXV9lChoBkdAcb/ZdOZb6mgHTRABaAhHQLlPXiWmgrZ1fZQoaAZHQHIEQc94eLhoB0v/aAhHQLlPnYA80UJ1fZQoaAZHQHJ5ywbEP2BoB0v6aAhHQLlPpWJJoTR1fZQoaAZHQHF4DB/I8yNoB0vdaAhHQLlPpVxjriV1fZQoaAZHQG2mUfHPu5VoB0veaAhHQLlQE4Irvst1fZQoaAZHQHHUbL+xW1doB0vhaAhHQLlQfhKlHjJ1fZQoaAZHQHBXMMVk+X9oB0vnaAhHQLlQhdHlOoJ1fZQoaAZHQA4CJwbVBldoB0t0aAhHQLlQoNZeRgZ1fZQoaAZHQG77I5o4+8poB00FAWgIR0C5UMI68xsVdX2UKGgGR0ByTJtWMju8aAdNHAFoCEdAuVDEzwc5sHV9lChoBkdAcYs3V09yLmgHTQMBaAhHQLlRFoS+QEJ1fZQoaAZHQHFEGvr4WUNoB00RAWgIR0C5UVjnaFmGdX2UKGgGR0ByQ92Rq46PaAdNAQFoCEdAuVGQJ5VwP3V9lChoBkdAbn3pRGc4HWgHS+NoCEdAuVGXDej2z3V9lChoBkdAb/V/1g6U7mgHTQcBaAhHQLlRrTTfBN51fZQoaAZHQHFSYZl4C6poB00EAWgIR0C5UeyuZCv6dX2UKGgGR0Bx7VdOZb6haAdNGQFoCEdAuVI6glF+eHV9lChoBkdAb3Vn/1g6VGgHS/xoCEdAuVJNuWKMvXV9lChoBkdAccXBeokzGmgHTSEBaAhHQLlSwWYnfEZ1fZQoaAZHQHCq8OCoS+RoB0voaAhHQLlSwP1L8Jl1fZQoaAZHQHDkvddmg8NoB0viaAhHQLlTOHp8neB1fZQoaAZHQHCglfu1F6RoB00UAWgIR0C5U9peeFtbdX2UKGgGR0ByFgcQyylfaAdNBwFoCEdAuVQKPvKEFnV9lChoBkdAcvcmJm/WUmgHTSIBaAhHQLlUO0AcT8J1fZQoaAZHQHH0J2hZha1oB0v/aAhHQLlUUbpeNT91fZQoaAZHQHNvews5GSZoB00kAWgIR0C5VHTnzQNTdX2UKGgGR0BvbSml67d0aAdL52gIR0C5VIHTI/7jdX2UKGgGR0Bx1V5a/yoXaAdL6mgIR0C5VKWyon8bdX2UKGgGR0BxenoIOYplaAdNBAFoCEdAuVTYDA8B/HV9lChoBkdAcoRTRIBikWgHTQsBaAhHQLlVMx+az/p1fZQoaAZHQHFtd/4IrvtoB0vwaAhHQLlVMijL0SR1fZQoaAZHQHLKKfzz3AVoB01IAWgIR0C5VVgjps42dX2UKGgGR0BwvjCMxXXAaAdL1WgIR0C5VVt3wCr+dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "False", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6b65eb6e40f54dd3e186f262fc268c2c6cbba7614e3b27e8f6aceb3f98cee32
3
+ size 147497
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7c2cd9306560>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c2cd93065f0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c2cd9306680>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c2cd9306710>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7c2cd93067a0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7c2cd9306830>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c2cd93068c0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