mistral-lp2-org_org_a
Browse files- README.md +6 -21
- adapter_config.json +3 -3
- adapter_model.safetensors +1 -1
- trainer_state.json +329 -0
- training_args.bin +1 -1
README.md
CHANGED
@@ -16,10 +16,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
|
17 |
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
-
- Loss:
|
20 |
-
- F1 Micro: 0.
|
21 |
-
- F1 Macro: 0.
|
22 |
-
- F1 Weighted: 0.
|
23 |
|
24 |
## Model description
|
25 |
|
@@ -44,28 +44,13 @@ The following hyperparameters were used during training:
|
|
44 |
- seed: 42
|
45 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
- lr_scheduler_type: linear
|
47 |
-
- training_steps:
|
48 |
|
49 |
### Training results
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | F1 Micro | F1 Macro | F1 Weighted |
|
52 |
|:-------------:|:------:|:----:|:---------------:|:--------:|:--------:|:-----------:|
|
53 |
-
|
|
54 |
-
| 1.4371 | 0.0308 | 50 | 1.2747 | 0.6089 | 0.5857 | 0.6052 |
|
55 |
-
| 1.2556 | 0.0462 | 75 | 1.1545 | 0.6304 | 0.6036 | 0.6240 |
|
56 |
-
| 1.2415 | 0.0615 | 100 | 1.0691 | 0.6320 | 0.6132 | 0.6301 |
|
57 |
-
| 0.9864 | 0.0769 | 125 | 1.0264 | 0.6399 | 0.6278 | 0.6411 |
|
58 |
-
| 1.0647 | 0.0923 | 150 | 0.9918 | 0.6510 | 0.6266 | 0.6455 |
|
59 |
-
| 0.9849 | 0.1077 | 175 | 0.9679 | 0.6576 | 0.6317 | 0.6511 |
|
60 |
-
| 1.0067 | 0.1231 | 200 | 0.9383 | 0.6501 | 0.6384 | 0.6513 |
|
61 |
-
| 0.8928 | 0.1385 | 225 | 0.9243 | 0.6620 | 0.6405 | 0.6579 |
|
62 |
-
| 0.9858 | 0.1538 | 250 | 0.9132 | 0.6627 | 0.6405 | 0.6582 |
|
63 |
-
| 0.9085 | 0.1692 | 275 | 0.9011 | 0.6575 | 0.6446 | 0.6581 |
|
64 |
-
| 1.0059 | 0.1846 | 300 | 0.9018 | 0.6686 | 0.6436 | 0.6623 |
|
65 |
-
| 0.8939 | 0.2 | 325 | 0.8928 | 0.6682 | 0.6448 | 0.6629 |
|
66 |
-
| 0.864 | 0.2154 | 350 | 0.8833 | 0.6622 | 0.6478 | 0.6619 |
|
67 |
-
| 0.9499 | 0.2308 | 375 | 0.8837 | 0.6585 | 0.6463 | 0.6593 |
|
68 |
-
| 0.9721 | 0.2462 | 400 | 0.8808 | 0.6615 | 0.6476 | 0.6615 |
|
69 |
|
70 |
|
71 |
### Framework versions
|
|
|
16 |
|
17 |
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 1.6260
|
20 |
+
- F1 Micro: 0.5230
|
21 |
+
- F1 Macro: 0.5155
|
22 |
+
- F1 Weighted: 0.5274
|
23 |
|
24 |
## Model description
|
25 |
|
|
|
44 |
- seed: 42
|
45 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
- lr_scheduler_type: linear
|
47 |
+
- training_steps: 25
|
48 |
|
49 |
### Training results
|
50 |
|
51 |
| Training Loss | Epoch | Step | Validation Loss | F1 Micro | F1 Macro | F1 Weighted |
|
52 |
|:-------------:|:------:|:----:|:---------------:|:--------:|:--------:|:-----------:|
|
53 |
+
| 1.8454 | 0.0154 | 25 | 1.6260 | 0.5230 | 0.5155 | 0.5274 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
|
56 |
### Framework versions
|
adapter_config.json
CHANGED
@@ -20,10 +20,10 @@
|
|
20 |
"rank_pattern": {},
|
21 |
"revision": null,
|
22 |
"target_modules": [
|
23 |
-
"k_proj",
|
24 |
"q_proj",
|
25 |
-
"
|
26 |
-
"o_proj"
|
|
|
27 |
],
