Raincleared
commited on
Commit
•
d9c623b
1
Parent(s):
be0aa7d
Upload 11 files
Browse files- README.md +166 -0
- config.json +33 -0
- configuration_minicpm.py +202 -0
- generation_config.json +7 -0
- modeling_minicpm.py +1467 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +23 -0
- tokenizer.json +0 -0
- tokenizer.model +3 -0
- tokenizer_config.json +41 -0
README.md
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
- zh
|
5 |
+
tags:
|
6 |
+
- MiniCPM
|
7 |
+
- ModelBest
|
8 |
+
- THUNLP
|
9 |
+
---
|
10 |
+
|
11 |
+
|
12 |
+
# ProSparse-MiniCPM-1B-sft
|
13 |
+
|
14 |
+
- Original model: [MiniCPM-1B-sft-bf16](https://huggingface.co/openbmb/MiniCPM-1B-sft-bf16)
|
15 |
+
- Model creator and fine-tuned by: [ModelBest](https://modelbest.cn/), [OpenBMB](https://huggingface.co/openbmb), and [THUNLP](https://nlp.csai.tsinghua.edu.cn/)
|
16 |
+
- Paper: [link](https://arxiv.org/pdf/2402.13516.pdf)
|
17 |
+
|
18 |
+
### Introduction
|
19 |
+
|
20 |
+
The utilization of activation sparsity, namely the existence of considerable weakly-contributed elements among activation outputs, is a promising method for inference acceleration of large language models (LLMs) ([Liu et al., 2023](https://proceedings.mlr.press/v202/liu23am/liu23am.pdf); [Song et al., 2023](https://arxiv.org/pdf/2312.12456.pdf)). Concretely, acceleration methods based on activation sparsity usually achieve higher inference speed by making wiser resource allocation and computation policies to avoid resource waste on these weakly-contributed parameters.
|
21 |
+
|
22 |
+
Adopting ReLU as the activation function is a straightforward method to achieve activation sparsity. However, most recent mainstream LLMs adopt activation functions without intrinsic sparsity (e.g., GELU and Swish). Some efforts ([Zhang et al., 2022](https://aclanthology.org/2022.findings-acl.71.pdf); [Mirzadeh et al., 2023](https://arxiv.org/pdf/2310.04564.pdf); [Zhang et al., 2024](https://arxiv.org/pdf/2402.03804.pdf)) introduce ReLU or its variants as the substitutive activation function to help non-ReLU LLMs achieve activation sparsity and inference acceleration, but few can concurrently obtain high sparsity and comparable task-specific performance.
|
23 |
+
|
24 |
+
In this work, we introduce a simple and effective sparsification method named "ProSparse" to push LLMs for higher activation sparsity while maintaining comparable performance. By applying ProSparse to Swish-activated LLaMA2-7B, LLaMA2-13B, and MiniCPM-1B, we obtain ReLU-activated models with high sparsity of 89.32%, 88.80%, and 87.89%, respectively, while their performance is comparable to the original version. These present the most sparsely activated models among open-source LLaMA versions and competitive end-size models, considerably surpassing ReluLLaMA-7B (66.98%) and ReluLLaMA-13B (71.56%). Further inference acceleration experiments demonstrate the practical speedup effects of higher sparsity on both [PowerInfer](https://arxiv.org/pdf/2312.12456.pdf) and our two sparse GPU [operators](https://github.com/Raincleared-Song/sparse_gpu_operator).
|
25 |
+
|
26 |
+
### Training Dataset
|
27 |
+
|
28 |
+
We train the 1B model on about 473.02 billion tokens within 101,000 steps. These consist of 35,000 steps for standard ProSparse pre-training, 6,000 steps for decay, and 6,000 steps for SFT. Except for ProSparse, other training settings are highly consistent with the original [MiniCPM-1B](https://huggingface.co/openbmb/MiniCPM-1B-sft-bf16). Refer to our [paper](https://arxiv.org/pdf/2402.13516.pdf) and [MiniCPM technical report](https://arxiv.org/pdf/2404.06395) for more details.
|
29 |
+
|
30 |
+
Intuitively, training the model with even more tokens or with data of a wider coverage and higher quality will obtain better task-specific performance.
|
31 |
+
|
32 |
+
### ProSparse: Training Methodology
|
33 |
+
|
34 |
+
The training process of ProSparse consists of three steps (refer to Section 3.2 of [paper](https://arxiv.org/pdf/2402.13516.pdf) for more details):
|
35 |
+
|
36 |
+
1. **Activation Function Substitution**: We substituting the activation function of FFNs with ReLU and applying continual training;
|
37 |
+
2. **Progressive Sparsity Regularization**: We jointly optimize the model on the conventional next-token prediction loss and \\(L_1\\) regularization loss. The regularization is applied to the sparse intermediate outputs of FFNs with a regularization factor increasing progressively in multiple stages. Specifically, the regularization factor \\(\lambda\\) is set to a small constant for the warmup stage, and then increases along a smooth sine curve for each of the subsequent incremental stages. Each stage is accompanied by certain steps of training. In this way, the model can have more time to adapt to the increasing regularization without radical activation shifts, thus alleviating performance degradation.
|
38 |
+
3. **Activation Threshold Shifting**: We finally replace ReLU with FATReLU ([Kurtz et al., 2020](https://proceedings.mlr.press/v119/kurtz20a/kurtz20a.pdf)), a ReLU variant with a positive threshold. This can prune those non-zero weakly-contributed elements in activation outputs and further boost sparsity.
|
39 |
+
|
40 |
+
The hyper-parameters for each stage (including the regularization factor \\(\lambda_i\\), the accumulated training steps \\(T_i\\), and the accumulated training tokens) are shown as follows:
|
41 |
+
|
42 |
+
| Step Number \\(i\\) | \\(\lambda_i\\) | \\(T_i\\) | Accumulated Tokens (B) |
|
43 |
+
| :-------------: | :---------: | :----: | :--------------------: |
|
44 |
+
| 0 | 0 | 10,000 | 49.15 |
|
45 |
+
| 1 | \\(1e-3\\) | 15,000 | 73.73 |
|
46 |
+
| 2 | \\(5e-3\\) | 20,000 | 98.30 |
|
47 |
+
| 3 | \\(5e-3\\) | 25,000 | 122.88 |
|
48 |
+
| 4 | \\(5e-2\\) | 35,000 | 172.03 |
|
49 |
+
| decay | \\(5e-2\\)(fixed) | 95,000 | 466.94 |
|
50 |
+
| SFT | \\(1e-2\\)(fixed) | 101,000 | 473.02 |
|
51 |
+
|
52 |
+
### Evaluation Results
|
53 |
+
|
54 |
+
The evaluation results on the above benchmarks demonstrate the advantage of ProSparse, which is the only method achieving high sparsity and comparable performance to the original Swish-activated LLaMA2. Note that models under all settings are trained with the same number of tokens on the same mixed dataset. Our evaluation is based on the framework [UltraEval](https://github.com/OpenBMB/UltraEval). The evaluation details are listed as follows:
|
55 |
+
|
56 |
+
- **Code Generation**: We compute the average pass@1 scores on HumanEval (0-shot) and MBPP (3-shot).
|
57 |
+
|
58 |
+
- **Commonsense Reasoning**: We report the average 0-shot accuracies on PIQA, SIQA, HellaSwag, WinoGrande, and COPA.
|
59 |
+
|
60 |
+
- **Reading Comprehension**: We compute the average 0-shot accuracies on BoolQ, LAMBADA, and TyDi QA.
|
61 |
+
|
62 |
+
- **Other Popular Benchmarks**: We report the average accuracies on GSM8K (8-shot), MMLU (5-shot), Big Bench Hard (BBH) (3-shot), and AGI-Eval (0-shot).
|
63 |
+
|
64 |
+
**Notes**: For PIQA, SIQA, HellaSwag, WinoGrande, COPA, BoolQ, LAMBADA, TyDi QA, and AGI-Eval, we obtain the predicted answers based on maximized perplexity. For GSM8K, MMLU, and BBH, the predicted answers are directly generated.
|
65 |
+
|
66 |
+
| Setting | Code<br>Generation | Commonsense<br>Reasoning | Reading<br>Comprehension | GSM8K | MMLU | BBH | AGI Eval | Average<br>Performance | Average<br>Sparsity |
|
67 |
+
| :-------------------: | :----------------: | :----------------------: | :----------------------: | :---: | :---: | :---: | :---------: | :-----: | :-----------------: |
|
68 |
+
| LLaMA2-7B | 16.37 | 69.59 | 61.87 | 12.96 | 44.45 | 32.96 | 27.53 | 37.96 | - |
|
69 |
+
| ReluLLaMA-7B | 15.85 | 69.64 | 70.54 | 5.84 | 38.64 | 35.07 | 27.73 | 37.62 | 66.98 |
|
70 |
+
| **ProSparse-7B**\* | 19.47 | 66.29 | 63.33 | 12.74 | 45.21 | 33.59 | 27.55 | 38.31 | 88.11 |
|
71 |
+
| **ProSparse-7B** | 19.42 | 66.27 | 63.50 | 12.13 | 45.48 | 34.99 | 27.46 | **38.46** | **89.32** |
|
72 |
+
| LLaMA2-13B | 20.19 | 72.58 | 71.55 | 22.21 | 54.69 | 37.89 | 29.33 | 44.06 | - |
|
73 |
+
| ReluLLaMA-13B | 20.19 | 70.44 | 73.29 | 18.50 | 50.58 | 37.97 | 28.22 | 42.74 | 71.56 |
|
74 |
+
| **ProSparse-13B**\* | 29.03 | 69.75 | 67.54 | 25.40 | 54.78 | 40.20 | 28.76 | **45.07** | 87.97 |
|
75 |
+
| **ProSparse-13B** | 28.42 | 69.76 | 66.91 | 26.31 | 54.35 | 39.90 | 28.67 | 44.90 | **88.80** |
|
76 |
+
| MiniCPM-1B | 36.85 | 63.67 | 60.90 | 35.48 | 50.44 | 35.03 | 28.71 | 44.44 | - |
|
77 |
+
| **ProSparse-1B**\* | 41.38 | 64.55 | 60.69 | 34.72 | 49.36 | 34.04 | 28.27 | **44.72** | 86.25 |
|
78 |
+
| **ProSparse-1B** | 42.04 | 64.37 | 60.73 | 34.57 | 49.51 | 34.08 | 27.77 | **44.72** | **87.89** |
|
79 |
+
|
80 |
+
**Notes**: "Original" refers to the original Swish-activated LLaMA2 versions. ReluLLaMA-7B and ReluLLaMA-13B are available at [7B](https://huggingface.co/SparseLLM/ReluLLaMA-7B) and [13B](https://huggingface.co/SparseLLM/ReluLLaMA-13B) respectively. MiniCPM-1B is available at [1B](https://huggingface.co/openbmb/MiniCPM-1B-sft-bf16). "ProSparse-7B\*", "ProSparse-13B\*", and "ProSparse-1B\*" denote the ProSparse versions without activation threshold shifting.
