File size: 7,378 Bytes
b65cf91
0c4850f
b65cf91
 
0c4850f
 
58d81a6
87c4105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b65cf91
 
dbc4699
 
 
 
 
 
 
 
 
 
 
 
 
0c4850f
58d81a6
 
0c4850f
58d81a6
0c4850f
 
 
a6127fb
 
0c4850f
 
 
 
4808563
0c4850f
 
 
 
 
 
 
 
 
 
4808563
0c4850f
 
 
 
 
 
 
 
 
 
 
 
 
b65cf91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c4850f
 
 
 
 
87c4105
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
---
license: apache-2.0
tags:
- merge
- mergekit
base_model:
- failspy/Llama-3-8B-Instruct-abliterated
model-index:
- name: Aura-Llama-Abliterated
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 49.23
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TheSkullery/Aura-Llama-Abliterated
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 72.27
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TheSkullery/Aura-Llama-Abliterated
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 55.71
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TheSkullery/Aura-Llama-Abliterated
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 46.63
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TheSkullery/Aura-Llama-Abliterated
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 69.3
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TheSkullery/Aura-Llama-Abliterated
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 27.6
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=TheSkullery/Aura-Llama-Abliterated
      name: Open LLM Leaderboard
---

<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <meta name="viewport" content="width=device-width, initial-scale=1.0"> 
  <title>Aura-llama-3 Data Card</title> 
  <link href="https://fonts.googleapis.com/css2?family=Quicksand:wght@400;500;600&display=swap" rel="stylesheet"> 
  <style> body { font-family: 'Quicksand', sans-serif; background: linear-gradient(135deg, #2E3440 0%, #1A202C 100%); color: #D8DEE9; margin: 0; padding: 0; font-size: 16px; } 
    .container { width: 100%; max-width: 1440px; margin: 20px auto; background-color: rgba(255, 255, 255, 0.02); padding: 20px; border-radius: 12px; box-shadow: 0 4px 10px rgba(0, 0, 0, 0.2); backdrop-filter: blur(10px); border: 1px solid rgba(255, 255, 255, 0.1); } 
    .header h1 { font-size: 28px; color: #ECEFF4; margin: 0 0 20px 0; text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.3); } 
    .update-section { margin-top: 30px; } .update-section h2 { font-size: 24px; color: #88C0D0; } 
    .update-section p { font-size: 16px; line-height: 1.6; color: #ECEFF4; } 
    .info img { width: 100%; border-radius: 10px; margin-bottom: 15px; } 
    a { color: #88C0D0; text-decoration: none; } 
    a:hover { color: #A3BE8C; } 
    pre { background-color: rgba(255, 255, 255, 0.05); padding: 10px; border-radius: 5px; overflow-x: auto; } 
    code { font-family: 'Courier New', monospace; color: #A3BE8C; } </style> </head> <body> <div class="container"> 
      <div class="header"> 
        <h1>Aura-llama-3-Abliterated</h1> </div> <div class="info"> 
          <img src="https://cdn-uploads.huggingface.co/production/uploads/64545af5ec40bbbd01242ca6/AwLNDVB-GIY7k0wnVV_TX.png" alt="Aura-llama-Abliterated Image"> 
          <p>Now that the cute anime girl has your attention.</p> 
          <p>UPDATE: Model is now using the abliterated version of meta llama 3 8b </p>
          <p>Aura-llama is using the methodology presented by SOLAR for scaling LLMs called depth up-scaling (DUS), which encompasses architectural modifications with continued pretraining. Using the solar paper as a base, I integrated Llama-3 weights into the upscaled layers, and In the future plan to continue training the model.</p> 
          <p>Aura-llama is a merge of the following models to create a base model to work from:</p> 
          <ul> 
            <li><a href="https://huggingface.co/failspy/Llama-3-8B-Instruct-abliterated">failspy/Llama-3-8B-Instruct-abliterated</a></li> 
            <li><a href="https://huggingface.co/failspy/Llama-3-8B-Instruct-abliterated">failspy/Llama-3-8B-Instruct-abliterated</a></li> 
          </ul> 
        </div> 
      <div class="update-section"> 
        <h2>Abliterated Merged Evals (Has Not Been Finetuned):</h2> 
        <p>Aura-llama-Abliterated</p> 
        <ul> 
          <li>Avg: ?</li> 
          <li>ARC: ?</li> 
          <li>HellaSwag: ?</li> 
          <li>MMLU: ?</li> 
          <li>T-QA: ?</li> 
          <li>Winogrande: ?</li> 
          <li>GSM8K: ?</li> 
        </ul> 
        <h2>Non Abliterated Merged Evals (Has Not Been Finetuned):</h2> 
        <p>Aura-llama-Original</p> 
        <ul> 
          <li>Avg: 63.13</li> 
          <li>ARC: 58.02</li> 
          <li>HellaSwag: 77.82</li> 
          <li>MMLU: 65.61</li> 
          <li>T-QA: 51.94</li> 
          <li>Winogrande: 73.40</li> 
          <li>GSM8K: 52.01</li> 
        </ul> 
      </div> 
      <div class="update-section"> 
        <h2>🧩 Configuration</h2> 
        <pre><code>
dtype: bfloat16
merge_method: passthrough
slices:
- sources:
  - layer_range: [0, 12]
    model: failspy/Llama-3-8B-Instruct-abliterated
- sources:
  - layer_range: [8, 20]
    model: failspy/Llama-3-8B-Instruct-abliterated
- sources:
  - layer_range: [16, 28]
    model: failspy/Llama-3-8B-Instruct-abliterated
- sources:
  - layer_range: [24, 32]
    model: failspy/Llama-3-8B-Instruct-abliterated
        </code></pre> 
      </div> 
    </div> 
    </body> 
    </html>

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_TheSkullery__Aura-Llama-Abliterated)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |53.46|
|AI2 Reasoning Challenge (25-Shot)|49.23|
|HellaSwag (10-Shot)              |72.27|
|MMLU (5-Shot)                    |55.71|
|TruthfulQA (0-shot)              |46.63|
|Winogrande (5-shot)              |69.30|
|GSM8k (5-shot)                   |27.60|