File size: 1,596 Bytes
be97f84 9c2f952 be97f84 9c2f952 be97f84 9c2f952 be97f84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- Yaxin/SemEval2015Task12Raw
metrics:
- accuracy
model-index:
- name: bert-large-uncased-semeval2015-restaurants
results:
- task:
name: Masked Language Modeling
type: fill-mask
dataset:
name: Yaxin/SemEval2015Task12Raw restaurants
type: Yaxin/SemEval2015Task12Raw
config: restaurants
split: validation
args: restaurants
metrics:
- name: Accuracy
type: accuracy
value: 0.7066666666666667
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-large-uncased-semeval2015-restaurants
This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the Yaxin/SemEval2015Task12Raw restaurants dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2085
- Accuracy: 0.7067
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30.0
### Training results
### Framework versions
- Transformers 4.29.0.dev0
- Pytorch 1.13.0
- Datasets 2.11.0
- Tokenizers 0.13.2
|