|
81 |
+
|
82 |
+
### Evaluation Issues with LM-Eval
|
83 |
+
|
84 |
+
The above results can be replicated with [UltraEval](https://github.com/OpenBMB/UltraEval). Some abnormal results obtained with other popular frameworks such as [LM-Eval](https://github.com/EleutherAI/lm-evaluation-harness) are probably attributed to the absence of the cls token `<s>`, which is not added by default in LM-Eval. A quick temporary fix is shown in the following codes. Other differences in evaluation results may be caused by other reasons, including the few-shot settings, data pre-processing, and extra prompts.
|
85 |
+
|
86 |
+
```python
|
87 |
+
# https://github.com/EleutherAI/lm-evaluation-harness/blob/main/lm_eval/models/huggingface.py#L945
|
88 |
+
for _, context_enc, continuation_enc in chunk:
|
89 |
+
# sanity check
|
90 |
+
assert len(context_enc) > 0
|
91 |
+
# Note: a trivial fix here
|
92 |
+
if context_enc[0] != 1:
|
93 |
+
context_enc = [1] + context_enc
|
94 |
+
assert len(continuation_enc) > 0
|
95 |
+
assert len(continuation_enc) <= self.max_length
|
96 |
+
```
|
97 |
+
|
98 |
+
Here are the steps to adapting the original [vLLM](https://github.com/vllm-project/vllm) to ProSparse LLaMA models.
|
99 |
+
|
100 |
+
1. Replace the file [vllm/model_executor/models/llama.py](https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/models/llama.py) in original vLLM with this [file](https://github.com/Raincleared-Song/DejaVu_predictor/blob/main/llama.py).
|
101 |
+
2. Replace the contents of the original [config.json](https://huggingface.co/SparseLLM/prosparse-llama-2-7b/blob/main/config.json) with this [file](https://github.com/Raincleared-Song/DejaVu_predictor/blob/main/config.json).
|
102 |
+
3. Set the environment variable `ACT_INFO`. To test the version without activation threshold shifting, `export ACT_INFO=relu`. To test the version with activation threshold shifting, `export ACT_INFO=fatrelu_0.01`.
|
103 |
+
|
104 |
+
### Inference Acceleration Effects
|
105 |
+
|
106 |
+
First, we utilize [PowerInfer](https://arxiv.org/pdf/2312.12456.pdf), a state-of-the-art acceleration framework leveraging activation sparsity. As its inference speed and accuracy heavily rely on the performance of activation predictors, we report the activation recall and predicted sparsity (i.e., two key metrics for evaluating the activation predictor) as well as the number of tokens generated per second by PowerInfer (with one A100 GPU and sufficient CPUs). The GGUF files and activation predictors are also available for ProSparse LLaMA models.
|
107 |
+
|
108 |
+
Moreover, considering the potential inference inaccuracies caused by wrong predictions of activation predictors, we implement two sparse GPU [operators](https://github.com/Raincleared-Song/sparse_gpu_operator) for faster accurate inference utilizing activation sparsity. They are responsible for the speedup of two key steps in a gated FFN:
|
109 |
+
|
110 |
+
- Step (2) (`S2`): a fused operator of ReLU and \\(\mathbf{s} \odot (\mathbf{x} \mathbf{W}_1^T)\\);
|
111 |
+
- Step (3) (`S3`): a sparse matrix-vector multiplication operator \\(\mathbf{x}_1 \mathbf{W}_2^T\\).
|
112 |
+
|
113 |
+
where \\(\mathbf{s}\\), \\(\mathbf{x}\\), \\(\mathbf{x}_1\\), and \\(\odot\\) denote the gating scores, the FFN input hidden states, the intermediate outputs, and the element-wise multiplication respectively. \\(\mathbf{W}_1\\) and \\(\mathbf{W}_2\\) are FFN weight matrices.
|
114 |
+
|
115 |
+
The acceleration effects of LLMs with different sparsity are displayed as follows. ProSparse, which reaches a high sparsity without performance degradation, can gain the most benefits among all the settings concerned. Refer to Section 4.3 of [paper](https://arxiv.org/pdf/2402.13516.pdf) for more details.
|
116 |
+
|
117 |
+
| Setting | Average<br>Sparsity | Activation<br>Recall | Predicted<br>Sparsity | PowerInfer<br>Speed | Speedup<br>to Dense | `S2`<br>Time | Speedup<br>to Dense | `S3`<br/>Time | Speedup<br/>to Dense |
|
118 |
+
| :-------------------: | :-----------------: | :------------------: | :-------------------: | :-----------------: | :-----------------: | :--------------: | :-----------------: | :---------------: | :------------------: |
|
119 |
+
| Dense-7B | - | - | - | 3.67 | 1.00 | 90.55 | 1.00 | 82.92 | 1.00 |
|
120 |
+
| ReluLLaMA-7B | 66.98 | 90.89 | 58.95 | 11.37 | 3.10 | 67.12 | 1.35 | 63.00 | 1.32 |
|
121 |
+
| **ProSparse-7B**\* | 88.11 | **93.46** | 75.24 | **16.30** | **4.44** | 46.66 | 1.94 | 55.56 | 1.49 |
|
122 |
+
| **ProSparse-7B** | **89.32** | 92.34 | **78.75** | - | - | **45.38** | **2.00** | **55.05** | **1.51** |
|
123 |
+
| Dense-13B | - | - | - | 1.92 | 1.00 | 131.36 | 1.00 | 113.68 | 1.00 |
|
124 |
+
| ReluLLaMA-13B | 71.56 | 86.41 | 71.93 | 6.59 | 3.43 | 69.92 | 1.88 | 75.47 | 1.51 |
|
125 |
+
| **ProSparse-13B**\* | 87.97 | 91.02 | 77.93 | **8.67** | **4.52** | 55.29 | 2.38 | 67.50 | 1.68 |
|
126 |
+
| **ProSparse-13B** | **88.80** | **91.11** | **78.28** | - | - | **53.78** | **2.44** | **66.73** | **1.70** |
|
127 |
+
|
128 |
+
**Notes**: For "Dense" settings, the "Inference Speed" is obtained by [llama.cpp](https://github.com/ggerganov/llama.cpp), and the time for steps (2) and (3) is measured without sparse GPU operators. For other sparse settings, the "Inference Speed" is obtained by [PowerInfer](https://arxiv.org/pdf/2312.12456.pdf), and sparse GPU operators are applied. ProSparse settings with activation threshold shifting and the MiniCPM architecture are not supported by PowerInfer at present.
|
129 |
+
|
130 |
+
### Citation
|
131 |
+
|
132 |
+
Please kindly cite using the following BibTeX:
|
133 |
+
|
134 |
+
```bibtex
|
135 |
+
@article{song2024prosparse,
|
136 |
+
title={{ProSparse}: Introducing and Enhancing Intrinsic Activation Sparsity within Large Language Models},
|
137 |
+
author={Song, Chenyang and Han, Xu and Zhang, Zhengyan and Hu, Shengding and Shi, Xiyu and Li, Kuai and Chen, Chen and Liu, Zhiyuan and Li, Guangli and Yang, Tao and Sun, Maosong},
|
138 |
+
year={2024},
|
139 |
+
journal={arXiv preprint arXiv:2402.13516},
|
140 |
+
url={https://arxiv.org/pdf/2402.13516.pdf}
|
141 |
+
}
|
142 |
+
```
|
143 |
+
|
144 |
+
### License
|
145 |
+
|
146 |
+
This repository is released under the [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) License.
|
147 |
+
|
148 |
+
The usage of MiniCPM model weights must strictly follow [the General Model License (GML)](https://github.com/OpenBMB/General-Model-License/blob/main/%E9%80%9A%E7%94%A8%E6%A8%A1%E5%9E%8B%E8%AE%B8%E5%8F%AF%E5%8D%8F%E8%AE%AE-%E6%9D%A5%E6%BA%90%E8%AF%B4%E6%98%8E-%E5%AE%A3%E4%BC%A0%E9%99%90%E5%88%B6-%E5%95%86%E4%B8%9A%E6%8E%88%E6%9D%83.md).
|
149 |
+
|
150 |
+
The models and weights of MiniCPM are completely free for academic research.
|
151 |
+
|
152 |
+
If you intend to utilize the model for commercial purposes, please reach out to [email protected] to obtain the certificate of authorization.
|
153 |
+
|
154 |
+
### Statement
|
155 |
+
|
156 |
+
As a language model, MiniCPM generates content by learning from a vast amount of text.
|
157 |
+
|
158 |
+
However, it does not possess the ability to comprehend or express personal opinions or value judgments.
|
159 |
+
|
160 |
+
Any content generated by MiniCPM does not represent the viewpoints or positions of the model developers.
|
161 |
+
|
162 |
+
Therefore, when using content generated by MiniCPM, users should take full responsibility for evaluating and verifying it on their own.
|
163 |
+
|
164 |
+
#### Acknowledgments
|
165 |
+
|
166 |
+
The model card is modified from [ReluLLaMA-7B](https://huggingface.co/SparseLLM/ReluLLaMA-7B) and [MiniCPM-1B](https://huggingface.co/openbmb/MiniCPM-1B-sft-bf16).
|
config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "SparseLLM/ProSparse-MiniCPM-1B-sft",
|
3 |
+
"architectures": [
|
4 |
+
"MiniCPMForCausalLM"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_minicpm.MiniCPMConfig",
|
8 |
+
"AutoModel": "modeling_minicpm.MiniCPMModel",
|
9 |
+
"AutoModelForCausalLM": "modeling_minicpm.MiniCPMForCausalLM",
|
10 |
+
"AutoModelForSeq2SeqLM": "modeling_minicpm.MiniCPMForCausalLM",
|
11 |
+
"AutoModelForSequenceClassification": "modeling_minicpm.MiniCPMForSequenceClassification"
|
12 |
+
},
|
13 |
+
"bos_token_id": 1,
|
14 |
+
"eos_token_id": 2,
|
15 |
+
"hidden_act": "fatrelu",
|
16 |
+
"hidden_act_param": 0.03,
|
17 |
+
"hidden_size": 1536,
|
18 |
+
"initializer_range": 0.1,
|
19 |
+
"intermediate_size": 3840,
|
20 |
+
"max_position_embeddings": 4096,
|
21 |
+
"num_attention_heads": 24,
|
22 |
+
"num_hidden_layers": 52,
|
23 |
+
"num_key_value_heads": 8,
|
24 |
+
"rms_norm_eps": 1e-05,
|
25 |
+
"rope_scaling": null,
|
26 |
+
"torch_dtype": "bfloat16",
|
27 |
+
"transformers_version": "4.36.0",
|
28 |
+
"use_cache": true,
|
29 |
+
"vocab_size": 73440,
|
30 |
+
"scale_emb": 12,
|
31 |
+
"dim_model_base": 256,
|
32 |
+
"scale_depth": 1.4
|
33 |
+
}
|
configuration_minicpm.py
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" MiniCPM model configuration"""
|
21 |
+
|
22 |
+
from transformers.configuration_utils import PretrainedConfig
|
23 |
+
from transformers.utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
MINICPM_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
29 |
+
|
30 |
+
|
31 |
+
class MiniCPMConfig(PretrainedConfig):
|
32 |
+
r"""
|
33 |
+
This is the configuration class to store the configuration of a [`MiniCPMModel`]. It is used to instantiate an MiniCPM
|
34 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
35 |
+
defaults will yield a similar configuration to that of the MiniCPM-7B.