|
28 |
"task_type": "SEQ_CLS",
|
29 |
"use_dora": false,
|
|
|
20 |
"rank_pattern": {},
|
21 |
"revision": null,
|
22 |
"target_modules": [
|
|
|
23 |
"q_proj",
|
24 |
+
"k_proj",
|
25 |
+
"o_proj",
|
26 |
+
"v_proj"
|
27 |
],
|
28 |
"task_type": "SEQ_CLS",
|
29 |
"use_dora": false,
|
adapter_model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 578881968
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c436c187cbabace0ab368aea37ad0c4711742d5d7324ad76d9c8544cf59472b4
|
3 |
size 578881968
|
trainer_state.json
ADDED
@@ -0,0 +1,329 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.8807787895202637,
|
3 |
+
"best_model_checkpoint": "org_org_a/org_aug_a/checkpoint-400",
|
4 |
+
"epoch": 0.24615384615384617,
|
5 |
+
"eval_steps": 25,
|
6 |
+
"global_step": 400,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.015384615384615385,
|
13 |
+
"grad_norm": 99.7617416381836,
|
14 |
+
"learning_rate": 9.375e-05,
|
15 |
+
"loss": 2.2195,
|
16 |
+
"step": 25
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.015384615384615385,
|
20 |
+
"eval_f1_macro": 0.5521299126846324,
|
21 |
+
"eval_f1_micro": 0.5691194856224325,
|
22 |
+
"eval_f1_weighted": 0.569423288164649,
|
23 |
+
"eval_loss": 1.520703673362732,
|
24 |
+
"eval_runtime": 1286.7359,
|
25 |
+
"eval_samples_per_second": 8.703,
|
26 |
+
"eval_steps_per_second": 0.272,
|
27 |
+
"step": 25
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.03076923076923077,
|
31 |
+
"grad_norm": 40.433555603027344,
|
32 |
+
"learning_rate": 8.75e-05,
|
33 |
+
"loss": 1.4371,
|
34 |
+
"step": 50
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"epoch": 0.03076923076923077,
|
38 |
+
"eval_f1_macro": 0.5857301862067549,
|
39 |
+
"eval_f1_micro": 0.6089480264332917,
|
40 |
+
"eval_f1_weighted": 0.6051732662908408,
|
41 |
+
"eval_loss": 1.2746953964233398,
|
42 |
+
"eval_runtime": 1302.368,
|
43 |
+
"eval_samples_per_second": 8.598,
|
44 |
+
"eval_steps_per_second": 0.269,
|
45 |
+
"step": 50
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.046153846153846156,
|
49 |
+
"grad_norm": 50.680335998535156,
|
50 |
+
"learning_rate": 8.125000000000001e-05,
|
51 |
+
"loss": 1.2556,
|
52 |
+
"step": 75
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 0.046153846153846156,
|
56 |
+
"eval_f1_macro": 0.6036315452406847,
|
57 |
+
"eval_f1_micro": 0.6303804250759064,
|
58 |
+
"eval_f1_weighted": 0.6240449220829647,
|
59 |
+
"eval_loss": 1.1545159816741943,
|
60 |
+
"eval_runtime": 1308.8563,
|
61 |
+
"eval_samples_per_second": 8.556,
|
62 |
+
"eval_steps_per_second": 0.267,
|
63 |
+
"step": 75
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.06153846153846154,
|
67 |
+
"grad_norm": 24.990671157836914,
|
68 |
+
"learning_rate": 7.500000000000001e-05,
|
69 |
+
"loss": 1.2415,
|
70 |
+
"step": 100
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"epoch": 0.06153846153846154,
|
74 |
+
"eval_f1_macro": 0.6131831448419165,
|
75 |
+
