Sukmin commited on
Commit
ffb877e
1 Parent(s): 0ea367e

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v2
16
+ type: PandaReachDense-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -1.18 +/- 0.37
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v2**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c95e335cd3abdb5b65aab4767f2f3283f2bed5ceaa421fd829cde4a70dd3ea58
3
+ size 108089
a2c-PandaReachDense-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0
a2c-PandaReachDense-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7bb5bcde1990>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7bb5bcdf1680>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 568008,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1689577849132794852,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "lr_schedule": {
31
+ ":type:": "<class 'function'>",
32
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
33
+ },
34
+ "_last_obs": {
35
+ ":type:": "<class 'collections.OrderedDict'>",
36
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAkW8/vlsIfD4lh/g+zc9BPRFKnz2Z9mU+RCFcvu1n4r2Umvc+pERPvgBLNj1amfY+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALmtwvvhxeT8AzpE/sAqev/hhej8W/My/1oq3v6c5gj/zu74/E8Gjv+vWsT/HILE/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACRbz++Wwh8PiWH+D6rQey/20XkP2MSLT/Nz0E9EUqfPZn2ZT6+vC/A8JoQPnbRLMBEIVy+7WfivZSa9z62he+/Nvw+vvTRLT+kRE++AEs2PVqZ9j4jFfq/9VWVPbVHJD+UaA5LBEsGhpRoEnSUUpR1Lg==",
37
+ "achieved_goal": "[[-0.18694903 0.24612562 0.48540607]\n [ 0.04731731 0.07777799 0.22457351]\n [-0.21497065 -0.11054979 0.4836012 ]\n [-0.20241028 0.04450512 0.48163873]]",
38
+ "desired_goal": "[[-0.23478386 0.9743953 1.1390991 ]\n [-1.2347012 0.9780574 -1.601443 ]\n [-1.4339244 1.0173844 1.4901108 ]\n [-1.2793297 1.3893713 1.3838128 ]]",
39
+ "observation": "[[-0.18694903 0.24612562 0.48540607 -1.845754 1.7833818 0.6760618 ]\n [ 0.04731731 0.07777799 0.22457351 -2.745895 0.14121604 -2.7002845 ]\n [-0.21497065 -0.11054979 0.4836012 -1.871268 -0.18650898 0.6789849 ]\n [-0.20241028 0.04450512 0.48163873 -1.95377 0.07291786 0.64171916]]"
40
+ },
41
+ "_last_episode_starts": {
42
+ ":type:": "<class 'numpy.ndarray'>",
43
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
44
+ },
45
+ "_last_original_obs": {
46
+ ":type:": "<class 'collections.OrderedDict'>",
47