|
36 |
+
|
37 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
38 |
+
documentation from [`PretrainedConfig`] for more information.
|
39 |
+
|
40 |
+
|
41 |
+
Args:
|
42 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
43 |
+
Vocabulary size of the MiniCPM model. Defines the number of different tokens that can be represented by the
|
44 |
+
`inputs_ids` passed when calling [`MiniCPMModel`]
|
45 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
46 |
+
Dimension of the hidden representations.
|
47 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
48 |
+
Dimension of the MLP representations.
|
49 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
50 |
+
Number of hidden layers in the Transformer decoder.
|
51 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
52 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
53 |
+
num_key_value_heads (`int`, *optional*):
|
54 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
55 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
56 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
57 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
58 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
59 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
60 |
+
`num_attention_heads`.
|
61 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
62 |
+
The non-linear activation function (function or string) in the decoder.
|
63 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
64 |
+
The maximum sequence length that this model might ever be used with. MiniCPM 1 supports up to 2048 tokens,
|
65 |
+
MiniCPM 2 up to 4096, CodeMiniCPM up to 16384.
|
66 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
67 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
68 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
69 |
+
The epsilon used by the rms normalization layers.
|
70 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
71 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
72 |
+
relevant if `config.is_decoder=True`.
|
73 |
+
pad_token_id (`int`, *optional*):
|
74 |
+
Padding token id.
|
75 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
76 |
+
Beginning of stream token id.
|
77 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
78 |
+
End of stream token id.
|
79 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
80 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
81 |
+
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
|
82 |
+
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
83 |
+
issue](https://github.com/pytorch/pytorch/issues/76232).
|
84 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
85 |
+
Whether to tie weight embeddings
|
86 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
87 |
+
The base period of the RoPE embeddings.
|
88 |
+
rope_scaling (`Dict`, *optional*):
|
89 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
90 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
91 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
92 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
93 |
+
these scaling strategies behave:
|
94 |
+
https://www.reddit.com/r/LocalMiniCPM/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
95 |
+
experimental feature, subject to breaking API changes in future versions.
|
96 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
97 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
98 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
99 |
+
The dropout ratio for the attention probabilities.
|
100 |
+
|
101 |
+
```python
|
102 |
+
>>> from transformers import MiniCPMModel, MiniCPMConfig
|
103 |
+
|
104 |
+
>>> # Initializing a MiniCPM minicpm-7b style configuration
|
105 |
+
>>> configuration = MiniCPMConfig()
|
106 |
+
|
107 |
+
>>> # Initializing a model from the minicpm-7b style configuration
|
108 |
+
>>> model = MiniCPMModel(configuration)
|
109 |
+
|
110 |
+
>>> # Accessing the model configuration
|
111 |
+
>>> configuration = model.config
|
112 |
+
```"""
|
113 |
+
|
114 |
+
model_type = "minicpm"
|
115 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
116 |
+
|
117 |
+
def __init__(
|
118 |
+
self,
|
119 |
+
vocab_size=32000,
|
120 |
+
hidden_size=4096,
|
121 |
+
intermediate_size=11008,
|
122 |
+
num_hidden_layers=32,
|
123 |
+
num_attention_heads=32,
|
124 |
+
num_key_value_heads=None,
|
125 |
+
hidden_act="silu",
|
126 |
+
max_position_embeddings=2048,
|
127 |
+
initializer_range=0.02,
|
128 |
+
rms_norm_eps=1e-6,
|
129 |
+
use_cache=True,
|
130 |
+
pad_token_id=None,
|
131 |
+
bos_token_id=1,
|
132 |
+
eos_token_id=2,
|
133 |
+
pretraining_tp=1,
|
134 |
+
tie_word_embeddings=True,
|
135 |
+
rope_theta=10000.0,
|
136 |
+
rope_scaling=None,
|
137 |
+
attention_bias=False,
|
138 |
+
attention_dropout=0.0,
|
139 |
+
scale_emb=1,
|
140 |
+
dim_model_base=1,
|
141 |
+
scale_depth=1,
|
142 |
+
**kwargs,
|
143 |
+
):
|
144 |
+
self.vocab_size = vocab_size
|
145 |
+
self.max_position_embeddings = max_position_embeddings
|
146 |
+
self.hidden_size = hidden_size
|
147 |
+
self.intermediate_size = intermediate_size
|
148 |
+
self.num_hidden_layers = num_hidden_layers
|
149 |
+
self.num_attention_heads = num_attention_heads
|
150 |
+
|
151 |
+
# for backward compatibility
|
152 |
+
if num_key_value_heads is None:
|
153 |
+
num_key_value_heads = num_attention_heads
|
154 |
+
|
155 |
+
self.num_key_value_heads = num_key_value_heads
|
156 |
+
self.hidden_act = hidden_act
|
157 |
+
self.initializer_range = initializer_range
|
158 |
+
self.rms_norm_eps = rms_norm_eps
|
159 |
+
self.pretraining_tp = pretraining_tp
|
160 |
+
self.use_cache = use_cache
|
161 |
+
self.rope_theta = rope_theta
|
162 |
+
self.rope_scaling = rope_scaling
|
163 |
+
self._rope_scaling_validation()
|
164 |
+
self.attention_bias = attention_bias
|
165 |
+
self.attention_dropout = attention_dropout
|
166 |
+
self.scale_emb = scale_emb
|
167 |
+
self.dim_model_base = dim_model_base
|
168 |
+
self.scale_depth = scale_depth
|
169 |
+
|
170 |
+
super().__init__(
|
171 |
+
pad_token_id=pad_token_id,
|
172 |
+
bos_token_id=bos_token_id,
|
173 |
+
eos_token_id=eos_token_id,
|
174 |
+
tie_word_embeddings=tie_word_embeddings,
|
175 |
+
**kwargs,
|
176 |
+
)
|
177 |
+
try:
|
178 |
+
import flash_attn
|
179 |
+
self._attn_implementation = "flash_attention_2"
|
180 |
+
except:
|
181 |
+
pass
|
182 |
+
|
183 |
+
def _rope_scaling_validation(self):
|
184 |
+
"""
|
185 |
+
Validate the `rope_scaling` configuration.
|
186 |
+
"""
|
187 |
+
if self.rope_scaling is None:
|
188 |
+
return
|
189 |
+
|
190 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
191 |
+
raise ValueError(
|
192 |
+
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
193 |
+
f"got {self.rope_scaling}"
|
194 |
+
)
|
195 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
196 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
197 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
198 |
+
raise ValueError(
|
199 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
200 |
+
)
|
201 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
202 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}")
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_sample": true,
|
3 |
+
"top_p": 0.8,
|
4 |
+
"temperature": 0.8,
|
5 |
+
"bos_token_id": 1,
|
6 |
+
"eos_token_id": 2
|
7 |
+
}
|
modeling_minicpm.py
ADDED
@@ -0,0 +1,1467 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" PyTorch MiniCPM model."""
|
21 |
+
import math
|
22 |
+
import warnings
|
23 |
+
from typing import List, Optional, Tuple, Union, Dict
|
24 |
+
|
25 |
+
import torch
|
26 |
+
import torch.nn.functional as F
|
27 |
+
import torch.utils.checkpoint
|
28 |
+
from torch import nn
|
29 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
30 |
+
|
31 |
+
from transformers.activations import ACT2FN
|
32 |
+
from transformers.cache_utils import Cache, DynamicCache
|
33 |
+
from transformers.modeling_attn_mask_utils import (
|
34 |
+
AttentionMaskConverter,
|
35 |
+
_prepare_4d_attention_mask,
|
36 |
+
_prepare_4d_causal_attention_mask,
|
37 |
+
_prepare_4d_causal_attention_mask_for_sdpa,
|
38 |
+
)
|
39 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
|
40 |
+
from transformers.modeling_utils import PreTrainedModel
|
41 |
+
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, is_torch_greater_or_equal_than_1_13
|
42 |
+
from transformers.utils import (
|
43 |
+
add_start_docstrings,
|
44 |
+
add_start_docstrings_to_model_forward,
|
45 |
+
is_flash_attn_2_available,
|
46 |
+
is_flash_attn_greater_or_equal_2_10,
|
47 |
+
logging,
|
48 |
+
replace_return_docstrings,
|
49 |
+
)
|
50 |
+
from transformers.utils.import_utils import is_torch_fx_available
|
51 |
+
from .configuration_minicpm import MiniCPMConfig
|
52 |
+
import re
|
53 |
+
|
54 |
+
try:
|
55 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
56 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
57 |
+
except:
|
58 |
+
pass
|
59 |
+
|
60 |
+
|
61 |
+
# This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
|
62 |
+
# It means that the function will not be traced through and simply appear as a node in the graph.
|
63 |
+
if is_torch_fx_available():
|
64 |
+
if not is_torch_greater_or_equal_than_1_13:
|
65 |
+
import torch.fx
|
66 |
+
|
67 |
+
_prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
|
68 |
+
|
69 |
+
|
70 |
+
logger = logging.get_logger(__name__)
|
71 |
+
|
72 |
+
_CONFIG_FOR_DOC = "MiniCPMConfig"
|
73 |
+
|
74 |
+
|
75 |
+
def _get_unpad_data(attention_mask):
|
76 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
77 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
78 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
79 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
|
80 |
+
return (
|
81 |
+
indices,
|
82 |
+
cu_seqlens,
|
83 |
+
max_seqlen_in_batch,
|
84 |
+
)
|
85 |
+
|
86 |
+
|
87 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
88 |
+
warnings.warn(
|
89 |
+
"Calling `transformers.models.minicpm.modeling_minicpm._prepare_4d_attention_mask` is deprecated and will be removed in v4.37. Use `transformers.modeling_attn_mask_utils._prepare_4d_attention_mask"
|
90 |
+
)
|
91 |
+
return _prepare_4d_attention_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
|
92 |
+
|
93 |
+
|
94 |
+
def _make_causal_mask(
|
95 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
96 |
+
):
|
97 |
+
warnings.warn(
|
98 |
+
"Calling `transformers.models.minicpm.modeling_minicpm._make_causal_mask` is deprecated and will be removed in v4.37. Use `transformers.models.minicpm.modeling_minicpm.AttentionMaskConverter._make_causal_mask"
|
99 |
+
)
|
100 |
+
return AttentionMaskConverter._make_causal_mask(
|
101 |
+
input_ids_shape=input_ids_shape, dtype=dtype, device=device, past_key_values_length=past_key_values_length
|
102 |
+
)
|
103 |
+
|
104 |
+
# @torch.jit.script # type: ignore
|
105 |
+
def rms_layernorm(hidden: torch.Tensor, weight: torch.Tensor, eps: float):
|
106 |
+
old_dtype = hidden.dtype
|
107 |
+
variance = hidden.to(torch.float32).pow(2).mean(dim=-1, keepdim=True)
|
108 |
+
hidden = (hidden * torch.rsqrt(variance + eps)).to(old_dtype)
|
109 |
+
return hidden * weight
|
110 |
+
|
111 |
+
|
112 |
+
class MiniCPMRMSNorm(nn.Module):
|
113 |
+
def __init__(self, hidden_size, eps=1e-6):
|
114 |
+
"""
|
115 |
+
MiniCPMRMSNorm is equivalent to T5LayerNorm
|
116 |
+
"""
|
117 |
+
super().__init__()
|
118 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
119 |
+
self.variance_epsilon = eps
|
120 |
+
|
121 |
+
def forward(self, hidden_states):
|
122 |
+
return rms_layernorm(hidden_states, self.weight, self.variance_epsilon)
|
123 |
+
|
124 |
+
|
125 |
+
ALL_LAYERNORM_LAYERS.append(MiniCPMRMSNorm)
|
126 |
+
|
127 |
+
|
128 |
+
class MiniCPMRotaryEmbedding(nn.Module):
|
129 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
130 |
+
super().__init__()
|
131 |
+
|
132 |
+
self.dim = dim
|
133 |
+
self.max_position_embeddings = max_position_embeddings
|
134 |
+
self.base = base
|
135 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
136 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
137 |
+
|
138 |
+
# Build here to make `torch.jit.trace` work.
|
139 |
+
self._set_cos_sin_cache(
|
140 |
+
# seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
141 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.float32
|
142 |
+
)
|
143 |
+
|
144 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
145 |
+
self.max_seq_len_cached = seq_len
|
146 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
147 |
+
freqs = torch.outer(t, self.inv_freq)
|
148 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
149 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
150 |
+
|
151 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
152 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
153 |
+
|
154 |
+
def forward(self, x, seq_len=None):
|
155 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
156 |
+
if seq_len > self.max_seq_len_cached:
|
157 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
158 |
+
|
159 |
+
return (
|
160 |
+
self.cos_cached[:seq_len].to(dtype=x.dtype),
|
161 |
+
self.sin_cached[:seq_len].to(dtype=x.dtype),
|
162 |
+
)
|
163 |
+
|
164 |
+
|
165 |
+
class MiniCPMLinearScalingRotaryEmbedding(MiniCPMRotaryEmbedding):
|
166 |
+
"""MiniCPMRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
167 |
+
|
168 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
169 |
+
self.scaling_factor = scaling_factor
|
170 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
171 |
+
|
172 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
173 |
+
self.max_seq_len_cached = seq_len
|
174 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
175 |
+
t = t / self.scaling_factor
|
176 |
+
|
177 |
+
freqs = torch.outer(t, self.inv_freq)
|
178 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
179 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
180 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
181 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
182 |
+
|
183 |
+
|
184 |
+
class MiniCPMDynamicNTKScalingRotaryEmbedding(MiniCPMRotaryEmbedding):
|
185 |
+
"""MiniCPMRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
186 |
+
|
187 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
188 |
+
self.scaling_factor = scaling_factor
|
189 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
190 |
+
|
191 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
192 |
+
self.max_seq_len_cached = seq_len
|
193 |
+
|
194 |
+
if seq_len > self.max_position_embeddings:
|
195 |
+
base = self.base * (
|
196 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
197 |
+
) ** (self.dim / (self.dim - 2))
|
198 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
199 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
200 |
+
|
201 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
202 |
+
|
203 |
+
freqs = torch.outer(t, self.inv_freq)
|
204 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
205 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
206 |
+
|
207 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
208 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
209 |
+
|
210 |
+
|
211 |
+
def rotate_half(x):
|
212 |
+
"""Rotates half the hidden dims of the input."""
|
213 |
+
x1 = x[..., : x.shape[-1] // 2]
|
214 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
215 |
+
return torch.cat((-x2, x1), dim=-1)
|
216 |
+
|
217 |
+
|
218 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
|
219 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
220 |
+
|
221 |
+
Args:
|
222 |
+
q (`torch.Tensor`): The query tensor.
|
223 |
+
k (`torch.Tensor`): The key tensor.
|
224 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
225 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
226 |
+
position_ids (`torch.Tensor`):
|
227 |
+
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
|
228 |
+
used to pass offsetted position ids when working with a KV-cache.
|
229 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
230 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
231 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
232 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
233 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
234 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
235 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
236 |
+
Returns:
|
237 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
238 |
+
"""
|
239 |
+
# cos = cos[position_ids].unsqueeze(unsqueeze_dim)
|
240 |
+
# sin = sin[position_ids].unsqueeze(unsqueeze_dim)
|
241 |
+
# q_embed = (q * cos) + (rotate_half(q) * sin)
|
242 |
+
# k_embed = (k * cos) + (rotate_half(k) * sin)
|
243 |
+
orig_dtype = k.dtype
|
244 |
+
cos = cos[position_ids].unsqueeze(unsqueeze_dim) # [bs, 1, seq_len, dim]
|
245 |
+
sin = sin[position_ids].unsqueeze(unsqueeze_dim) # [bs, 1, seq_len, dim]
|
246 |
+
q_fp32 = q.to(dtype=torch.float32, device=q.device)
|
247 |
+
k_fp32 = k.to(dtype=torch.float32, device=k.device)
|
248 |
+
q_embed = (q_fp32 * cos) + (rotate_half(q_fp32) * sin)
|
249 |
+
k_embed = (k_fp32 * cos) + (rotate_half(k_fp32) * sin)
|
250 |
+
return q_embed.to(dtype=orig_dtype), k_embed.to(dtype=orig_dtype)
|
251 |
+
|
252 |
+
class MiniCPMMLP(nn.Module):
|
253 |
+
def __init__(self, config):
|
254 |
+
super().__init__()
|
255 |
+
self.config = config
|
256 |
+
self.hidden_size = config.hidden_size
|
257 |
+
self.intermediate_size = config.intermediate_size
|
258 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
259 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
260 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
261 |
+
if config.hidden_act in ACT2FN:
|
262 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
263 |
+
elif config.hidden_act == "shiftrelu":
|
264 |
+
def shifted_relu(x):
|
265 |
+
return torch.nn.functional.relu(x - config.hidden_act_param)
|
266 |
+
self.act_fn = shifted_relu
|
267 |
+
elif config.hidden_act == "fatrelu":
|
268 |
+
def fat_relu(x):
|
269 |
+
new_x = torch.zeros_like(x)
|
270 |
+
mask = torch.ge(x, config.hidden_act_param)
|
271 |
+
new_x[mask] = x[mask]
|
272 |
+
return new_x
|
273 |
+
self.act_fn = fat_relu
|
274 |
+
else:
|
275 |
+
raise NotImplementedError(f"Unsupported activation function: {config.hidden_act}")
|
276 |
+
|
277 |
+
def forward(self, x):
|
278 |
+
if self.config.pretraining_tp > 1:
|
279 |
+
slice = self.intermediate_size // self.config.pretraining_tp
|
280 |
+
gate_proj_slices = self.gate_proj.weight.split(slice, dim=0)
|
281 |
+
up_proj_slices = self.up_proj.weight.split(slice, dim=0)
|
282 |
+
down_proj_slices = self.down_proj.weight.split(slice, dim=1)
|
283 |
+
|
284 |
+
gate_proj = torch.cat(
|
285 |
+
[F.linear(x, gate_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1
|
286 |
+
)
|
287 |
+
up_proj = torch.cat([F.linear(x, up_proj_slices[i]) for i in range(self.config.pretraining_tp)], dim=-1)
|
288 |
+
|
289 |
+
intermediate_states = (self.act_fn(gate_proj) * up_proj).split(slice, dim=2)
|
290 |
+
down_proj = [
|
291 |
+
F.linear(intermediate_states[i], down_proj_slices[i]) for i in range(self.config.pretraining_tp)
|
292 |
+
]
|
293 |
+
down_proj = sum(down_proj)
|
294 |
+
else:
|
295 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
296 |
+
|
297 |
+
return down_proj
|
298 |
+
|
299 |
+
|
300 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
301 |
+
"""
|
302 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
303 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
304 |
+
"""
|
305 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
306 |
+
if n_rep == 1:
|
307 |
+
return hidden_states
|
308 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
309 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
310 |
+
|
311 |
+
|
312 |
+
|
313 |
+
class MiniCPMAttention(nn.Module):
|
314 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
315 |
+
|
316 |
+
def __init__(self, config: MiniCPMConfig, layer_idx: Optional[int] = None):
|
317 |
+
super().__init__()
|
318 |
+
self.config = config
|
319 |
+
self.layer_idx = layer_idx
|
320 |
+
if layer_idx is None:
|
321 |
+
logger.warning_once(
|
322 |
+
f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
|
323 |
+
"to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
|
324 |
+
"when creating this class."
|
325 |
+
)
|
326 |
+
|
327 |
+
self.attention_dropout = config.attention_dropout
|
328 |
+
self.hidden_size = config.hidden_size
|
329 |
+
self.num_heads = config.num_attention_heads
|
330 |
+
self.head_dim = self.hidden_size // self.num_heads
|
331 |
+
self.num_key_value_heads = config.num_key_value_heads
|
332 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
333 |
+
self.max_position_embeddings = config.max_position_embeddings
|
334 |
+
self.rope_theta = config.rope_theta
|
335 |
+
self.is_causal = True
|
336 |
+
|
337 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
338 |
+
raise ValueError(
|
339 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
340 |
+
f" and `num_heads`: {self.num_heads})."
