File size: 7,378 Bytes
b65cf91 0c4850f b65cf91 0c4850f 58d81a6 87c4105 b65cf91 dbc4699 0c4850f 58d81a6 0c4850f 58d81a6 0c4850f a6127fb 0c4850f 4808563 0c4850f 4808563 0c4850f b65cf91 0c4850f 87c4105 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
---
license: apache-2.0
tags:
- merge
- mergekit
base_model:
- failspy/Llama-3-8B-Instruct-abliterated
model-index:
- name: Aura-Llama-Abliterated
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 49.23
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TheSkullery/Aura-Llama-Abliterated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 72.27
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TheSkullery/Aura-Llama-Abliterated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 55.71
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TheSkullery/Aura-Llama-Abliterated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 46.63
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TheSkullery/Aura-Llama-Abliterated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 69.3
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TheSkullery/Aura-Llama-Abliterated
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 27.6
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TheSkullery/Aura-Llama-Abliterated
name: Open LLM Leaderboard
---
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Aura-llama-3 Data Card</title>
<link href="https://fonts.googleapis.com/css2?family=Quicksand:wght@400;500;600&display=swap" rel="stylesheet">
<style> body { font-family: 'Quicksand', sans-serif; background: linear-gradient(135deg, #2E3440 0%, #1A202C 100%); color: #D8DEE9; margin: 0; padding: 0; font-size: 16px; }
.container { width: 100%; max-width: 1440px; margin: 20px auto; background-color: rgba(255, 255, 255, 0.02); padding: 20px; border-radius: 12px; box-shadow: 0 4px 10px rgba(0, 0, 0, 0.2); backdrop-filter: blur(10px); border: 1px solid rgba(255, 255, 255, 0.1); }
.header h1 { font-size: 28px; color: #ECEFF4; margin: 0 0 20px 0; text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.3); }
.update-section { margin-top: 30px; } .update-section h2 { font-size: 24px; color: #88C0D0; }
.update-section p { font-size: 16px; line-height: 1.6; color: #ECEFF4; }
.info img { width: 100%; border-radius: 10px; margin-bottom: 15px; }
a { color: #88C0D0; text-decoration: none; }
a:hover { color: #A3BE8C; }
pre { background-color: rgba(255, 255, 255, 0.05); padding: 10px; border-radius: 5px; overflow-x: auto; }
code { font-family: 'Courier New', monospace; color: #A3BE8C; } </style> </head> <body> <div class="container">
<div class="header">
<h1>Aura-llama-3-Abliterated</h1> </div> <div class="info">
<img src="https://cdn-uploads.huggingface.co/production/uploads/64545af5ec40bbbd01242ca6/AwLNDVB-GIY7k0wnVV_TX.png" alt="Aura-llama-Abliterated Image">
<p>Now that the cute anime girl has your attention.</p>
<p>UPDATE: Model is now using the abliterated version of meta llama 3 8b </p>
<p>Aura-llama is using the methodology presented by SOLAR for scaling LLMs called depth up-scaling (DUS), which encompasses architectural modifications with continued pretraining. Using the solar paper as a base, I integrated Llama-3 weights into the upscaled layers, and In the future plan to continue training the model.</p>
<p>Aura-llama is a merge of the following models to create a base model to work from:</p>
<ul>
<li><a href="https://huggingface.co/failspy/Llama-3-8B-Instruct-abliterated">failspy/Llama-3-8B-Instruct-abliterated</a></li>
<li><a href="https://huggingface.co/failspy/Llama-3-8B-Instruct-abliterated">failspy/Llama-3-8B-Instruct-abliterated</a></li>
</ul>
</div>
<div class="update-section">
<h2>Abliterated Merged Evals (Has Not Been Finetuned):</h2>
<p>Aura-llama-Abliterated</p>
<ul>
<li>Avg: ?</li>
<li>ARC: ?</li>
<li>HellaSwag: ?</li>
<li>MMLU: ?</li>
<li>T-QA: ?</li>
<li>Winogrande: ?</li>
<li>GSM8K: ?</li>
</ul>
<h2>Non Abliterated Merged Evals (Has Not Been Finetuned):</h2>
<p>Aura-llama-Original</p>
<ul>
<li>Avg: 63.13</li>
<li>ARC: 58.02</li>
<li>HellaSwag: 77.82</li>
<li>MMLU: 65.61</li>
<li>T-QA: 51.94</li>
<li>Winogrande: 73.40</li>
<li>GSM8K: 52.01</li>
</ul>
</div>
<div class="update-section">
<h2>🧩 Configuration</h2>
<pre><code>
dtype: bfloat16
merge_method: passthrough
slices:
- sources:
- layer_range: [0, 12]
model: failspy/Llama-3-8B-Instruct-abliterated
- sources:
- layer_range: [8, 20]
model: failspy/Llama-3-8B-Instruct-abliterated
- sources:
- layer_range: [16, 28]
model: failspy/Llama-3-8B-Instruct-abliterated
- sources:
- layer_range: [24, 32]
model: failspy/Llama-3-8B-Instruct-abliterated
</code></pre>
</div>
</div>
</body>
</html>
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_TheSkullery__Aura-Llama-Abliterated)
| Metric |Value|
|---------------------------------|----:|
|Avg. |53.46|
|AI2 Reasoning Challenge (25-Shot)|49.23|
|HellaSwag (10-Shot) |72.27|
|MMLU (5-Shot) |55.71|
|TruthfulQA (0-shot) |46.63|
|Winogrande (5-shot) |69.30|
|GSM8k (5-shot) |27.60|
|