File size: 1,596 Bytes
be97f84
 
 
 
 
9c2f952
 
 
be97f84
 
9c2f952
 
 
 
 
 
 
 
 
 
 
 
 
 
be97f84
 
 
 
 
 
 
9c2f952
 
 
 
be97f84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- Yaxin/SemEval2015Task12Raw
metrics:
- accuracy
model-index:
- name: bert-large-uncased-semeval2015-restaurants
  results:
  - task:
      name: Masked Language Modeling
      type: fill-mask
    dataset:
      name: Yaxin/SemEval2015Task12Raw restaurants
      type: Yaxin/SemEval2015Task12Raw
      config: restaurants
      split: validation
      args: restaurants
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.7066666666666667
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-large-uncased-semeval2015-restaurants

This model is a fine-tuned version of [bert-large-uncased](https://huggingface.co/bert-large-uncased) on the Yaxin/SemEval2015Task12Raw restaurants dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2085
- Accuracy: 0.7067

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 30.0

### Training results



### Framework versions

- Transformers 4.29.0.dev0
- Pytorch 1.13.0
- Datasets 2.11.0
- Tokenizers 0.13.2