|
341 |
+
)
|
342 |
+
|
343 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
|
344 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
345 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
346 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.attention_bias)
|
347 |
+
self._init_rope()
|
348 |
+
|
349 |
+
def _init_rope(self):
|
350 |
+
if self.config.rope_scaling is None:
|
351 |
+
self.rotary_emb = MiniCPMRotaryEmbedding(
|
352 |
+
self.head_dim,
|
353 |
+
max_position_embeddings=self.max_position_embeddings,
|
354 |
+
base=self.rope_theta,
|
355 |
+
)
|
356 |
+
else:
|
357 |
+
scaling_type = self.config.rope_scaling["type"]
|
358 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
359 |
+
if scaling_type == "linear":
|
360 |
+
self.rotary_emb = MiniCPMLinearScalingRotaryEmbedding(
|
361 |
+
self.head_dim,
|
362 |
+
max_position_embeddings=self.max_position_embeddings,
|
363 |
+
scaling_factor=scaling_factor,
|
364 |
+
base=self.rope_theta,
|
365 |
+
)
|
366 |
+
elif scaling_type == "dynamic":
|
367 |
+
self.rotary_emb = MiniCPMDynamicNTKScalingRotaryEmbedding(
|
368 |
+
self.head_dim,
|
369 |
+
max_position_embeddings=self.max_position_embeddings,
|
370 |
+
scaling_factor=scaling_factor,
|
371 |
+
base=self.rope_theta,
|
372 |
+
)
|
373 |
+
else:
|
374 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
375 |
+
|
376 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
377 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
378 |
+
|
379 |
+
def forward(
|
380 |
+
self,
|
381 |
+
hidden_states: torch.Tensor,
|
382 |
+
attention_mask: Optional[torch.Tensor] = None,
|
383 |
+
position_ids: Optional[torch.LongTensor] = None,
|
384 |
+
past_key_value: Optional[Cache] = None,
|
385 |
+
output_attentions: bool = False,
|
386 |
+
use_cache: bool = False,
|
387 |
+
**kwargs,
|
388 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
389 |
+
if "padding_mask" in kwargs:
|
390 |
+
warnings.warn(
|
391 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
392 |
+
)
|
393 |
+
|
394 |
+
bsz, q_len, _ = hidden_states.size()
|
395 |
+
|
396 |
+
if self.config.pretraining_tp > 1:
|
397 |
+
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
|
398 |
+
query_slices = self.q_proj.weight.split(
|
399 |
+
(self.num_heads * self.head_dim) // self.config.pretraining_tp, dim=0
|
400 |
+
)
|
401 |
+
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
402 |
+
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
403 |
+
|
404 |
+
query_states = [F.linear(hidden_states, query_slices[i]) for i in range(self.config.pretraining_tp)]
|
405 |
+
query_states = torch.cat(query_states, dim=-1)
|
406 |
+
|
407 |
+
key_states = [F.linear(hidden_states, key_slices[i]) for i in range(self.config.pretraining_tp)]
|
408 |
+
key_states = torch.cat(key_states, dim=-1)
|
409 |
+
|
410 |
+
value_states = [F.linear(hidden_states, value_slices[i]) for i in range(self.config.pretraining_tp)]
|
411 |
+
value_states = torch.cat(value_states, dim=-1)
|
412 |
+
|
413 |
+
else:
|
414 |
+
query_states = self.q_proj(hidden_states)
|
415 |
+
key_states = self.k_proj(hidden_states)
|
416 |
+
value_states = self.v_proj(hidden_states)
|
417 |
+
|
418 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
419 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
420 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
421 |
+
|
422 |
+
kv_seq_len = key_states.shape[-2]
|
423 |
+
if past_key_value is not None:
|
424 |
+
if self.layer_idx is None:
|
425 |
+
raise ValueError(
|
426 |
+
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
427 |
+
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
428 |
+
"with a layer index."
|
429 |
+
)
|
430 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
431 |
+
cos, sin = self.rotary_emb(value_states.to(torch.float32), seq_len=kv_seq_len)
|
432 |
+
|
433 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
434 |
+
|
435 |
+
if past_key_value is not None:
|
436 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
437 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
438 |
+
|
439 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
440 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
441 |
+
|
442 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
443 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
444 |
+
raise ValueError(
|
445 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
446 |
+
f" {attn_weights.size()}"
|
447 |
+
)
|
448 |
+
|
449 |
+
if attention_mask is not None:
|
450 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
451 |
+
raise ValueError(
|
452 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
453 |
+
)
|
454 |
+
attn_weights = attn_weights + attention_mask
|
455 |
+
|
456 |
+
# upcast attention to fp32
|
457 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
458 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
|
459 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
460 |
+
|
461 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
462 |
+
raise ValueError(
|
463 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
464 |
+
f" {attn_output.size()}"
|
465 |
+
)
|
466 |
+
|
467 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
468 |
+
|
469 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
470 |
+
|
471 |
+
if self.config.pretraining_tp > 1:
|
472 |
+
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
|
473 |
+
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
|
474 |
+
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
|
475 |
+
else:
|
476 |
+
attn_output = self.o_proj(attn_output)
|
477 |
+
|
478 |
+
if not output_attentions:
|
479 |
+
attn_weights = None
|
480 |
+
|
481 |
+
return attn_output, attn_weights, past_key_value
|
482 |
+
|
483 |
+
|
484 |
+
class MiniCPMFlashAttention2(MiniCPMAttention):
|
485 |
+
"""
|
486 |
+
MiniCPM flash attention module. This module inherits from `MiniCPMAttention` as the weights of the module stays
|
487 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
488 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
489 |
+
"""
|
490 |
+
|
491 |
+
def __init__(self, *args, **kwargs):
|
492 |
+
super().__init__(*args, **kwargs)
|
493 |
+
|
494 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
495 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
496 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
497 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
498 |
+
|
499 |
+
def forward(
|
500 |
+
self,
|
501 |
+
hidden_states: torch.Tensor,
|
502 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
503 |
+
position_ids: Optional[torch.LongTensor] = None,
|
504 |
+
past_key_value: Optional[Cache] = None,
|
505 |
+
output_attentions: bool = False,
|
506 |
+
use_cache: bool = False,
|
507 |
+
**kwargs,
|
508 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
509 |
+
# MiniCPMFlashAttention2 attention does not support output_attentions
|
510 |
+
if "padding_mask" in kwargs:
|
511 |
+
warnings.warn(
|
512 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
513 |
+
)
|
514 |
+
|
515 |
+
# overwrite attention_mask with padding_mask
|
516 |
+
attention_mask = kwargs.pop("padding_mask")
|
517 |
+
|
518 |
+
output_attentions = False
|
519 |
+
|
520 |
+
bsz, q_len, _ = hidden_states.size()
|
521 |
+
|
522 |
+
query_states = self.q_proj(hidden_states)
|
523 |
+
key_states = self.k_proj(hidden_states)
|
524 |
+
value_states = self.v_proj(hidden_states)
|
525 |
+
|
526 |
+
# Flash attention requires the input to have the shape
|
527 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
528 |
+
# therefore we just need to keep the original shape
|
529 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
530 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
531 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
532 |
+
|
533 |
+
kv_seq_len = key_states.shape[-2]
|
534 |
+
if past_key_value is not None:
|
535 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
536 |
+
cos, sin = self.rotary_emb(value_states.to(torch.float32), seq_len=kv_seq_len)
|
537 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
538 |
+
|
539 |
+
if past_key_value is not None:
|
540 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
541 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
542 |
+
|
543 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
544 |
+
# to be able to avoid many of these transpose/reshape/view.
|
545 |
+
query_states = query_states.transpose(1, 2)
|
546 |
+
key_states = key_states.transpose(1, 2)
|
547 |
+
value_states = value_states.transpose(1, 2)
|
548 |
+
|
549 |
+
dropout_rate = self.attention_dropout if self.training else 0.0
|
550 |
+
|
551 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
552 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
553 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
554 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
555 |
+
# in fp32. (MiniCPMRMSNorm handles it correctly)
|
556 |
+
|
557 |
+
input_dtype = query_states.dtype
|
558 |
+
if input_dtype == torch.float32:
|
559 |
+
# Handle the case where the model is quantized
|
560 |
+
if hasattr(self.config, "_pre_quantization_dtype"):
|
561 |
+
target_dtype = self.config._pre_quantization_dtype
|
562 |
+
else:
|
563 |
+
target_dtype = self.q_proj.weight.dtype
|
564 |
+
|
565 |
+
logger.warning_once(
|
566 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
567 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
568 |
+
f" {target_dtype}."
|
569 |
+
)
|
570 |
+
|
571 |
+
query_states = query_states.to(target_dtype)
|
572 |
+
key_states = key_states.to(target_dtype)
|
573 |
+
value_states = value_states.to(target_dtype)
|
574 |
+
|
575 |
+
attn_output = self._flash_attention_forward(
|
576 |
+
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
|
577 |
+
)
|
578 |
+
|
579 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
580 |
+
attn_output = self.o_proj(attn_output)
|
581 |
+
|
582 |
+
if not output_attentions:
|
583 |
+
attn_weights = None
|
584 |
+
|
585 |
+
return attn_output, attn_weights, past_key_value
|
586 |
+
|
587 |
+
def _flash_attention_forward(
|
588 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
589 |
+
):
|
590 |
+
"""
|
591 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
592 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
593 |
+
|
594 |
+
Args:
|
595 |
+
query_states (`torch.Tensor`):
|
596 |
+
Input query states to be passed to Flash Attention API
|
597 |
+
key_states (`torch.Tensor`):
|
598 |
+
Input key states to be passed to Flash Attention API
|
599 |
+
value_states (`torch.Tensor`):
|
600 |
+
Input value states to be passed to Flash Attention API
|
601 |
+
attention_mask (`torch.Tensor`):
|
602 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
603 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
604 |
+
dropout (`int`, *optional*):
|
605 |
+
Attention dropout
|
606 |
+
softmax_scale (`float`, *optional*):
|
607 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
608 |
+
"""
|
609 |
+
if not self._flash_attn_uses_top_left_mask:
|
610 |
+
causal = self.is_causal
|
611 |
+
else:
|
612 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in MiniCPMFlashAttention2 __init__.
|
613 |
+
causal = self.is_causal and query_length != 1
|
614 |
+
# Contains at least one padding token in the sequence
|
615 |
+
if attention_mask is not None:
|
616 |
+
batch_size = query_states.shape[0]
|
617 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
618 |
+
query_states, key_states, value_states, attention_mask, query_length
|
619 |
+
)
|
620 |
+
|
621 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
622 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
623 |
+
attn_output_unpad = flash_attn_varlen_func(
|
624 |
+
query_states,
|
625 |
+
key_states,
|
626 |
+
value_states,
|
627 |
+
cu_seqlens_q=cu_seqlens_q,
|
628 |
+
cu_seqlens_k=cu_seqlens_k,
|
629 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
630 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
631 |
+
dropout_p=dropout,
|
632 |
+
softmax_scale=softmax_scale,
|
633 |
+
causal=causal,
|
634 |
+
)
|
635 |
+
|
636 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
637 |
+
else:
|
638 |
+
attn_output = flash_attn_func(
|
639 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
640 |
+
)
|
641 |
+
|
642 |
+
return attn_output
|
643 |
+
|
644 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
645 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
646 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
647 |
+
|
648 |
+
key_layer = index_first_axis(
|
649 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
650 |
+
)
|
651 |
+
value_layer = index_first_axis(
|
652 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
653 |
+
)
|
654 |
+
if query_length == kv_seq_len:
|
655 |
+
query_layer = index_first_axis(
|
656 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
657 |
+
)
|
658 |
+
cu_seqlens_q = cu_seqlens_k
|
659 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
660 |
+
indices_q = indices_k
|
661 |
+
elif query_length == 1:
|
662 |
+
max_seqlen_in_batch_q = 1
|
663 |
+
cu_seqlens_q = torch.arange(
|
664 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
665 |
+
) # There is a memcpy here, that is very bad.