c2cd9306950>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7c2cd93069e0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c2cd9306a70>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c2cd9306b00>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c2cd9306b90>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7c2cd92ba740>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 2015232,
25
+ "_total_timesteps": 2000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1718684935509508497,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJo7xD0PvwG8o4JJvHkwjDyiRFI9jgtrvQAAAAAAAIA/GmvTvvZyaz8wV509VcTLvokdl74aoKY9AAAAAAAAAAAWwoC+Zo5bP+fSPb0qN8K+AMtrvi7pfz0AAAAAAAAAANqsTj7uV+68Sfq1ujS+qjlVMFC+S2MfOgAAgD8AAIA/s6pIPeESvD84hn4+68PTvSR32rxamnU8AAAAAAAAAACTA38+1oHDPlzEoL6EaKO+bz+qPSh0wb0AAAAAAAAAADMZVLzDyV+6o5RLsxYCya9uPoA6GhTNMwAAgD8AAIA/ZrAtPo4Psj/LF+Y+9Rr2vpspTD7b+G0+AAAAAAAAAACzqli963ywPxCedb4ygqa+PP7tvKjn+L0AAAAAAAAAAJoZPjq4/pK5lYYXOTPrITLJ0r+7Q401uAAAgD8AAIA/IK4NPqQacT5NUNO+7Wxpvs6S8L3S9629AAAAAAAAAAAz35q866juPR7ARLxZhoy+mehfvBK3p7wAAAAAAAAAADNgjbwUFZk+Y2wEPRXNq77VGt66CCFlOgAAAAAAAAAAM5spPGoBmz5qCDq8G8Kfvk7lwLyTxea8AAAAAAAAAADNgKs9MANzP9BKSz4YZQa/MnwOPhZegT0AAAAAAAAAAK1dCr7vzCc/T6MmPi6hr74hIJe9qxhuvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.007616000000000067,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVCgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFQPR3NcGGMAWyUS/iMAXSUR0C5QGVdC3PSdX2UKGgGR0BzF+nvUjLTaAdL0WgIR0C5QHFHz6JqdX2UKGgGR0BN0SWqtHQQaAdLuWgIR0C5QJ7PD50sdX2UKGgGR0Bx9Z5prULEaAdNBwFoCEdAuUC3SqlxfnV9lChoBkdAc5Znf2saKmgHS+poCEdAuUDHb9If83V9lChoBkdAcfoO9nK4hGgHTQIBaAhHQLlA2nL7oB91fZQoaAZHQHJl9zfaYeFoB0v5aAhHQLlBAogmqo91fZQoaAZHQG6013+uNgloB0vtaAhHQLlBEODJ2dN1fZQoaAZHQHEiVz6rNnpoB00CAWgIR0C5QSFwcYIjdX2UKGgGR0BwIewLVnVYaAdL6WgIR0C5QSrI91U3dX2UKGgGR0ByhGEeyRjjaAdL4mgIR0C5QVj67/XHdX2UKGgGR0BySuAmReTnaAdL9WgIR0C5QYyHh0hedX2UKGgGR0BwDLRplBhQaAdL4GgIR0C5Qb/mknCwdX2UKGgGR0BUC0Z3s5XEaAdLnWgIR0C5QcLeuV5bdX2UKGgGR0BwO6mygPEsaAdNHwFoCEdAuUIfgiu+y3V9lChoBkdAcYLInjQzDWgHTQkBaAhHQLlCklKbrkd1fZQoaAZHQHHMLJCBwuNoB0vlaAhHQLlCoiTt9hJ1fZQoaAZHQHBprRfF72NoB0veaAhHQLlCvLrX18N1fZQoaAZHQHMnqsIVuaZoB00cAWgIR0C5QvArxy4ndX2UKGgGR0Bzu+yUs4DLaAdL8WgIR0C5Qv7Z8KG+dX2UKGgGR0ByzgT6BRQ8aAdL7GgIR0C5Qx9JFspHdX2UKGgGR0BzP/mbLEDRaAdL7GgIR0C5Q02i+L3sdX2UKGgGR0Bx2iZof0VaaAdL92gIR0C5Q09MsYl6dX2UKGgGR0BypjNOdoWYaAdNJQFoCEdAuUNi9PDYRXV9lChoBkdAcxeEZiuuBGgHTQABaAhHQLlDfCI1tO51fZQoaAZHQHBIjNdJJ5FoB00AAWgIR0C5Q8cXFcY7dX2UKGgGR0ByfvPeHi3oaAdL6mgIR0C5Q9FvMr3CdX2UKGgGR0Bxh/8GcFyJaAdL62gIR0C5RB4GhVU/dX2UKGgGR0BytbH4oJAuaAdNIwFoCEdAuUS9k9U0enV9lChoBkdAcoC1KXfIjmgHTQgBaAhHQLlE6TZQHiZ1fZQoaAZHQHF+ObVjI7xoB0vgaAhHQLlFAdk8Rth1fZQoaAZHQHLXfDYRNAVoB0vnaAhHQLlFUX7tRel1fZQoaAZHQHFSTdgv115oB0v3aAhHQLlFZYcNpdt1fZQoaAZHQHBrb2USqVBoB00DAWgIR0C5RfQG0NSZdX2UKGgGR0ByLHhwVCXyaAdL4WgIR0C5RgBZU1htdX2UKGgGR0ByQ0R3/xUeaAdNCwFoCEdAuUYpj9XLeXV9lChoBkdAceTnmq5sj2gHTQIBaAhHQLlGN0h/y5J1fZQoaAZHQG+HSVnmJWNoB0voaAhHQLlGUkona391fZQoaAZHQG+OuDjBEa5oB0v6aAhHQLlGWglWwNd1fZQoaAZHQHF52etjkMloB0vqaAhHQLlLTy5Zr591fZQoaAZHQHAd0rwvxpdoB00pAWgIR0C5S4hXCCSSdX2UKGgGR0Bx3FAbADaHaAdNIgFoCEdAuUvSPMjeK3V9lChoBkdAbwhJFLFn7GgHTQ8BaAhHQLlL5bR4QjF1fZQoaAZHQHMv9ga3qiZoB0v3aAhHQLlMKK9wm3R1fZQoaAZHQHGLnhXKbKBoB0vzaAhHQLlMQutwJgN1fZQoaAZHQHCEQNwzch1oB0vzaAhHQLlMUrNW2gF1fZQoaAZHQGJksuOCGvhoB03oA2gIR0C5TF/JeVs2dX2UKGgGR0Bxl9oCdSVGaAdL42gIR0C5TGz5CWu6dX2UKGgGR0BxrnoTwlSkaAdL8mgIR0C5TPEaZQYUdX2UKGgGR0BucGP5pJwsaAdL6mgIR0C5TPhrJr+HdX2UKGgGR0BxvXxCpm29aAdL/WgIR0C5TS8H8jzJdX2UKGgGR0BwWX04BFNMaAdNQQFoCEdAuU0yEf1YhnV9lChoBkdAcNeiwjdHlWgHTRIBaAhHQLlNNRzzVc51fZQoaAZHQHMDgiiZfD1oB00PAWgIR0C5TWfM8ox6dX2UKGgGR0BwcFcs189faAdL+2gIR0C5TXlrAP/adX2UKGgGR0By2XHmzSkTaAdL/WgIR0C5TbWhdt2tdX2UKGgGR0BzNDp2U0N0aAdL4mgIR0C5Tja8Yht+dX2UKGgGR0BxX1Jg9eQdaAdNcgFoCEdAuU5Nn8Koh3V9lChoBkdAbQLWSU1Q7GgHS/NoCEdAuU6D4N7SiXV9lChoBkdAc0wQfZElV2gHS/9oCEdAuU6R9c8klnV9lChoBkdAccOY+B6KL2gHTRMBaAhHQLlOmIqLCN11fZQoaAZHQHDYldonKGNoB00KAWgIR0C5TsaNZNfxdX2UKGgGR0Bybrlnyup0aAdNTAFoCEdAuU7THq/ucHV9lChoBkdAcNJzu4PPLWgHS9ZoCEdAuU8W2BreqXV9lChoBkdAcSRxPwd8zGgHS/ZoCEdAuU8eU6gdwXV9lChoBkdAcdcajesPrmgHS/NoCEdAuU