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA+70JPa5/Ur12344+FN+vvU89Gb5OZ4Y9muObvf4A+LwB8yU+PCboPZHhDr5GFoo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
48
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
49
+ "desired_goal": "[[ 0.03362845 -0.0513913 0.27904862]\n [-0.08587471 -0.14964794 0.06562673]\n [-0.07611771 -0.03027391 0.1620598 ]\n [ 0.11335418 -0.13953234 0.26970118]]",
50
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
51
+ },
52
+ "_episode_num": 0,
53
+ "use_sde": false,
54
+ "sde_sample_freq": -1,
55
+ "_current_progress_remaining": 0.43200000000000005,
56
+ "_stats_window_size": 100,
57
+ "ep_info_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+py7XS+N9r+UhpRSlIwBbJRLMowBdJRHQJvt2mQ8wHt1fZQoaAZoCWgPQwgOEMzR4/fxv5SGlFKUaBVLMmgWR0Cb7VBdUsFudX2UKGgGaAloD0MI1H0AUpt4/L+UhpRSlGgVSzJoFkdAm+zcPvrnknV9lChoBmgJaA9DCPP/qiNHev2/lIaUUpRoFUsyaBZHQJvsZdhRZU11fZQoaAZoCWgPQwhMbhRZa6jtv5SGlFKUaBVLMmgWR0Cb8EqEOAiFdX2UKGgGaAloD0MIGCKnr+crBcCUhpRSlGgVSzJoFkdAm++/jwQUYnV9lChoBmgJaA9DCDyInSl0HgnAlIaUUpRoFUsyaBZHQJvvSXa8HwB1fZQoaAZoCWgPQwi13m+044b7v5SGlFKUaBVLMmgWR0Cb7tBkI5YHdX2UKGgGaAloD0MI3e7lPjlqAsCUhpRSlGgVSzJoFkdAm/Jv7BO58XV9lChoBmgJaA9DCOOlm8QgMATAlIaUUpRoFUsyaBZHQJvx5Kf4AS51fZQoaAZoCWgPQwjqQNZTq2/zv5SGlFKUaBVLMmgWR0Cb8W6vq1PWdX2UKGgGaAloD0MIdqc7Tzyn/r+UhpRSlGgVSzJoFkdAm/D2CqZMMHV9lChoBmgJaA9DCGBY/nxbMP+/lIaUUpRoFUsyaBZHQJv02HLzPKN1fZQoaAZoCWgPQwjkwKvlzqwGwJSGlFKUaBVLMmgWR0Cb9E1WsA/+dX2UKGgGaAloD0MIbojxmleVBcCUhpRSlGgVSzJoFkdAm/PXWOIZZXV9lChoBmgJaA9DCOLMr+YAURDAlIaUUpRoFUsyaBZHQJvzXp6hQFd1fZQoaAZoCWgPQwi0y7c+rDf8v5SGlFKUaBVLMmgWR0Cb9v7T2FnJdX2UKGgGaAloD0MIMISc9//x+7+UhpRSlGgVSzJoFkdAm/Zz3qRlpXV9lChoBmgJaA9DCGg+527XKwLAlIaUUpRoFUsyaBZHQJv1/d8Aq/d1fZQoaAZoCWgPQwjwh5//Hnz1v5SGlFKUaBVLMmgWR0Cb9YUVzp5edX2UKGgGaAloD0MISx5Pyw/c6b+UhpRSlGgVSzJoFkdAm/lFBdD6WXV9lChoBmgJaA9DCPutnSgJiey/lIaUUpRoFUsyaBZHQJv4uZ1FH8V1fZQoaAZoCWgPQwhTknU4uuoCwJSGlFKUaBVLMmgWR0Cb+EOC5EtvdX2UKGgGaAloD0MIcjRHVn5Z/b+UhpRSlGgVSzJoFkdAm/fKbBoEjnV9lChoBmgJaA9DCPkwe9l2Gv2/lIaUUpRoFUsyaBZHQJv7gh0Qsf91fZQoaAZoCWgPQwgtCrsoeiDyv5SGlFKUaBVLMmgWR0Cb+vbmEGqxdX2UKGgGaAloD0MIJNOh0/Nu9r+UhpRSlGgVSzJoFkdAm/qAxnFo+XV9lChoBmgJaA9DCKc/+5EicgzAlIaUUpRoFUsyaBZHQJv6CAQQL/l1fZQoaAZoCWgPQwhAUG7b92gAwJSGlFKUaBVLMmgWR0Cb/cSjxkNGdX2UKGgGaAloD0MIzok9tI9V9b+UhpRSlGgVSzJoFkdAm/05mdy1eHV9lChoBmgJaA9DCBmuDoC4KwTAlIaUUpRoFUsyaBZHQJv8wxsVLzx1fZQoaAZoCWgPQwiYpZ2ay43iv5SGlFKUaBVLMmgWR0Cb/Epyp71JdX2UKGgGaAloD0MIdQKaCBue6L+UhpRSlGgVSzJoFkdAm//8+3YthHV9lChoBmgJaA9DCNArnnqkgQDAlIaUUpRoFUsyaBZHQJv/cZTAFgV1fZQoaAZoCWgPQwhD/wQXK6oAwJSGlFKUaBVLMmgWR0Cb/vtr9EThdX2UKGgGaAloD0MIHH433bLjAMCUhpRSlGgVSzJoFkdAm/6CwSrYG3V9lChoBmgJaA9DCDIh5pKqrfG/lIaUUpRoFUsyaBZHQJwCG4tpVS51fZQoaAZoCWgPQwhLrmLxm4IBwJSGlFKUaBVLMmgWR0CcAZAzpHI7dX2UKGgGaAloD0MIEK0VbY4z/L+UhpRSlGgVSzJoFkdAnAEaUJOWSnV9lChoBmgJaA9DCDJVMCqpU/G/lIaUUpRoFUsyaBZHQJwAoWCVbA11fZQoaAZoCWgPQwjpRlhUxOkIwJSGlFKUaBVLMmgWR0CcBEwpON5udX2UKGgGaAloD0MIDycwndbt5r+UhpRSlGgVSzJoFkdAnAPA66reZXV9lChoBmgJaA9DCJm6K7tg8Pq/lIaUUpRoFUsyaBZHQJwDSsEJSix1fZQoaAZoCWgPQwjakH9mEN8BwJSGlFKUaBVLMmgWR0CcAtHmzSkTdX2UKGgGaAloD0MIC9Ri8DAt/r+UhpRSlGgVSzJoFkdAnAZk12q1gHV9lChoBmgJaA9DCLyVJTrLLPe/lIaUUpRoFUsyaBZHQJwF2UmlZYB1fZQoaAZoCWgPQwhTlba4xkcBwJSGlFKUaBVLMmgWR0CcBWMOwxFidX2UKGgGaAloD0MIAi1dwTai8L+UhpRSlGgVSzJoFkdAnATp5JK8MHV9lChoBmgJaA9DCBJKXwg5L/+/lIaUUpRoFUsyaBZHQJwIpCgK4QV1fZQoaAZoCWgPQwiQFJFhFW/qv5SGlFKUaBVLMmgWR0CcCBjoIOYqdX2UKGgGaAloD0MIixagbTUr/7+UhpRSlGgVSzJoFkdAnAeiyQgcLnV9lChoBmgJaA9DCM0f09o0tu6/lIaUUpRoFUsyaBZHQJwHKaBqbjN1fZQoaAZoCWgPQwgg0m9fB07qv5SGlFKUaBVLMmgWR0CcCwHYpUgkdX2UKGgGaAloD0MIWFNZFHZR9b+UhpRSlGgVSzJoFkdAnAp27nPmgnV9lChoBmgJaA9DCLN9yFuuvvK/lIaUUpRoFUsyaBZHQJwKAGPgeil1fZQoaAZoCWgPQwiqfToeMxD9v5SGlFKUaBVLMmgWR0CcCYihnJ1adX2UKGgGaAloD0MI4/4j06ET87+UhpRSlGgVSzJoFkdAnAzz5sTFl3V9lChoBmgJaA9DCFDfMqfL4v2/lIaUUpRoFUsyaBZHQJwMaD6Fds11fZQoaAZoCWgPQwhvvaYHBWX0v5SGlFKUaBVLMmgWR0CcC/G5+YtydX2UKGgGaAloD0MI7iO3Jt3W+L+UhpRSlGgVSzJoFkdAnAt4nWrfcnV9lChoBmgJaA9DCDpY/+cw3/C/lIaUUpRoFUsyaBZHQJwPDaqS5iF1fZQoaAZoCWgPQwizJEBNLTsAwJSGlFKUaBVLMmgWR0CcDoIomXw9dX2UKGgGaAloD0MIKZfGL7wSA8CUhpRSlGgVSzJoFkdAnA4LmITGpHV9lChoBmgJaA9DCLK4/8h0SAPAlIaUUpRoFUsyaBZHQJwNkjopx3p1fZQoaAZoCWgPQwhLcsCuJq8CwJSGlFKUaBVLMmgWR0CcEPrd30PIdX2UKGgGaAloD0MIMc9KWvFtBsCUhpRSlGgVSzJoFkdAnBBvXXiBG3V9lChoBmgJaA9DCM0jfzDwXPu/lIaUUpRoFUsyaBZHQJwP+P2f0291fZQoaAZoCWgPQwgWF0flJmr1v5SGlFKUaBVLMmgWR0CcD4CA+Y+jdX2UKGgGaAloD0MI8PeL2ZKV8b+UhpRSlGgVSzJoFkdAnBMnnZCfH3V9lChoBmgJaA9DCAUU6ukjMPK/lIaUUpRoFUsyaBZHQJwSnMfRu0l1fZQoaAZoCWgPQwjGbMmqCHfwv5SGlFKUaBVLMmgWR0CcEiZqVQhwdX2UKGgGaAloD0MInkXvVMD987+UhpRSlGgVSzJoFkdAnBGthZyMk3V9lChoBmgJaA9DCD2BsFOsGu+/lIaUUpRoFUsyaBZHQJwVIuqWC3B1fZQoaAZoCWgPQwgO2UC62LT1v5SGlFKUaBVLMmgWR0CcFJeq7yxzdX2UKGgGaAloD0MIfCb752mA9b+UhpRSlGgVSzJoFkdAnBQhRZU1h3V9lChoBmgJaA9DCP5EZcOaiv2/lIaUUpRoFUsyaBZHQJwTqCJ40Mx