Amitai Getzler
:heavy_plus_sign: Add
9ef8061
from fastapi import FastAPI, HTTPException, Request
from pydantic import BaseModel
from typing import List, Dict, Any, Union
from base64 import b64decode
from io import BytesIO
import open_clip
import requests
import torch
import numpy as np
from PIL import Image
import uvicorn
app = FastAPI()
class EndpointHandler:
def __init__(self, path="hf-hub:Styld/marqo-fashionSigLIP"):
self.model, self.preprocess_train, self.preprocess_val = (
open_clip.create_model_and_transforms(path)
)
if torch.cuda.is_available():
self.model = self.model.cuda()
self.tokenizer = open_clip.get_tokenizer(path)
def classify_image(self, candidate_labels, image):
def get_top_prediction(text_probs, labels):
max_index = text_probs[0].argmax().item()
return {
"label": labels[max_index],
"score": text_probs[0][max_index].item(),
}
top_prediction = None
for i in range(0, len(candidate_labels), 10):
batch_labels = candidate_labels[i : i + 10]
image_tensor = self.preprocess_val(image).unsqueeze(0)
text = self.tokenizer(batch_labels)
with torch.no_grad(), torch.cuda.amp.autocast():
image_features = self.model.encode_image(image_tensor)
text_features = self.model.encode_text(text)
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
current_top = get_top_prediction(text_probs, batch_labels)
if top_prediction is None or current_top["score"] > top_prediction["score"]:
top_prediction = current_top
return {"label": top_prediction["label"]}
def combine_embeddings(self, text_embeddings, image_embeddings, text_weight=0.5, image_weight=0.5):
if text_embeddings is not None:
avg_text_embedding = np.mean(np.vstack(text_embeddings), axis=0)
else:
avg_text_embedding = np.zeros_like(image_embeddings[0])
if image_embeddings is not None:
avg_image_embeddings = np.mean(np.vstack(image_embeddings), axis=0)
else:
avg_image_embeddings = np.zeros_like(text_embeddings[0])
combined_embedding = np.average(
np.vstack((avg_text_embedding, avg_image_embeddings)),
axis=0,
weights=[text_weight, image_weight],
)
return combined_embedding
def average_text(self, doc):
text_chunks = [
" ".join(doc.split(" ")[i : i + 40])
for i in range(0, len(doc.split(" ")), 40)
]
text_embeddings = []
for chunk in text_chunks:
inputs = self.tokenizer(chunk)
text_features = self.model.encode_text(inputs)
text_features /= text_features.norm(dim=-1, keepdim=True)
text_embeddings.append(text_features.detach().squeeze().numpy())
combined = self.combine_embeddings(
text_embeddings, None, text_weight=1, image_weight=0
)
return combined
def embedd_image(self, doc) -> list:
if not isinstance(doc, str):
image = doc.get("image")
if "https://" in image:
image = image.split("|")
image = [
Image.open(BytesIO(response.content))
for response in [requests.get(image) for image in image]
][0]
image = self.preprocess_val(image).unsqueeze(0)
image_features = self.model.encode_image(image)
image_features /= image_features.norm(dim=-1, keepdim=True)
image_embedding = image_features.detach().squeeze().numpy()
if doc.get("description", "") == "":
return image_embedding.tolist()
else:
average_texts = self.average_text(doc.get("description"))
combined = self.combine_embeddings(
[average_texts],
[image_embedding],
text_weight=0.5,
image_weight=0.5,
)
return combined.tolist()
elif isinstance(doc, str):
return self.average_text(doc).tolist()
def process_batch(self, batch) -> object:
try:
batch = batch.get("batch")
if not isinstance(batch, list):
return "Invalid input: batch must be an array of strings.", 400
embeddings = [self.embedd_image(item) for item in batch]
return embeddings
except Exception as e:
return "An error occurred while processing the request.", 500
def base64_image_to_pil(self, base64_str) -> Image:
image_data = b64decode(base64_str)
image_buffer = BytesIO(image_data)
image = Image.open(image_buffer)
return image
handler = EndpointHandler()
class ClassifyRequest(BaseModel):
candidates: List[str]
image: str
class EmbeddRequest(BaseModel):
batch: List[Union[str, Dict[str, str]]]
@app.post("/classify")
def classify(request: ClassifyRequest):
try:
image = (
Image.open(BytesIO(requests.get(request.image).content))
if "https://" in request.image
else handler.base64_image_to_pil(request.image)
)
response = handler.classify_image(request.candidates, image)
return response
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/embedd")
def embedd(request: EmbeddRequest):
try:
embeddings = handler.process_batch(request.dict())
return {"embeddings": embeddings}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/process")
async def process(request: Request):
try:
data = await request.json()
if "candidates" in data and "image" in data:
classify_request = ClassifyRequest(**data)
return classify(classify_request)
elif "batch" in data:
embedd_request = EmbeddRequest(**data)
return embedd(embedd_request)
else:
raise HTTPException(status_code=400, detail="Invalid request format.")
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000)