9SbiIcinV9lChoBkdAcvli0v4/NmgHS/doCEdAuU9d4Z/CqXV9lChoBkdAcb/ZdOZb6mgHTRABaAhHQLlPXiWmgrZ1fZQoaAZHQHIEQc94eLhoB0v/aAhHQLlPnYA80UJ1fZQoaAZHQHJ5ywbEP2BoB0v6aAhHQLlPpWJJoTR1fZQoaAZHQHF4DB/I8yNoB0vdaAhHQLlPpVxjriV1fZQoaAZHQG2mUfHPu5VoB0veaAhHQLlQE4Irvst1fZQoaAZHQHHUbL+xW1doB0vhaAhHQLlQfhKlHjJ1fZQoaAZHQHBXMMVk+X9oB0vnaAhHQLlQhdHlOoJ1fZQoaAZHQA4CJwbVBldoB0t0aAhHQLlQoNZeRgZ1fZQoaAZHQG77I5o4+8poB00FAWgIR0C5UMI68xsVdX2UKGgGR0ByTJtWMju8aAdNHAFoCEdAuVDEzwc5sHV9lChoBkdAcYs3V09yLmgHTQMBaAhHQLlRFoS+QEJ1fZQoaAZHQHFEGvr4WUNoB00RAWgIR0C5UVjnaFmGdX2UKGgGR0ByQ92Rq46PaAdNAQFoCEdAuVGQJ5VwP3V9lChoBkdAbn3pRGc4HWgHS+NoCEdAuVGXDej2z3V9lChoBkdAb/V/1g6U7mgHTQcBaAhHQLlRrTTfBN51fZQoaAZHQHFSYZl4C6poB00EAWgIR0C5UeyuZCv6dX2UKGgGR0Bx7VdOZb6haAdNGQFoCEdAuVI6glF+eHV9lChoBkdAb3Vn/1g6VGgHS/xoCEdAuVJNuWKMvXV9lChoBkdAccXBeokzGmgHTSEBaAhHQLlSwWYnfEZ1fZQoaAZHQHCq8OCoS+RoB0voaAhHQLlSwP1L8Jl1fZQoaAZHQHDkvddmg8NoB0viaAhHQLlTOHp8neB1fZQoaAZHQHCglfu1F6RoB00UAWgIR0C5U9peeFtbdX2UKGgGR0ByFgcQyylfaAdNBwFoCEdAuVQKPvKEFnV9lChoBkdAcvcmJm/WUmgHTSIBaAhHQLlUO0AcT8J1fZQoaAZHQHH0J2hZha1oB0v/aAhHQLlUUbpeNT91fZQoaAZHQHNvews5GSZoB00kAWgIR0C5VHTnzQNTdX2UKGgGR0BvbSml67d0aAdL52gIR0C5VIHTI/7jdX2UKGgGR0Bx1V5a/yoXaAdL6mgIR0C5VKWyon8bdX2UKGgGR0BxenoIOYplaAdNBAFoCEdAuVTYDA8B/HV9lChoBkdAcoRTRIBikWgHTQsBaAhHQLlVMx+az/p1fZQoaAZHQHFtd/4IrvtoB0vwaAhHQLlVMijL0SR1fZQoaAZHQHLKKfzz3AVoB01IAWgIR0C5VVgjps42dX2UKGgGR0BwvjCMxXXAaAdL1WgIR0C5VVt3wCr+dWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 492,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a55764a7ee59dacdee8dc5c03a62c56bba22c0bae10e478217ed1052b1392b0b
3
+ size 87978
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5cd6a0dfeeae1b902390290c65362ce7c54b0478bc576bf5890ee6fae5c9d37
3
+ size 43634
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.3.0+cu121
5
+ - GPU Enabled: False
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (182 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 281.8771029, "std_reward": 12.833702415333976, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-06-18T05:36:47.583009"}