1fZQoaAZoCWgPQwghsHJokS35v5SGlFKUaBVLMmgWR0CcF6tLL6k7dX2UKGgGaAloD0MIjNr9KsB3/b+UhpRSlGgVSzJoFkdAnBcgy2x6fXV9lChoBmgJaA9DCHEDPj+MEALAlIaUUpRoFUsyaBZHQJwWrH80k4Z1fZQoaAZoCWgPQwhE+BdBY6blv5SGlFKUaBVLMmgWR0CcFjW0JF9bdX2UKGgGaAloD0MIRN/dyhJ9AsCUhpRSlGgVSzJoFkdAnBueWSlnAnV9lChoBmgJaA9DCG8qUmFsof2/lIaUUpRoFUsyaBZHQJwbFVinYQJ1fZQoaAZoCWgPQwhCXg8mxUfmv5SGlFKUaBVLMmgWR0CcGqDNhVlxdX2UKGgGaAloD0MI2CssuB/wBcCUhpRSlGgVSzJoFkdAnBosE/0NBnV9lChoBmgJaA9DCOfj2lAxzvq/lIaUUpRoFUsyaBZHQJwfSF8G9pR1fZQoaAZoCWgPQwhBKzBkdWvzv5SGlFKUaBVLMmgWR0CcHr5+pfhNdX2UKGgGaAloD0MI0CueeqRhAsCUhpRSlGgVSzJoFkdAnB5KfBeok3V9lChoBmgJaA9DCPUQje4g9vK/lIaUUpRoFUsyaBZHQJwd040dilV1fZQoaAZoCWgPQwih9IWQ8370v5SGlFKUaBVLMmgWR0CcIxg6ltTDdX2UKGgGaAloD0MIFD3wMVgx8b+UhpRSlGgVSzJoFkdAnCKQV45cT3V9lChoBmgJaA9DCKVquwm+6fO/lIaUUpRoFUsyaBZHQJwiG+qR2bJ1fZQoaAZoCWgPQwjAlezYCMTmv5SGlFKUaBVLMmgWR0CcIaVLzwtrdX2UKGgGaAloD0MIIAvRIXCk4L+UhpRSlGgVSzJoFkdAnCb5lFtsN3V9lChoBmgJaA9DCNzykZT0cPO/lIaUUpRoFUsyaBZHQJwmcAjps411fZQoaAZoCWgPQwgaTwRxHg78v5SGlFKUaBVLMmgWR0CcJfynUDuCdX2UKGgGaAloD0MIYI+JlGZz57+UhpRSlGgVSzJoFkdAnCWGbG3nZHV9lChoBmgJaA9DCJmByvj32fO/lIaUUpRoFUsyaBZHQJwrcaWHDaZ1fZQoaAZoCWgPQwgb1H5rJ0rsv5SGlFKUaBVLMmgWR0CcKuhisny/dX2UKGgGaAloD0MIY5gTtMlh8L+UhpRSlGgVSzJoFkdAnCp3RXwLE3V9lChoBmgJaA9DCMQlx53SAfi/lIaUUpRoFUsyaBZHQJwp/752yLR1ZS4="
60
+ },
61
+ "ep_success_buffer": {
62
+ ":type:": "<class 'collections.deque'>",
63
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
64
+ },
65
+ "_n_updates": 28400,
66
+ "n_steps": 5,
67
+ "gamma": 0.99,
68
+ "gae_lambda": 1.0,
69
+ "ent_coef": 0.0,
70
+ "vf_coef": 0.5,
71
+ "max_grad_norm": 0.5,
72
+ "normalize_advantage": false,
73
+ "observation_space": {
74
+ ":type:": "<class 'gym.spaces.dict.Dict'>",
75
+ ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
76
+ "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
77
+ "_shape": null,
78
+ "dtype": null,
79
+ "_np_random": null
80
+ },
81
+ "action_space": {
82
+ ":type:": "<class 'gym.spaces.box.Box'>",
83
+ ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
84
+ "dtype": "float32",
85
+ "_shape": [
86
+ 3
87
+ ],
88
+ "low": "[-1. -1. -1.]",
89
+ "high": "[1. 1. 1.]",
90
+ "bounded_below": "[ True True True]",
91
+ "bounded_above": "[ True True True]",
92
+ "_np_random": null
93
+ },
94
+ "n_envs": 4
95
+ }
a2c-PandaReachDense-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b07f7447fc9621fc1a99ffad64b0a6a49e2bcd44d33acb7b2860f62bea3d9cd
