|
from typing import Dict, List, Any |
|
|
|
from optimum.intel import OVModelForSeq2SeqLM |
|
from transformers import AutoTokenizer |
|
|
|
|
|
INSTRUCTION = "rewrite: " |
|
generation_config = { |
|
"max_new_tokens": 16, |
|
"use_cache": True, |
|
"temperature": 0.6, |
|
"do_sample": True, |
|
"top_p": 0.95, |
|
} |
|
|
|
|
|
class EndpointHandler: |
|
def __init__(self, path="."): |
|
|
|
|
|
self.model = OVModelForSeq2SeqLM.from_pretrained( |
|
path, use_cache=True, use_io_binding=False |
|
) |
|
self.tokenizer = AutoTokenizer.from_pretrained(path, use_fast=True) |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
data args: |
|
inputs (:obj: `str` | `PIL.Image` | `np.array`) |
|
kwargs |
|
Return: |
|
A :obj:`list` | `dict`: will be serialized and returned |
|
""" |
|
inputs = data.pop("inputs", data) |
|
parameters = data.pop("parameters", generation_config) |
|
inputs = self.tokenizer( |
|
["{} {}".format(INSTRUCTION, inputs)], |
|
padding=False, |
|
return_tensors="pt", |
|
max_length=20, |
|
truncation=True, |
|
) |
|
|
|
outputs = self.model.generate(**inputs, **parameters) |
|
return self.tokenizer.batch_decode(outputs, skip_special_tokens=True) |
|
|