|
666 |
+
indices_q = cu_seqlens_q[:-1]
|
667 |
+
query_layer = query_layer.squeeze(1)
|
668 |
+
else:
|
669 |
+
# The -q_len: slice assumes left padding.
|
670 |
+
attention_mask = attention_mask[:, -query_length:]
|
671 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
672 |
+
|
673 |
+
return (
|
674 |
+
query_layer,
|
675 |
+
key_layer,
|
676 |
+
value_layer,
|
677 |
+
indices_q,
|
678 |
+
(cu_seqlens_q, cu_seqlens_k),
|
679 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
680 |
+
)
|
681 |
+
|
682 |
+
|
683 |
+
class MiniCPMSdpaAttention(MiniCPMAttention):
|
684 |
+
"""
|
685 |
+
MiniCPM attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
686 |
+
`MiniCPMAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
687 |
+
SDPA API.
|
688 |
+
"""
|
689 |
+
|
690 |
+
# Adapted from MiniCPMAttention.forward
|
691 |
+
def forward(
|
692 |
+
self,
|
693 |
+
hidden_states: torch.Tensor,
|
694 |
+
attention_mask: Optional[torch.Tensor] = None,
|
695 |
+
position_ids: Optional[torch.LongTensor] = None,
|
696 |
+
past_key_value: Optional[Cache] = None,
|
697 |
+
output_attentions: bool = False,
|
698 |
+
use_cache: bool = False,
|
699 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
700 |
+
if output_attentions:
|
701 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
702 |
+
logger.warning_once(
|
703 |
+
"MiniCPMModel is using MiniCPMSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
704 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
705 |
+
)
|
706 |
+
return super().forward(
|
707 |
+
hidden_states=hidden_states,
|
708 |
+
attention_mask=attention_mask,
|
709 |
+
position_ids=position_ids,
|
710 |
+
past_key_value=past_key_value,
|
711 |
+
output_attentions=output_attentions,
|
712 |
+
use_cache=use_cache,
|
713 |
+
)
|
714 |
+
|
715 |
+
bsz, q_len, _ = hidden_states.size()
|
716 |
+
|
717 |
+
query_states = self.q_proj(hidden_states)
|
718 |
+
key_states = self.k_proj(hidden_states)
|
719 |
+
value_states = self.v_proj(hidden_states)
|
720 |
+
|
721 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
722 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
723 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
724 |
+
|
725 |
+
kv_seq_len = key_states.shape[-2]
|
726 |
+
if past_key_value is not None:
|
727 |
+
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
728 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
729 |
+
|
730 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
731 |
+
|
732 |
+
if past_key_value is not None:
|
733 |
+
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
734 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
735 |
+
|
736 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
737 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
738 |
+
|
739 |
+
if attention_mask is not None:
|
740 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
741 |
+
raise ValueError(
|
742 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
743 |
+
)
|
744 |
+
|
745 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
746 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
747 |
+
if query_states.device.type == "cuda" and attention_mask is not None:
|
748 |
+
query_states = query_states.contiguous()
|
749 |
+
key_states = key_states.contiguous()
|
750 |
+
value_states = value_states.contiguous()
|
751 |
+
|
752 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
753 |
+
query_states,
|
754 |
+
key_states,
|
755 |
+
value_states,
|
756 |
+
attn_mask=attention_mask,
|
757 |
+
dropout_p=self.attention_dropout if self.training else 0.0,
|
758 |
+
# The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
|
759 |
+
is_causal=self.is_causal and attention_mask is None and q_len > 1,
|
760 |
+
)
|
761 |
+
|
762 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
763 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
764 |
+
|
765 |
+
attn_output = self.o_proj(attn_output)
|
766 |
+
|
767 |
+
return attn_output, None, past_key_value
|
768 |
+
|
769 |
+
|
770 |
+
MINICPM_ATTENTION_CLASSES = {
|
771 |
+
"eager": MiniCPMAttention,
|
772 |
+
"flash_attention_2": MiniCPMFlashAttention2,
|
773 |
+
"sdpa": MiniCPMSdpaAttention,
|
774 |
+
}
|
775 |
+
|
776 |
+
|
777 |
+
class MiniCPMDecoderLayer(nn.Module):
|
778 |
+
def __init__(self, config: MiniCPMConfig, layer_idx: int):
|
779 |
+
super().__init__()
|
780 |
+
self.hidden_size = config.hidden_size
|
781 |
+
self.self_attn = MINICPM_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
|
782 |
+
|
783 |
+
self.mlp = MiniCPMMLP(config)
|
784 |
+
self.input_layernorm = MiniCPMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
785 |
+
self.post_attention_layernorm = MiniCPMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
786 |
+
|
787 |
+
self.scale_depth = config.scale_depth
|
788 |
+
self.num_hidden_layers = config.num_hidden_layers
|
789 |
+
|
790 |
+
def forward(
|
791 |
+
self,
|
792 |
+
hidden_states: torch.Tensor,
|
793 |
+
attention_mask: Optional[torch.Tensor] = None,
|
794 |
+
position_ids: Optional[torch.LongTensor] = None,
|
795 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
796 |
+
output_attentions: Optional[bool] = False,
|
797 |
+
use_cache: Optional[bool] = False,
|
798 |
+
**kwargs,
|
799 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
800 |
+
"""
|
801 |
+
Args:
|
802 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
803 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
804 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
805 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
806 |
+
output_attentions (`bool`, *optional*):
|
807 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
808 |
+
returned tensors for more detail.
|
809 |
+
use_cache (`bool`, *optional*):
|
810 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
811 |
+
(see `past_key_values`).
|
812 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
813 |
+
"""
|
814 |
+
if "padding_mask" in kwargs:
|
815 |
+
warnings.warn(
|
816 |
+
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
817 |
+
)
|
818 |
+
|
819 |
+
residual = hidden_states
|
820 |
+
hidden_states = self.input_layernorm(hidden_states)
|
821 |
+
# Self Attention
|
822 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
823 |
+
hidden_states=hidden_states,
|
824 |
+
attention_mask=attention_mask,
|
825 |
+
position_ids=position_ids,
|
826 |
+
past_key_value=past_key_value,
|
827 |
+
output_attentions=output_attentions,
|
828 |
+
use_cache=use_cache,
|
829 |
+
**kwargs,
|
830 |
+
)
|
831 |
+
|
832 |
+
hidden_states = residual + hidden_states * (self.scale_depth / math.sqrt(self.num_hidden_layers))
|
833 |
+
|
834 |
+
# Fully Connected
|
835 |
+
residual = hidden_states
|
836 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
837 |
+
|
838 |
+
hidden_states = self.mlp(hidden_states)
|
839 |
+
hidden_states = residual + hidden_states * (self.scale_depth / math.sqrt(self.num_hidden_layers))
|
840 |
+
|
841 |
+
outputs = (hidden_states,)
|
842 |
+
|
843 |
+
if output_attentions:
|
844 |
+
outputs += (self_attn_weights,)
|
845 |
+
|
846 |
+
if use_cache:
|
847 |
+
outputs += (present_key_value,)
|
848 |
+
|
849 |
+
return outputs
|
850 |
+
|
851 |
+
|
852 |
+
MINICPM_START_DOCSTRING = r"""
|
853 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
854 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
855 |
+
etc.)
|
856 |
+
|
857 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
858 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
859 |
+
and behavior.
|
860 |
+
|
861 |
+
Parameters:
|
862 |
+
config ([`MiniCPMConfig`]):
|
863 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
864 |
+
load the weights associated with the model, only the configuration. Check out the
|
865 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
866 |
+
"""
|
867 |
+
|
868 |
+
|
869 |
+
@add_start_docstrings(
|
870 |
+
"The bare MiniCPM Model outputting raw hidden-states without any specific head on top.",
|
871 |
+
MINICPM_START_DOCSTRING,
|
872 |
+
)
|
873 |
+
class MiniCPMPreTrainedModel(PreTrainedModel):
|
874 |
+
config_class = MiniCPMConfig
|
875 |
+
base_model_prefix = "model"
|
876 |
+
supports_gradient_checkpointing = True
|
877 |
+
_no_split_modules = ["MiniCPMDecoderLayer"]
|
878 |
+
_skip_keys_device_placement = "past_key_values"
|
879 |
+
_supports_flash_attn_2 = True
|
880 |
+
_supports_sdpa = True
|
881 |
+
_supports_cache_class = True
|
882 |
+
|
883 |
+
def _init_weights(self, module):
|
884 |
+
std = self.config.initializer_range
|
885 |
+
if isinstance(module, nn.Linear):
|
886 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
887 |
+
if module.bias is not None:
|
888 |
+
module.bias.data.zero_()
|
889 |
+
elif isinstance(module, nn.Embedding):
|
890 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
891 |
+
if module.padding_idx is not None:
|
892 |
+
module.weight.data[module.padding_idx].zero_()
|
893 |
+
|
894 |
+
|
895 |
+
MINICPM_INPUTS_DOCSTRING = r"""
|
896 |
+
Args:
|
897 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
898 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
899 |
+
it.
|
900 |
+
|
901 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
902 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
903 |
+
|
904 |
+
[What are input IDs?](../glossary#input-ids)
|
905 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
906 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
907 |
+
|
908 |
+
- 1 for tokens that are **not masked**,
|
909 |
+
- 0 for tokens that are **masked**.
|
910 |
+
|
911 |
+
[What are attention masks?](../glossary#attention-mask)
|
912 |
+
|
913 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
914 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
915 |
+
|
916 |
+
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
|
917 |
+
`past_key_values`).
|
918 |
+
|
919 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
920 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
921 |
+
information on the default strategy.
|
922 |
+
|
923 |
+
- 1 indicates the head is **not masked**,
|
924 |
+
- 0 indicates the head is **masked**.
|
925 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
926 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
927 |
+
config.n_positions - 1]`.
|
928 |
+
|
929 |
+
[What are position IDs?](../glossary#position-ids)
|
930 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
931 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
932 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
933 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
934 |
+
|
935 |
+
Two formats are allowed:
|
936 |
+
- a [`~cache_utils.Cache`] instance;
|
937 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
938 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
939 |
+
cache format.
|
940 |
+
|
941 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
942 |
+
legacy cache format will be returned.
|
943 |
+
|
944 |
+
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
945 |
+
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
946 |
+
of shape `(batch_size, sequence_length)`.
|
947 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
948 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
949 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
950 |
+
model's internal embedding lookup matrix.
|
951 |
+
use_cache (`bool`, *optional*):
|
952 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
953 |
+
`past_key_values`).
