Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 281.88 +/- 12.83
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7c2cd9306560>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c2cd93065f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c2cd9306680>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c2cd9306710>", "_build": "<function ActorCriticPolicy._build at 0x7c2cd93067a0>", "forward": "<function ActorCriticPolicy.forward at 0x7c2cd9306830>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7c2cd93068c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c2cd9306950>", "_predict": "<function ActorCriticPolicy._predict at 0x7c2cd93069e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c2cd9306a70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c2cd9306b00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7c2cd9306b90>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c2cd92ba740>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1718684935509508497, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJo7xD0PvwG8o4JJvHkwjDyiRFI9jgtrvQAAAAAAAIA/GmvTvvZyaz8wV509VcTLvokdl74aoKY9AAAAAAAAAAAWwoC+Zo5bP+fSPb0qN8K+AMtrvi7pfz0AAAAAAAAAANqsTj7uV+68Sfq1ujS+qjlVMFC+S2MfOgAAgD8AAIA/s6pIPeESvD84hn4+68PTvSR32rxamnU8AAAAAAAAAACTA38+1oHDPlzEoL6EaKO+bz+qPSh0wb0AAAAAAAAAADMZVLzDyV+6o5RLsxYCya9uPoA6GhTNMwAAgD8AAIA/ZrAtPo4Psj/LF+Y+9Rr2vpspTD7b+G0+AAAAAAAAAACzqli963ywPxCedb4ygqa+PP7tvKjn+L0AAAAAAAAAAJoZPjq4/pK5lYYXOTPrITLJ0r+7Q401uAAAgD8AAIA/IK4NPqQacT5NUNO+7Wxpvs6S8L3S9629AAAAAAAAAAAz35q866juPR7ARLxZhoy+mehfvBK3p7wAAAAAAAAAADNgjbwUFZk+Y2wEPRXNq77VGt66CCFlOgAAAAAAAAAAM5spPGoBmz5qCDq8G8Kfvk7lwLyTxea8AAAAAAAAAADNgKs9MANzP9BKSz4YZQa/MnwOPhZegT0AAAAAAAAAAK1dCr7vzCc/T6MmPi6hr74hIJe9qxhuvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVCgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFQPR3NcGGMAWyUS/iMAXSUR0C5QGVdC3PSdX2UKGgGR0BzF+nvUjLTaAdL0WgIR0C5QHFHz6JqdX2UKGgGR0BN0SWqtHQQaAdLuWgIR0C5QJ7PD50sdX2UKGgGR0Bx9Z5prULEaAdNBwFoCEdAuUC3SqlxfnV9lChoBkdAc5Znf2saKmgHS+poCEdAuUDHb9If83V9lChoBkdAcfoO9nK4hGgHTQIBaAhHQLlA2nL7oB91fZQoaAZHQHJl9zfaYeFoB0v5aAhHQLlBAogmqo91fZQoaAZHQG6013+uNgloB0vtaAhHQLlBEODJ2dN1fZQoaAZHQHEiVz6rNnpoB00CAWgIR0C5QSFwcYIjdX2UKGgGR0BwIewLVnVYaAdL6WgIR0C5QSrI91U3dX2UKGgGR0ByhGEeyRjjaAdL4mgIR0C5QVj67/XHdX2UKGgGR0BySuAmReTnaAdL9WgIR0C5QYyHh0hedX2UKGgGR0BwDLRplBhQaAdL4GgIR0C5Qb/mknCwdX2UKGgGR0BUC0Z3s5XEaAdLnWgIR0C5QcLeuV5bdX2UKGgGR0BwO6mygPEsaAdNHwFoCEdAuUIfgiu+y3V9lChoBkdAcYLInjQzDWgHTQkBaAhHQLlCklKbrkd1fZQoaAZHQHHMLJCBwuNoB0vlaAhHQLlCoiTt9hJ1fZQoaAZHQHBprRfF72NoB0veaAhHQLlCvLrX18N1fZQoaAZHQHMnqsIVuaZoB00cAWgIR0C5QvArxy4ndX2UKGgGR0Bzu+yUs4DLaAdL8WgIR0C5Qv7Z8KG+dX2UKGgGR0ByzgT6BRQ8aAdL7GgIR0C5Qx9JFspHdX2UKGgGR0BzP/mbLEDRaAdL7GgIR0C5Q02i+L3sdX2UKGgGR0Bx2iZof0VaaAdL92gIR0C5Q09MsYl6dX2UKGgGR0BypjNOdoWYaAdNJQFoCEdAuUNi9PDYRXV9lChoBkdAcxeEZiuuBGgHTQABaAhHQLlDfCI1tO51fZQoaAZHQHBIjNdJJ5FoB00AAWgIR0C5Q8cXFcY7dX2UKGgGR0ByfvPeHi3oaAdL6mgIR0C5Q9FvMr3CdX2UKGgGR0Bxh/8GcFyJaAdL62gIR0C5RB4GhVU/dX2UKGgGR0BytbH4oJAuaAdNIwFoCEdAuUS9k9U0enV9lChoBkdAcoC1KXfIjmgHTQgBaAhHQLlE6TZQHiZ1fZQoaAZHQHF+ObVjI7xoB0vgaAhHQLlFAdk8Rth1fZQoaAZHQHLXfDYRNAVoB0vnaAhHQLlFUX7tRel1fZQoaAZHQHFSTdgv115oB0v3aAhHQLlFZYcNpdt1fZQoaAZHQHBrb2USqVBoB00DAWgIR0C5RfQG0NSZdX2UKGgGR0ByLHhwVCXyaAdL4WgIR0C5RgBZU1htdX2UKGgGR0ByQ0R3/xUeaAdNCwFoCEdAuUYpj9XLeXV9lChoBkdAceTnmq5sj2gHTQIBaAhHQLlGN0h/y5J1fZQoaAZHQG+HSVnmJWNoB0voaAhHQLlGUkona391fZQoaAZHQG+OuDjBEa5oB0v6aAhHQLlGWglWwNd1fZQoaAZHQHF52etjkMloB0vqaAhHQLlLTy5Zr591fZQoaAZHQHAd0rwvxpdoB00pAWgIR0C5S4hXCCSSdX2UKGgGR0Bx3FAbADaHaAdNIgFoCEdAuUvSPMjeK3V9lChoBkdAbwhJFLFn7GgHTQ8BaAhHQLlL5bR4QjF1fZQoaAZHQHMv9ga3qiZoB0v3aAhHQLlMKK9wm3R1fZQoaAZHQHGLnhXKbKBoB0vzaAhHQLlMQutwJgN1fZQoaAZHQHCEQNwzch1oB0vzaAhHQLlMUrNW2gF1fZQoaAZHQGJksuOCGvhoB03oA2gIR0C5TF/JeVs2dX2UKGgGR0Bxl9oCdSVGaAdL42gIR0C5TGz5CWu6dX2UKGgGR0BxrnoTwlSkaAdL8mgIR0C5TPEaZQYUdX2UKGgGR0BucGP5pJwsaAdL6mgIR0C5TPhrJr+HdX2UKGgGR0BxvXxCpm29aAdL/WgIR0C5TS8H8jzJdX2UKGgGR0BwWX04BFNMaAdNQQFoCEdAuU0yEf1YhnV9lChoBkdAcNeiwjdHlWgHTRIBaAhHQLlNNRzzVc51fZQoaAZHQHMDgiiZfD1oB00PAWgIR0C5TWfM8ox6dX2UKGgGR0BwcFcs189faAdL+2gIR0C5TXlrAP/adX2UKGgGR0By2XHmzSkTaAdL/WgIR0C5TbWhdt2tdX2UKGgGR0BzNDp2U0N0aAdL4mgIR0C5Tja8Yht+dX2UKGgGR0BxX1Jg9eQdaAdNcgFoCEdAuU5Nn8Koh3V9lChoBkdAbQLWSU1Q7GgHS/NoCEdAuU6D4N7SiXV9lChoBkdAc0wQfZElV2gHS/9oCEdAuU6R9c8klnV9lChoBkdAccOY+B6KL2gHTRMBaAhHQLlOmIqLCN11fZQoaAZHQHDYldonKGNoB00KAWgIR0C5TsaNZNfxdX2UKGgGR0Bybrlnyup0aAdNTAFoCEdAuU7THq/ucHV9lChoBkdAcNJzu4PPLWgHS9ZoCEdAuU8W2BreqXV9lChoBkdAcSRxPwd8zGgHS/ZoCEdAuU8eU6gdwXV9lChoBkdAcdcajesPrmgHS/NoCEdAuU9SbiIcinV9lChoBkdAcvli0v4/NmgHS/doCEdAuU9d4Z/CqXV9lChoBkdAcb/ZdOZb6mgHTRABaAhHQLlPXiWmgrZ1fZQoaAZHQHIEQc94eLhoB0v/aAhHQLlPnYA80UJ1fZQoaAZHQHJ5ywbEP2BoB0v6aAhHQLlPpWJJoTR1fZQoaAZHQHF4DB/I8yNoB0vdaAhHQLlPpVxjriV1fZQoaAZHQG2mUfHPu5VoB0veaAhHQLlQE4Irvst1fZQoaAZHQHHUbL+xW1doB0vhaAhHQLlQfhKlHjJ1fZQoaAZHQHBXMMVk+X9oB0vnaAhHQLlQhdHlOoJ1fZQoaAZHQA4CJwbVBldoB0t0aAhHQLlQoNZeRgZ1fZQoaAZHQG77I5o4+8poB00FAWgIR0C5UMI68xsVdX2UKGgGR0ByTJtWMju8aAdNHAFoCEdAuVDEzwc5sHV9lChoBkdAcYs3V09yLmgHTQMBaAhHQLlRFoS+QEJ1fZQoaAZHQHFEGvr4WUNoB00RAWgIR0C5UVjnaFmGdX2UKGgGR0ByQ92Rq46PaAdNAQFoCEdAuVGQJ5VwP3V9lChoBkdAbn3pRGc4HWgHS+NoCEdAuVGXDej2z3V9lChoBkdAb/V/1g6U7mgHTQcBaAhHQLlRrTTfBN51fZQoaAZHQHFSYZl4C6poB00EAWgIR0C5UeyuZCv6dX2UKGgGR0Bx7VdOZb6haAdNGQFoCEdAuVI6glF+eHV9lChoBkdAb3Vn/1g6VGgHS/xoCEdAuVJNuWKMvXV9lChoBkdAccXBeokzGmgHTSEBaAhHQLlSwWYnfEZ1fZQoaAZHQHCq8OCoS+RoB0voaAhHQLlSwP1L8Jl1fZQoaAZHQHDkvddmg8NoB0viaAhHQLlTOHp8neB1fZQoaAZHQHCglfu1F6RoB00UAWgIR0C5U9peeFtbdX2UKGgGR0ByFgcQyylfaAdNBwFoCEdAuVQKPvKEFnV9lChoBkdAcvcmJm/WUmgHTSIBaAhHQLlUO0AcT8J1fZQoaAZHQHH0J2hZha1oB0v/aAhHQLlUUbpeNT91fZQoaAZHQHNvews5GSZoB00kAWgIR0C5VHTnzQNTdX2UKGgGR0BvbSml67d0aAdL52gIR0C5VIHTI/7jdX2UKGgGR0Bx1V5a/yoXaAdL6mgIR0C5VKWyon8bdX2UKGgGR0BxenoIOYplaAdNBAFoCEdAuVTYDA8B/HV9lChoBkdAcoRTRIBikWgHTQsBaAhHQLlVMx+az/p1fZQoaAZHQHFtd/4IrvtoB0vwaAhHQLlVMijL0SR1fZQoaAZHQHLKKfzz3AVoB01IAWgIR0C5VVgjps42dX2UKGgGR0BwvjCMxXXAaAdL1WgIR0C5VVt3wCr+dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "False", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d6b65eb6e40f54dd3e186f262fc268c2c6cbba7614e3b27e8f6aceb3f98cee32
|
3 |
+
size 147497