"eval_f1_micro": 0.6319878549741025,
|
76 |
+
"eval_f1_weighted": 0.6300913896752308,
|
77 |
+
"eval_loss": 1.0690622329711914,
|
78 |
+
"eval_runtime": 1302.0106,
|
79 |
+
"eval_samples_per_second": 8.601,
|
80 |
+
"eval_steps_per_second": 0.269,
|
81 |
+
"step": 100
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"epoch": 0.07692307692307693,
|
85 |
+
"grad_norm": 20.941816329956055,
|
86 |
+
"learning_rate": 6.875e-05,
|
87 |
+
"loss": 0.9864,
|
88 |
+
"step": 125
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"epoch": 0.07692307692307693,
|
92 |
+
"eval_f1_macro": 0.627800207605976,
|
93 |
+
"eval_f1_micro": 0.6399357028040722,
|
94 |
+
"eval_f1_weighted": 0.6411240450638264,
|
95 |
+
"eval_loss": 1.0263742208480835,
|
96 |
+
"eval_runtime": 1310.3949,
|
97 |
+
"eval_samples_per_second": 8.546,
|
98 |
+
"eval_steps_per_second": 0.267,
|
99 |
+
"step": 125
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.09230769230769231,
|
103 |
+
"grad_norm": 17.243314743041992,
|
104 |
+
"learning_rate": 6.25e-05,
|
105 |
+
"loss": 1.0647,
|
106 |
+
"step": 150
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.09230769230769231,
|
110 |
+
"eval_f1_macro": 0.6265827051287185,
|
111 |
+
"eval_f1_micro": 0.6510091087694231,
|
112 |
+
"eval_f1_weighted": 0.6455165794591529,
|
113 |
+
"eval_loss": 0.9917964339256287,
|
114 |
+
"eval_runtime": 1292.6103,
|
115 |
+
"eval_samples_per_second": 8.663,
|
116 |
+
"eval_steps_per_second": 0.271,
|
117 |
+
"step": 150
|
118 |
+
},
|
119 |
+
{
|
120 |
+
"epoch": 0.1076923076923077,
|
121 |
+
"grad_norm": 20.114173889160156,
|
122 |
+
"learning_rate": 5.6250000000000005e-05,
|
123 |
+
"loss": 0.9849,
|
124 |
+
"step": 175
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"epoch": 0.1076923076923077,
|
128 |
+
"eval_f1_macro": 0.6317476736951155,
|
129 |
+
"eval_f1_micro": 0.6576174316842294,
|
130 |
+
"eval_f1_weighted": 0.6510976948325254,
|
131 |
+
"eval_loss": 0.9679338932037354,
|
132 |
+
"eval_runtime": 1305.0812,
|
133 |
+
"eval_samples_per_second": 8.58,
|
134 |
+
"eval_steps_per_second": 0.268,
|
135 |
+
"step": 175
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.12307692307692308,
|
139 |
+
"grad_norm": 39.2221565246582,
|
140 |
+
"learning_rate": 5e-05,
|
141 |
+
"loss": 1.0067,
|
142 |
+
"step": 200
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.12307692307692308,
|
146 |
+
"eval_f1_macro": 0.6383959350585475,
|
147 |
+
"eval_f1_micro": 0.6501160921593142,
|
148 |
+
"eval_f1_weighted": 0.6513020604373679,
|
149 |
+
"eval_loss": 0.9382981061935425,
|
150 |
+
"eval_runtime": 1283.0843,
|
151 |
+
"eval_samples_per_second": 8.727,
|
152 |
+
"eval_steps_per_second": 0.273,
|
153 |
+
"step": 200
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"epoch": 0.13846153846153847,
|
157 |
+
"grad_norm": 26.992185592651367,
|
158 |
+
"learning_rate": 4.375e-05,
|
159 |
+
"loss": 0.8928,
|
160 |
+
"step": 225