|
954 |
+
output_attentions (`bool`, *optional*):
|
955 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
956 |
+
tensors for more detail.
|
957 |
+
output_hidden_states (`bool`, *optional*):
|
958 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
959 |
+
more detail.
|
960 |
+
return_dict (`bool`, *optional*):
|
961 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
962 |
+
"""
|
963 |
+
|
964 |
+
|
965 |
+
@add_start_docstrings(
|
966 |
+
"The bare MiniCPM Model outputting raw hidden-states without any specific head on top.",
|
967 |
+
MINICPM_START_DOCSTRING,
|
968 |
+
)
|
969 |
+
class MiniCPMModel(MiniCPMPreTrainedModel):
|
970 |
+
"""
|
971 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MiniCPMDecoderLayer`]
|
972 |
+
|
973 |
+
Args:
|
974 |
+
config: MiniCPMConfig
|
975 |
+
"""
|
976 |
+
|
977 |
+
def __init__(self, config: MiniCPMConfig):
|
978 |
+
super().__init__(config)
|
979 |
+
self.padding_idx = config.pad_token_id
|
980 |
+
self.vocab_size = config.vocab_size
|
981 |
+
|
982 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
983 |
+
self.layers = nn.ModuleList(
|
984 |
+
[MiniCPMDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
985 |
+
)
|
986 |
+
self._use_sdpa = config._attn_implementation == "sdpa"
|
987 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
988 |
+
|
989 |
+
self.norm = MiniCPMRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
990 |
+
|
991 |
+
self.gradient_checkpointing = False
|
992 |
+
# Initialize weights and apply final processing
|
993 |
+
self.post_init()
|
994 |
+
|
995 |
+
def get_input_embeddings(self):
|
996 |
+
return self.embed_tokens
|
997 |
+
|
998 |
+
def set_input_embeddings(self, value):
|
999 |
+
self.embed_tokens = value
|
1000 |
+
|
1001 |
+
@add_start_docstrings_to_model_forward(MINICPM_INPUTS_DOCSTRING)
|
1002 |
+
def forward(
|
1003 |
+
self,
|
1004 |
+
input_ids: torch.LongTensor = None,
|
1005 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1006 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1007 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1008 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1009 |
+
use_cache: Optional[bool] = None,
|
1010 |
+
output_attentions: Optional[bool] = None,
|
1011 |
+
output_hidden_states: Optional[bool] = None,
|
1012 |
+
return_dict: Optional[bool] = None,
|
1013 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
1014 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1015 |
+
output_hidden_states = (
|
1016 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1017 |
+
)
|
1018 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1019 |
+
|
1020 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1021 |
+
|
1022 |
+
# retrieve input_ids and inputs_embeds
|
1023 |
+
if input_ids is not None and inputs_embeds is not None:
|
1024 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
1025 |
+
elif input_ids is not None:
|
1026 |
+
batch_size, seq_length = input_ids.shape[:2]
|
1027 |
+
elif inputs_embeds is not None:
|
1028 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
1029 |
+
else:
|
1030 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
1031 |
+
|
1032 |
+
if self.gradient_checkpointing and self.training:
|
1033 |
+
if use_cache:
|
1034 |
+
logger.warning_once(
|
1035 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
1036 |
+
)
|
1037 |
+
use_cache = False
|
1038 |
+
|
1039 |
+
past_key_values_length = 0
|
1040 |
+
if use_cache:
|
1041 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
1042 |
+
if use_legacy_cache:
|
1043 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
1044 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
1045 |
+
|
1046 |
+
if position_ids is None:
|
1047 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
1048 |
+
position_ids = torch.arange(
|
1049 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
1050 |
+
)
|
1051 |
+
position_ids = position_ids.unsqueeze(0)
|
1052 |
+
|
1053 |
+
if inputs_embeds is None:
|
1054 |
+
inputs_embeds = self.embed_tokens(input_ids) * self.config.scale_emb
|
1055 |
+
|
1056 |
+
if self._use_flash_attention_2:
|
1057 |
+
# 2d mask is passed through the layers
|
1058 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
1059 |
+
elif self._use_sdpa and not output_attentions:
|
1060 |
+
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
1061 |
+
# the manual implementation that requires a 4D causal mask in all cases.
|
1062 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
1063 |
+
attention_mask,
|
1064 |
+
(batch_size, seq_length),
|
1065 |
+
inputs_embeds,
|
1066 |
+
past_key_values_length,
|
1067 |
+
)
|
1068 |
+
else:
|
1069 |
+
# 4d mask is passed through the layers
|
1070 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
1071 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
1072 |
+
)
|
1073 |
+
|
1074 |
+
# embed positions
|
1075 |
+
hidden_states = inputs_embeds
|
1076 |
+
|
1077 |
+
# decoder layers
|
1078 |
+
all_hidden_states = () if output_hidden_states else None
|
1079 |
+
all_self_attns = () if output_attentions else None
|
1080 |
+
next_decoder_cache = None
|
1081 |
+
|
1082 |
+
for decoder_layer in self.layers:
|
1083 |
+
if output_hidden_states:
|
1084 |
+
all_hidden_states += (hidden_states,)
|
1085 |
+
|
1086 |
+
if self.gradient_checkpointing and self.training:
|
1087 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1088 |
+
decoder_layer.__call__,
|
1089 |
+
hidden_states,
|
1090 |
+
attention_mask,
|
1091 |
+
position_ids,
|
1092 |
+
past_key_values,
|
1093 |
+
output_attentions,
|
1094 |
+
use_cache,
|
1095 |
+
)
|
1096 |
+
else:
|
1097 |
+
layer_outputs = decoder_layer(
|
1098 |
+
hidden_states,
|
1099 |
+
attention_mask=attention_mask,
|
1100 |
+
position_ids=position_ids,
|
1101 |
+
past_key_value=past_key_values,
|
1102 |
+
output_attentions=output_attentions,
|
1103 |
+
use_cache=use_cache,
|
1104 |
+
)
|
1105 |
+
|
1106 |
+
hidden_states = layer_outputs[0]
|
1107 |
+
|
1108 |
+
if use_cache:
|
1109 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1110 |
+
|
1111 |
+
if output_attentions:
|
1112 |
+
all_self_attns += (layer_outputs[1],)
|
1113 |
+
|
1114 |
+
hidden_states = self.norm(hidden_states)
|
1115 |
+
|
1116 |
+
# add hidden states from the last decoder layer
|
1117 |
+
if output_hidden_states:
|
1118 |
+
all_hidden_states += (hidden_states,)
|
1119 |
+
|
1120 |
+
next_cache = None
|
1121 |
+
if use_cache:
|
1122 |
+
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
1123 |
+
if not return_dict:
|
1124 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
1125 |
+
return BaseModelOutputWithPast(
|
1126 |
+
last_hidden_state=hidden_states,
|
1127 |
+
past_key_values=next_cache,
|
1128 |
+
hidden_states=all_hidden_states,
|
1129 |
+
attentions=all_self_attns,
|
1130 |
+
)
|
1131 |
+
|
1132 |
+
|
1133 |
+
class MiniCPMForCausalLM(MiniCPMPreTrainedModel):
|
1134 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1135 |
+
|
1136 |
+
def __init__(self, config):
|
1137 |
+
super().__init__(config)
|
1138 |
+
self.model = MiniCPMModel(config)
|
1139 |
+
self.vocab_size = config.vocab_size
|
1140 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1141 |
+
|
1142 |
+
# Initialize weights and apply final processing
|
1143 |
+
self.post_init()
|
1144 |
+
|
1145 |
+
def get_input_embeddings(self):
|
1146 |
+
return self.model.embed_tokens
|
1147 |
+
|
1148 |
+
def set_input_embeddings(self, value):
|
1149 |
+
self.model.embed_tokens = value
|
1150 |
+
|
1151 |
+
def get_output_embeddings(self):
|
1152 |
+
return self.lm_head
|
1153 |
+
|
1154 |
+
def set_output_embeddings(self, new_embeddings):
|
1155 |
+
self.lm_head = new_embeddings
|
1156 |
+
|
1157 |
+
def set_decoder(self, decoder):
|
1158 |
+
self.model = decoder
|
1159 |
+
|
1160 |
+
def get_decoder(self):
|
1161 |
+
return self.model
|
1162 |
+
|
1163 |
+
@add_start_docstrings_to_model_forward(MINICPM_INPUTS_DOCSTRING)
|
1164 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
1165 |
+
def forward(
|
1166 |
+
self,
|
1167 |
+
input_ids: torch.LongTensor = None,
|
1168 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1169 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1170 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1171 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1172 |
+
labels: Optional[torch.LongTensor] = None,
|
1173 |
+
use_cache: Optional[bool] = None,
|
1174 |
+
output_attentions: Optional[bool] = None,
|
1175 |
+
output_hidden_states: Optional[bool] = None,
|
1176 |
+
return_dict: Optional[bool] = None,
|
1177 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1178 |
+
r"""
|
1179 |
+
Args:
|
1180 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1181 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1182 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1183 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1184 |
+
|
1185 |
+
Returns:
|
1186 |
+
|
1187 |
+
Example:
|
1188 |
+
|
1189 |
+
```python
|
1190 |
+
>>> from transformers import AutoTokenizer, MiniCPMForCausalLM
|
1191 |
+
|
1192 |
+
>>> model = MiniCPMForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
1193 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
1194 |
+
|
1195 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
1196 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
1197 |
+
|
1198 |
+
>>> # Generate
|
1199 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
1200 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
1201 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
1202 |
+
```"""
|
1203 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1204 |
+
output_hidden_states = (
|
1205 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1206 |
+
)
|
1207 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1208 |
+
|
1209 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1210 |
+
outputs = self.model(
|
1211 |
+
input_ids=input_ids,
|
1212 |
+
attention_mask=attention_mask,
|
1213 |
+
position_ids=position_ids,
|
1214 |
+
past_key_values=past_key_values,
|
1215 |
+
inputs_embeds=inputs_embeds,
|
1216 |
+
use_cache=use_cache,
|
1217 |
+
output_attentions=output_attentions,
|
1218 |
+
output_hidden_states=output_hidden_states,
|
1219 |
+
return_dict=return_dict,
|
1220 |
+
)
|
1221 |
+
|
1222 |
+
hidden_states = outputs[0]
|
1223 |
+
if self.config.pretraining_tp > 1:
|
1224 |
+
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
1225 |
+
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
1226 |
+
logits = torch.cat(logits, dim=-1)
|
1227 |
+
else:
|
1228 |
+
logits = self.lm_head(hidden_states / (self.config.hidden_size / self.config.dim_model_base))
|
1229 |
+
logits = logits.float()
|
1230 |
+
|
1231 |
+
loss = None
|
1232 |
+
if labels is not None:
|
1233 |
+
# Shift so that tokens < n predict n
|
1234 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1235 |
+
shift_labels = labels[..., 1:].contiguous()
|
1236 |
+
# Flatten the tokens
|
1237 |
+
loss_fct = CrossEntropyLoss()
|
1238 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1239 |
+
shift_labels = shift_labels.view(-1)
|
1240 |
+
# Enable model parallelism
|
1241 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1242 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1243 |
+
|
1244 |
+
if not return_dict:
|
1245 |
+
output = (logits,) + outputs[1:]
|
1246 |
+
return (loss,) + output if loss is not None else output
|
1247 |
+
|
1248 |
+
return CausalLMOutputWithPast(
|
1249 |
+
loss=loss,
|
1250 |
+
logits=logits,
|
1251 |
+
past_key_values=outputs.past_key_values,
|
1252 |
+
hidden_states=outputs.hidden_states,
|
1253 |
+
attentions=outputs.attentions,
|
1254 |
+
)
|
1255 |
+
|
1256 |
+
def prepare_inputs_for_generation(
|
1257 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
1258 |
+
):
|
1259 |
+
if past_key_values is not None:
|
1260 |
+
if isinstance(past_key_values, Cache):
|
1261 |
+
cache_length = past_key_values.get_seq_length()
|
1262 |
+
past_length = past_key_values.seen_tokens
|
1263 |
+
max_cache_length = past_key_values.get_max_length()
|
1264 |
+
else:
|
1265 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
1266 |
+
max_cache_length = None
|
1267 |
+
|
1268 |
+
# Keep only the unprocessed tokens:
|
1269 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1270 |
+
# some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
|
1271 |
+
# input)
|
1272 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
1273 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1274 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1275 |
