|
import cv2 |
|
import sys |
|
from sahi.models.yolov8 import Yolov8DetectionModel |
|
from sahi.predict import get_sliced_prediction |
|
import supervision as sv |
|
import numpy as np |
|
|
|
|
|
if len(sys.argv) != 8: |
|
print("Usage: python yolov8_video_inference.py <model_path> <input_video_path> <output_video_path> <slice_height> <slice_width> <overlap_height_ratio> <overlap_width_ratio>") |
|
sys.exit(1) |
|
|
|
|
|
model_path = sys.argv[1] |
|
input_video_path = sys.argv[2] |
|
output_video_path = sys.argv[3] |
|
slice_height = int(sys.argv[4]) |
|
slice_width = int(sys.argv[5]) |
|
overlap_height_ratio = float(sys.argv[6]) |
|
overlap_width_ratio = float(sys.argv[7]) |
|
|
|
|
|
detection_model = Yolov8DetectionModel( |
|
model_path=model_path, |
|
confidence_threshold=0.25, |
|
device="cuda" |
|
) |
|
|
|
|
|
video_info = sv.VideoInfo.from_video_path(video_path=input_video_path) |
|
|
|
|
|
cap = cv2.VideoCapture(input_video_path) |
|
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) |
|
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) |
|
fps = cap.get(cv2.CAP_PROP_FPS) |
|
fourcc = cv2.VideoWriter_fourcc(*"mp4v") |
|
|
|
|
|
out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height)) |
|
|
|
|
|
tracker = sv.ByteTrack(frame_rate=video_info.fps) |
|
smoother = sv.DetectionsSmoother() |
|
|
|
|
|
box_annotator = sv.BoxCornerAnnotator(thickness=2) |
|
label_annotator = sv.LabelAnnotator( |
|
text_scale=0.5, |
|
text_thickness=1, |
|
text_padding=1 |
|
) |
|
|
|
|
|
frame_count = 0 |
|
class_id_to_name = {} |
|
|
|
while cap.isOpened(): |
|
ret, frame = cap.read() |
|
if not ret: |
|
break |
|
|
|
|
|
result = get_sliced_prediction( |
|
image=frame, |
|
detection_model=detection_model, |
|
slice_height=slice_height, |
|
slice_width=slice_width, |
|
overlap_height_ratio=overlap_height_ratio, |
|
overlap_width_ratio=overlap_width_ratio |
|
) |
|
|
|
|
|
object_predictions = result.object_prediction_list |
|
|
|
|
|
xyxy = [] |
|
confidences = [] |
|
class_ids = [] |
|
|
|
for pred in object_predictions: |
|
if pred.category.id not in class_id_to_name: |
|
class_id_to_name[pred.category.id] = pred.category.name |
|
|
|
|
|
for pred in object_predictions: |
|
bbox = pred.bbox.to_xyxy() |
|
xyxy.append(bbox) |
|
confidences.append(pred.score.value) |
|
class_ids.append(pred.category.id) |
|
|
|
|
|
if xyxy: |
|
|
|
xyxy = np.array(xyxy, dtype=np.float32) |
|
confidences = np.array(confidences, dtype=np.float32) |
|
class_ids = np.array(class_ids, dtype=int) |
|
|
|
|
|
detections = sv.Detections( |
|
xyxy=xyxy, |
|
confidence=confidences, |
|
class_id=class_ids |
|
) |
|
|
|
|
|
detections = tracker.update_with_detections(detections) |
|
|
|
|
|
detections = smoother.update_with_detections(detections) |
|
|
|
|
|
|
|
labels = [] |
|
for i in range(len(detections.xyxy)): |
|
class_id = detections.class_id[i] |
|
confidence = detections.confidence[i] |
|
class_name = class_id_to_name.get(class_id, 'Unknown') |
|
label = f"{class_name} {confidence:.2f}" |
|
|
|
|
|
if hasattr(detections, 'tracker_id') and detections.tracker_id is not None: |
|
tracker_id = detections.tracker_id[i] |
|
label = f"ID {tracker_id} {label}" |
|
|
|
labels.append(label) |
|
|
|
|
|
annotated_frame = frame.copy() |
|
annotated_frame = box_annotator.annotate( |
|
scene=annotated_frame, |
|
detections=detections |
|
) |
|
annotated_frame = label_annotator.annotate( |
|
scene=annotated_frame, |
|
detections=detections, |
|
labels=labels |
|
) |
|
else: |
|
|
|
annotated_frame = frame.copy() |
|
|
|
|
|
out.write(annotated_frame) |
|
|
|
frame_count += 1 |
|
print(f"Processed frame {frame_count}", end='\r') |
|
|
|
|
|
cap.release() |
|
out.release() |
|
print("\nInference complete. Video saved at", output_video_path) |
|
|