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7c2cd9306560>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7c2cd93065f0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7c2cd9306680>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7c2cd9306710>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7c2cd93067a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7c2cd9306830>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7c2cd93068c0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7c2cd9306950>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7c2cd93069e0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7c2cd9306a70>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7c2cd9306b00>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7c2cd9306b90>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7c2cd92ba740>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 2015232,
|
25 |
+
"_total_timesteps": 2000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1718684935509508497,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJo7xD0PvwG8o4JJvHkwjDyiRFI9jgtrvQAAAAAAAIA/GmvTvvZyaz8wV509VcTLvokdl74aoKY9AAAAAAAAAAAWwoC+Zo5bP+fSPb0qN8K+AMtrvi7pfz0AAAAAAAAAANqsTj7uV+68Sfq1ujS+qjlVMFC+S2MfOgAAgD8AAIA/s6pIPeESvD84hn4+68PTvSR32rxamnU8AAAAAAAAAACTA38+1oHDPlzEoL6EaKO+bz+qPSh0wb0AAAAAAAAAADMZVLzDyV+6o5RLsxYCya9uPoA6GhTNMwAAgD8AAIA/ZrAtPo4Psj/LF+Y+9Rr2vpspTD7b+G0+AAAAAAAAAACzqli963ywPxCedb4ygqa+PP7tvKjn+L0AAAAAAAAAAJoZPjq4/pK5lYYXOTPrITLJ0r+7Q401uAAAgD8AAIA/IK4NPqQacT5NUNO+7Wxpvs6S8L3S9629AAAAAAAAAAAz35q866juPR7ARLxZhoy+mehfvBK3p7wAAAAAAAAAADNgjbwUFZk+Y2wEPRXNq77VGt66CCFlOgAAAAAAAAAAM5spPGoBmz5qCDq8G8Kfvk7lwLyTxea8AAAAAAAAAADNgKs9MANzP9BKSz4YZQa/MnwOPhZegT0AAAAAAAAAAK1dCr7vzCc/T6MmPi6hr74hIJe9qxhuvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.007616000000000067,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVCgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFQPR3NcGGMAWyUS/iMAXSUR0C5QGVdC3PSdX2UKGgGR0BzF+nvUjLTaAdL0WgIR0C5QHFHz6JqdX2UKGgGR0BN0SWqtHQQaAdLuWgIR0C5QJ7PD50sdX2UKGgGR0Bx9Z5prULEaAdNBwFoCEdAuUC3SqlxfnV9lChoBkdAc5Znf2saKmgHS+poCEdAuUDHb9If83V9lChoBkdAcfoO9nK4hGgHTQIBaAhHQLlA2nL7oB91fZQoaAZHQHJl9zfaYeFoB0v5aAhHQLlBAogmqo91fZQoaAZHQG6013+uNgloB0vtaAhHQLlBEODJ2dN1fZQoaAZHQHEiVz6rNnpoB00CAWgIR0C5QSFwcYIjdX2UKGgGR0BwIewLVnVYaAdL6WgIR0C5QSrI91U3dX2UKGgGR0ByhGEeyRjjaAdL4mgIR0C5QVj67/XHdX2UKGgGR0BySuAmReTnaAdL9WgIR0C5QYyHh0hedX2UKGgGR0BwDLRplBhQaAdL4GgIR0C5Qb/mknCwdX2UKGgGR0BUC0Z3s5XEaAdLnWgIR0C5QcLeuV5bdX2UKGgGR0BwO6mygPEsaAdNHwFoCEdAuUIfgiu+y3V9lChoBkdAcYLInjQzDWgHTQkBaAhHQLlCklKbrkd1fZQoaAZHQHHMLJCBwuNoB0vlaAhHQLlCoiTt9hJ1fZQoaAZHQHBprRfF72NoB0veaAhHQLlCvLrX18N1fZQoaAZHQHMnqsIVuaZoB00cAWgIR0C5QvArxy4ndX2UKGgGR0Bzu+yUs4DLaAdL8WgIR0C5Qv7Z8KG+dX2UKGgGR0ByzgT6BRQ8aAdL7GgIR0C5Qx9JFspHdX2UKGgGR0BzP/mbLEDRaAdL7GgIR0C5Q02i+L3sdX2UKGgGR0Bx2iZof0VaaAdL92gIR0C5Q09MsYl6dX2UKGgGR0BypjNOdoWYaAdNJQFoCEdAuUNi9PDYRXV9lChoBkdAcxeEZiuuBGgHTQABaAhHQLlDfCI1tO51fZQoaAZHQHBIjNdJJ5FoB00AAWgIR0C5Q8cXFcY7dX2UKGgGR0ByfvPeHi3oaAdL6mgIR0C5Q9FvMr3CdX2UKGgGR0Bxh/8GcFyJaAdL62gIR0C5RB4GhVU/dX2UKGgGR0BytbH4oJAuaAdNIwFoCEdAuUS9k9U0enV9lChoBkdAcoC1KXfIjmgHTQgBaAhHQLlE6TZQHiZ1fZQoaAZHQHF+ObVjI7xoB0vgaAhHQLlFAdk8Rth1fZQoaAZHQHLXfDYRNAVoB0vnaAhHQLlFUX7tRel1fZQoaAZHQHFSTdgv115oB0v3aAhHQLlFZYcNpdt1fZQoaAZHQHBrb2USqVBoB00DAWgIR0C5RfQG0NSZdX2UKGgGR0ByLHhwVCXyaAdL4WgIR0C5RgBZU1htdX2UKGgGR0ByQ0R3/xUeaAdNCwFoCEdAuUYpj9XLeXV9lChoBkdAceTnmq5sj2gHTQIBaAhHQLlGN0h/y5J1fZQoaAZHQG+HSVnmJWNoB0voaAhHQLlGUkona391fZQoaAZHQG+OuDjBEa5oB0v6aAhHQLlGWglWwNd1fZQoaAZHQHF52etjkMloB0vqaAhHQLlLTy5Zr591fZQoaAZHQHAd0rwvxpdoB00pAWgIR0C5S4hXCCSSdX2UKGgGR0Bx3FAbADaHaAdNIgFoCEdAuUvSPMjeK3V9lChoBkdAbwhJFLFn7GgHTQ8BaAhHQLlL5bR4QjF1fZQoaAZHQHMv9ga3qiZoB0v3aAhHQLlMKK9wm3R1fZQoaAZHQHGLnhXKbKBoB0vzaAhHQLlMQutwJgN1fZQoaAZHQHCEQNwzch1oB0vzaAhHQLlMUrNW2gF1fZQoaAZHQGJksuOCGvhoB03oA2gIR0C5TF/JeVs2dX2UKGgGR0Bxl9oCdSVGaAdL42gIR0C5TGz5CWu6dX2UKGgGR0BxrnoTwlSkaAdL8mgIR0C5TPEaZQYUdX2UKGgGR0BucGP5pJwsaAdL6mgIR0C5TPhrJr+HdX2UKGgGR0BxvXxCpm29aAdL/WgIR0C5TS8H8jzJdX2UKGgGR0BwWX04BFNMaAdNQQFoCEdAuU0yEf1YhnV9lChoBkdAcNeiwjdHlWgHTRIBaAhHQLlNNRzzVc51fZQoaAZHQHMDgiiZfD1oB00PAWgIR0C5TWfM8ox6dX2UKGgGR0BwcFcs189faAdL+2gIR0C5TXlrAP/adX2UKGgGR0By2XHmzSkTaAdL/WgIR0C5TbWhdt2tdX2UKGgGR0BzNDp2U0N0aAdL4mgIR0C5Tja8Yht+dX2UKGgGR0BxX1Jg9eQdaAdNcgFoCEdAuU5Nn8Koh3V9lChoBkdAbQLWSU1Q7GgHS/NoCEdAuU6D4N7SiXV9lChoBkdAc0wQfZElV2gHS/9oCEdAuU6R9c8klnV9lChoBkdAccOY+B6KL2gHTRMBaAhHQLlOmIqLCN11fZQoaAZHQHDYldonKGNoB00KAWgIR0C5TsaNZNfxdX2UKGgGR0Bybrlnyup0aAdNTAFoCEdAuU7THq/ucHV9lChoBkdAcNJzu4PPLWgHS9ZoCEdAuU8W2BreqXV9lChoBkdAcSRxPwd8zGgHS/ZoCEdAuU8eU6gdwXV9lChoBkdAcdcajesPrmgHS/NoCEdAuU9SbiIcinV9lChoBkdAcvli0v4/NmgHS/doCEdAuU9d4Z/CqXV9lChoBkdAcb/ZdOZb6mgHTRABaAhHQLlPXiWmgrZ1fZQoaAZHQHIEQc94eLhoB0v/aAhHQLlPnYA80UJ1fZQoaAZHQHJ5ywbEP2BoB0v6aAhHQLlPpWJJoTR1fZQoaAZHQHF4DB/I8yNoB0vdaAhHQLlPpVxjriV1fZQoaAZHQG2mUfHPu5VoB0veaAhHQLlQE4Irvst1fZQoaAZHQHHUbL+xW1doB0vhaAhHQLlQfhKlHjJ1fZQoaAZHQHBXMMVk+X9oB0vnaAhHQLlQhdHlOoJ1fZQoaAZHQA4CJwbVBldoB0t0aAhHQLlQoNZeRgZ1fZQoaAZHQG77I5o4+8poB00FAWgIR0C5UMI68xsVdX2UKGgGR0ByTJtWMju8aAdNHAFoCEdAuVDEzwc5sHV9lChoBkdAcYs3V09yLmgHTQMBaAhHQLlRFoS+QEJ1fZQoaAZHQHFEGvr4WUNoB00RAWgIR0C5UVjnaFmGdX2UKGgGR0ByQ92Rq46PaAdNAQFoCEdAuVGQJ5VwP3V9lChoBkdAbn3pRGc4HWgHS+NoCEdAuVGXDej2z3V9lChoBkdAb/V/1g6U7mgHTQcBaAhHQLlRrTTfBN51fZQoaAZHQHFSYZl4C6poB00EAWgIR0C5UeyuZCv6dX2UKGgGR0Bx7VdOZb6haAdNGQFoCEdAuVI6glF+eHV9lChoBkdAb3Vn/1g6VGgHS/xoCEdAuVJNuWKMvXV9lChoBkdAccXBeokzGmgHTSEBaAhHQLlSwWYnfEZ1fZQoaAZHQHCq8OCoS+RoB0voaAhHQLlSwP1L8Jl1fZQoaAZHQHDkvddmg8NoB0viaAhHQLlTOHp8neB1fZQoaAZHQHCglfu1F6RoB00UAWgIR0C5U9peeFtbdX2UKGgGR0ByFgcQyylfaAdNBwFoCEdAuVQKPvKEFnV9lChoBkdAcvcmJm/WUmgHTSIBaAhHQLlUO0AcT8J1fZQoaAZHQHH0J2hZha1oB0v/aAhHQLlUUbpeNT91fZQoaAZHQHNvews5GSZoB00kAWgIR0C5VHTnzQNTdX2UKGgGR0BvbSml67d0aAdL52gIR0C5VIHTI/7jdX2UKGgGR0Bx1V5a/yoXaAdL6mgIR0C5VKWyon8bdX2UKGgGR0BxenoIOYplaAdNBAFoCEdAuVTYDA8B/HV9lChoBkdAcoRTRIBikWgHTQsBaAhHQLlVMx+az/p1fZQoaAZHQHFtd/4IrvtoB0vwaAhHQLlVMijL0SR1fZQoaAZHQHLKKfzz3AVoB01IAWgIR0C5VVgjps42dX2UKGgGR0BwvjCMxXXAaAdL1WgIR0C5VVt3wCr+dWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 492,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a55764a7ee59dacdee8dc5c03a62c56bba22c0bae10e478217ed1052b1392b0b
|
3 |
+
size 87978
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f5cd6a0dfeeae1b902390290c65362ce7c54b0478bc576bf5890ee6fae5c9d37
|
3 |
+
size 43634
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.3.0+cu121
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (182 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 281.8771029, "std_reward": 12.833702415333976, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-06-18T05:36:47.583009"}
|