+
# input_ids based on the past_length.
|
1276 |
+
elif past_length < input_ids.shape[1]:
|
1277 |
+
input_ids = input_ids[:, past_length:]
|
1278 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1279 |
+
|
1280 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1281 |
+
if (
|
1282 |
+
max_cache_length is not None
|
1283 |
+
and attention_mask is not None
|
1284 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
1285 |
+
):
|
1286 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
1287 |
+
|
1288 |
+
position_ids = kwargs.get("position_ids", None)
|
1289 |
+
if attention_mask is not None and position_ids is None:
|
1290 |
+
# create position_ids on the fly for batch generation
|
1291 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1292 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1293 |
+
if past_key_values:
|
1294 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1295 |
+
|
1296 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1297 |
+
if inputs_embeds is not None and past_key_values is None:
|
1298 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1299 |
+
else:
|
1300 |
+
model_inputs = {"input_ids": input_ids}
|
1301 |
+
|
1302 |
+
model_inputs.update(
|
1303 |
+
{
|
1304 |
+
"position_ids": position_ids,
|
1305 |
+
"past_key_values": past_key_values,
|
1306 |
+
"use_cache": kwargs.get("use_cache"),
|
1307 |
+
"attention_mask": attention_mask,
|
1308 |
+
}
|
1309 |
+
)
|
1310 |
+
return model_inputs
|
1311 |
+
|
1312 |
+
@staticmethod
|
1313 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1314 |
+
reordered_past = ()
|
1315 |
+
for layer_past in past_key_values:
|
1316 |
+
reordered_past += (
|
1317 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1318 |
+
)
|
1319 |
+
return reordered_past
|
1320 |
+
|
1321 |
+
@torch.inference_mode()
|
1322 |
+
def chat(self, tokenizer, query: str, history: List[Dict] = None, role: str = "user",
|
1323 |
+
max_length: int = 4096, num_beams=1, do_sample=True, top_p=0.8, temperature=0.3, logits_processor=None,
|
1324 |
+
**kwargs):
|
1325 |
+
if history is None:
|
1326 |
+
history = []
|
1327 |
+
if logits_processor:
|
1328 |
+
gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
|
1329 |
+
"temperature": temperature, "logits_processor": logits_processor, **kwargs}
|
1330 |
+
else:
|
1331 |
+
gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
|
1332 |
+
"temperature": temperature, "logits_processor": logits_processor, **kwargs}
|
1333 |
+
|
1334 |
+
history.append({"role": role, "content": query})
|
1335 |
+
history_str = tokenizer.apply_chat_template(history, tokenize=False, add_generation_prompt=False)
|
1336 |
+
inputs = tokenizer(history_str, return_tensors='pt').to(self.device)
|
1337 |
+
outputs = self.generate(**inputs, **gen_kwargs)
|
1338 |
+
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):-1]
|
1339 |
+
response = tokenizer.decode(outputs)
|
1340 |
+
pattern = re.compile(r".*?(?=<AI>|<用户>)", re.DOTALL)
|
1341 |
+
matches = pattern.findall(response)
|
1342 |
+
if len(matches) > 0:
|
1343 |
+
response = matches[0]
|
1344 |
+
history.append({"role": "assistant", "content": response})
|
1345 |
+
return response, history
|
1346 |
+
|
1347 |
+
|
1348 |
+
@add_start_docstrings(
|
1349 |
+
"""
|
1350 |
+
The MiniCPM Model transformer with a sequence classification head on top (linear layer).
|
1351 |
+
|
1352 |
+
[`MiniCPMForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1353 |
+
(e.g. GPT-2) do.
|
1354 |
+
|
1355 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1356 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1357 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1358 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1359 |
+
each row of the batch).
|
1360 |
+
""",
|
1361 |
+
MINICPM_START_DOCSTRING,
|
1362 |
+
)
|
1363 |
+
class MiniCPMForSequenceClassification(MiniCPMPreTrainedModel):
|
1364 |
+
def __init__(self, config):
|
1365 |
+
super().__init__(config)
|
1366 |
+
self.num_labels = config.num_labels
|
1367 |
+
self.model = MiniCPMModel(config)
|
1368 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1369 |
+
|
1370 |
+
# Initialize weights and apply final processing
|
1371 |
+
self.post_init()
|
1372 |
+
|
1373 |
+
def get_input_embeddings(self):
|
1374 |
+
return self.model.embed_tokens
|
1375 |
+
|
1376 |
+
def set_input_embeddings(self, value):
|
1377 |
+
self.model.embed_tokens = value
|
1378 |
+
|
1379 |
+
@add_start_docstrings_to_model_forward(MINICPM_INPUTS_DOCSTRING)
|
1380 |
+
def forward(
|
1381 |
+
self,
|
1382 |
+
input_ids: torch.LongTensor = None,
|
1383 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1384 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1385 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1386 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1387 |
+
labels: Optional[torch.LongTensor] = None,
|
1388 |
+
use_cache: Optional[bool] = None,
|
1389 |
+
output_attentions: Optional[bool] = None,
|
1390 |
+
output_hidden_states: Optional[bool] = None,
|
1391 |
+
return_dict: Optional[bool] = None,
|
1392 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1393 |
+
r"""
|
1394 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1395 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1396 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1397 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1398 |
+
"""
|
1399 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1400 |
+
|
1401 |
+
transformer_outputs = self.model(
|
1402 |
+
input_ids,
|
1403 |
+
attention_mask=attention_mask,
|
1404 |
+
position_ids=position_ids,
|
1405 |
+
past_key_values=past_key_values,
|
1406 |
+
inputs_embeds=inputs_embeds,
|
1407 |
+
use_cache=use_cache,
|
1408 |
+
output_attentions=output_attentions,
|
1409 |
+
output_hidden_states=output_hidden_states,
|
1410 |
+
return_dict=return_dict,
|
1411 |
+
)
|
1412 |
+
hidden_states = transformer_outputs[0]
|
1413 |
+
logits = self.score(hidden_states)
|
1414 |
+
|
1415 |
+
if input_ids is not None:
|
1416 |
+
batch_size = input_ids.shape[0]
|
1417 |
+
else:
|
1418 |
+
batch_size = inputs_embeds.shape[0]
|
1419 |
+
|
1420 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1421 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1422 |
+
if self.config.pad_token_id is None:
|
1423 |
+
sequence_lengths = -1
|
1424 |
+
else:
|
1425 |
+
if input_ids is not None:
|
1426 |
+
sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to(
|
1427 |
+
logits.device
|
1428 |
+
)
|
1429 |
+
else:
|
1430 |
+
sequence_lengths = -1
|
1431 |
+
|
1432 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1433 |
+
|
1434 |
+
loss = None
|
1435 |
+
if labels is not None:
|
1436 |
+
labels = labels.to(logits.device)
|
1437 |
+
if self.config.problem_type is None:
|
1438 |
+
if self.num_labels == 1:
|
1439 |
+
self.config.problem_type = "regression"
|
1440 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1441 |
+
self.config.problem_type = "single_label_classification"
|
1442 |
+
else:
|
1443 |
+
self.config.problem_type = "multi_label_classification"
|
1444 |
+
|
1445 |
+
if self.config.problem_type == "regression":
|
1446 |
+
loss_fct = MSELoss()
|
1447 |
+
if self.num_labels == 1:
|
1448 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1449 |
+
else:
|
1450 |
+
loss = loss_fct(pooled_logits, labels)
|
1451 |
+
elif self.config.problem_type == "single_label_classification":
|
1452 |
+
loss_fct = CrossEntropyLoss()
|
1453 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1454 |
+
elif self.config.problem_type == "multi_label_classification":
|
1455 |
+
loss_fct = BCEWithLogitsLoss()
|
1456 |
+
loss = loss_fct(pooled_logits, labels)
|
1457 |
+
if not return_dict:
|
1458 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1459 |
+
return ((loss,) + output) if loss is not None else output
|
1460 |
+
|
1461 |
+
return SequenceClassifierOutputWithPast(
|
1462 |
+
loss=loss,
|
1463 |
+
logits=pooled_logits,
|
1464 |
+
past_key_values=transformer_outputs.past_key_values,
|
1465 |
+
hidden_states=transformer_outputs.hidden_states,
|
1466 |
+
attentions=transformer_outputs.attentions,
|
1467 |
+
)
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6dd932a34bea7eb041f248d38ef10b21c66fba6ee7689ec5049eb490606b7fd8
|
3 |
+
size 2720644645
|
special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"unk_token": {
|
17 |
+
"content": "<unk>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb74d51116831c3bf65db812c553f94ab0c88dcf97a5bbb37e3504f6d359c530
|
3 |
+
size 1181204
|
tokenizer_config.json
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
}
|
29 |
+
},
|
30 |
+
"bos_token": "<s>",
|
31 |
+
"clean_up_tokenization_spaces": false,
|
32 |
+
"eos_token": "</s>",
|
33 |
+
"legacy": true,
|
34 |
+
"model_max_length": 1000000000000000019884624838656,
|
35 |
+
"pad_token": null,
|
36 |
+
"sp_model_kwargs": {},
|
37 |
+
"spaces_between_special_tokens": false,
|
38 |
+
"tokenizer_class": "LlamaTokenizer",
|
39 |
+
"unk_token": "<unk>",
|
40 |
+
"use_default_system_prompt": false
|
41 |
+
}
|