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"epoch": 0.13846153846153847,
|
164 |
+
"eval_f1_macro": 0.640450740779414,
|
165 |
+
"eval_f1_micro": 0.6619932130737631,
|
166 |
+
"eval_f1_weighted": 0.6578984928748007,
|
167 |
+
"eval_loss": 0.9242791533470154,
|
168 |
+
"eval_runtime": 1276.3685,
|
169 |
+
"eval_samples_per_second": 8.773,
|
170 |
+
"eval_steps_per_second": 0.274,
|
171 |
+
"step": 225
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.15384615384615385,
|
175 |
+
"grad_norm": 71.61570739746094,
|
176 |
+
"learning_rate": 3.7500000000000003e-05,
|
177 |
+
"loss": 0.9858,
|
178 |
+
"step": 250
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 0.15384615384615385,
|
182 |
+
"eval_f1_macro": 0.640469116958249,
|
183 |
+
"eval_f1_micro": 0.6627076263618503,
|
184 |
+
"eval_f1_weighted": 0.6581960436641718,
|
185 |
+
"eval_loss": 0.9131789803504944,
|
186 |
+
"eval_runtime": 1285.3671,
|
187 |
+
"eval_samples_per_second": 8.712,
|
188 |
+
"eval_steps_per_second": 0.272,
|
189 |
+
"step": 250
|
190 |
+
},
|
191 |
+
{
|
192 |
+
"epoch": 0.16923076923076924,
|
193 |
+
"grad_norm": 51.381019592285156,
|
194 |
+
"learning_rate": 3.125e-05,
|
195 |
+
"loss": 0.9085,
|
196 |
+
"step": 275
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 0.16923076923076924,
|
200 |
+
"eval_f1_macro": 0.6446344740224741,
|
201 |
+
"eval_f1_micro": 0.6575281300232184,
|
202 |
+
"eval_f1_weighted": 0.6580540316041209,
|
203 |
+
"eval_loss": 0.9010853171348572,
|
204 |
+
"eval_runtime": 1307.6049,
|
205 |
+
"eval_samples_per_second": 8.564,
|
206 |
+
"eval_steps_per_second": 0.268,
|
207 |
+
"step": 275
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"epoch": 0.18461538461538463,
|
211 |
+
"grad_norm": 25.47317886352539,
|
212 |
+
"learning_rate": 2.5e-05,
|
213 |
+
"loss": 1.0059,
|
214 |
+
"step": 300
|
215 |
+
},
|
216 |
+
{
|
217 |
+
"epoch": 0.18461538461538463,
|
218 |
+
"eval_f1_macro": 0.6435798595814134,
|
219 |
+
"eval_f1_micro": 0.6686015359885694,
|
220 |
+
"eval_f1_weighted": 0.662301841928527,
|
221 |
+
"eval_loss": 0.9018191695213318,
|
222 |
+
"eval_runtime": 1330.8319,
|
223 |
+
"eval_samples_per_second": 8.414,
|
224 |
+
"eval_steps_per_second": 0.263,
|
225 |
+
"step": 300
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 0.2,
|
229 |
+
"grad_norm": 16.64508628845215,
|
230 |
+
"learning_rate": 1.8750000000000002e-05,
|
231 |
+
"loss": 0.8939,
|
232 |
+
"step": 325
|
233 |
+
},
|
234 |
+
{
|
235 |
+
"epoch": 0.2,
|
236 |
+
"eval_f1_macro": 0.6448244249080287,
|
237 |
+
"eval_f1_micro": 0.6681550276835149,
|
238 |
+
"eval_f1_weighted": 0.6628710932570111,
|
239 |
+
"eval_loss": 0.892798125743866,
|
240 |
+
"eval_runtime": 1305.0822,
|
241 |
+
"eval_samples_per_second": 8.58,
|
242 |
+
"eval_steps_per_second": 0.268,
|
243 |
+
"step": 325
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 0.2153846153846154,
|
247 |
+
"grad_norm": 32.9316520690918,
|
248 |
+
"learning_rate": 1.25e-05,
|
249 |
+
"loss": 0.864,
|
250 |
+
"step": 350
|
251 |
+
},
|
252 |
+
{
|
253 |
+
"epoch": 0.2153846153846154,
|
254 |
+
"eval_f1_macro": 0.6477608498148076,
|
255 |
+
"eval_f1_micro": 0.6621718163957849,
|
256 |
+
"eval_f1_weighted": 0.6618855058014609,
|
257 |
+
"eval_loss": 0.8832775950431824,
|
258 |
+
"eval_runtime": 1344.9811,
|
259 |
+
"eval_samples_per_second": 8.326,
|
260 |
+
"eval_steps_per_second": 0.26,
|
261 |
+
"step": 350
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.23076923076923078,
|
265 |
+
"grad_norm": 63.84526824951172,
|
266 |
+
"learning_rate": 6.25e-06,
|
267 |
+
"loss": 0.9499,
|
268 |
+
"step": 375
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.23076923076923078,
|
272 |
+
"eval_f1_macro": 0.646307301425064,
|
273 |
+
"eval_f1_micro": 0.6585104482943382,
|
274 |
+
"eval_f1_weighted": 0.659331813949001,
|
275 |
+
"eval_loss": 0.8836826682090759,
|
276 |
+
"eval_runtime": 1287.5574,
|
277 |
+
"eval_samples_per_second": 8.697,
|
278 |
+
"eval_steps_per_second": 0.272,
|
279 |
+
"step": 375
|
280 |
+
},
|
281 |
+
{
|
282 |
+
"epoch": 0.24615384615384617,
|
283 |
+
"grad_norm": 21.614879608154297,
|
284 |
+
"learning_rate": 0.0,
|
285 |
+
"loss": 0.9721,
|
286 |
+
"step": 400
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"epoch": 0.24615384615384617,
|
290 |
+
"eval_f1_macro": 0.6475943444675745,
|
291 |
+
"eval_f1_micro": 0.6614574031076978,
|
292 |
+
"eval_f1_weighted": 0.6614511612983146,
|
293 |
+
"eval_loss": 0.8807787895202637,
|
294 |
+
"eval_runtime": 1313.0891,
|
295 |
+
"eval_samples_per_second": 8.528,
|
296 |
+
"eval_steps_per_second": 0.267,
|
297 |
+
"step": 400
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 0.24615384615384617,
|
301 |
+
"step": 400,
|
302 |
+
"total_flos": 1.690284412871639e+17,
|
303 |
+
"train_loss": 1.104334650039673,
|
304 |
+
"train_runtime": 22485.3021,
|
305 |
+
"train_samples_per_second": 0.569,
|
306 |
+
"train_steps_per_second": 0.018
|
307 |
+
},
|
308 |
+
{
|
309 |
+
"epoch": 0.24615384615384617,
|
310 |
+
"eval_f1_macro": 0.6475943444675745,
|
311 |
+
"eval_f1_micro": 0.6614574031076978,
|
312 |
+
"eval_f1_weighted": 0.6614511612983146,
|
313 |
+
"eval_loss": 0.8807787895202637,
|
314 |
+
"eval_runtime": 1299.8097,
|
315 |
+
"eval_samples_per_second": 8.615,
|
316 |
+
"eval_steps_per_second": 0.269,
|
317 |
+
"step": 400
|
318 |
+
}
|
319 |
+
],
|
320 |
+
"logging_steps": 25,
|
321 |
+
"max_steps": 400,
|
322 |
+
"num_input_tokens_seen": 0,
|
323 |
+
"num_train_epochs": 1,
|
324 |
+
"save_steps": 25,
|
325 |
+
"total_flos": 1.690284412871639e+17,
|
326 |
+
"train_batch_size": 32,
|
327 |
+
"trial_name": null,
|
328 |
+
"trial_params": null
|
329 |
+
}
|
training_args.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 4920
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3745867cf9811ba4f8713c7ef3ed9214e2a6decf9a602ecbc1d1be5e8770d17c
|
3 |
size 4920
|