3
+ size 44734
a2c-PandaReachDense-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a51dc482c2619121c5ca219fb610184bcc192654370a0a4474c3608a484e650
3
+ size 46014
a2c-PandaReachDense-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-PandaReachDense-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 1.8.0
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7bb5bcde1990>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7bb5bcdf1680>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 568008, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1689577849132794852, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAkW8/vlsIfD4lh/g+zc9BPRFKnz2Z9mU+RCFcvu1n4r2Umvc+pERPvgBLNj1amfY+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAALmtwvvhxeT8AzpE/sAqev/hhej8W/My/1oq3v6c5gj/zu74/E8Gjv+vWsT/HILE/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACRbz++Wwh8PiWH+D6rQey/20XkP2MSLT/Nz0E9EUqfPZn2ZT6+vC/A8JoQPnbRLMBEIVy+7WfivZSa9z62he+/Nvw+vvTRLT+kRE++AEs2PVqZ9j4jFfq/9VWVPbVHJD+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.18694903 0.24612562 0.48540607]\n [ 0.04731731 0.07777799 0.22457351]\n [-0.21497065 -0.11054979 0.4836012 ]\n [-0.20241028 0.04450512 0.48163873]]", "desired_goal": "[[-0.23478386 0.9743953 1.1390991 ]\n [-1.2347012 0.9780574 -1.601443 ]\n [-1.4339244 1.0173844 1.4901108 ]\n [-1.2793297 1.3893713 1.3838128 ]]", "observation": "[[-0.18694903 0.24612562 0.48540607 -1.845754 1.7833818 0.6760618 ]\n [ 0.04731731 0.07777799 0.22457351 -2.745895 0.14121604 -2.7002845 ]\n [-0.21497065 -0.11054979 0.4836012 -1.871268 -0.18650898 0.6789849 ]\n [-0.20241028 0.04450512 0.48163873 -1.95377 0.07291786 0.64171916]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA+70JPa5/Ur12344+FN+vvU89Gb5OZ4Y9muObvf4A+LwB8yU+PCboPZHhDr5GFoo+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.03362845 -0.0513913 0.27904862]\n [-0.08587471 -0.14964794 0.06562673]\n [-0.07611771 -0.03027391 0.1620598 ]\n [ 0.11335418 -0.13953234 0.26970118]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.43200000000000005, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+py7XS+N9r+UhpRSlIwBbJRLMowBdJRHQJvt2mQ8wHt1fZQoaAZoCWgPQwgOEMzR4/fxv5SGlFKUaBVLMmgWR0Cb7VBdUsFudX2UKGgGaAloD0MI1H0AUpt4/L+UhpRSlGgVSzJoFkdAm+zcPvrnknV9lChoBmgJaA9DCPP/qiNHev2/lIaUUpRoFUsyaBZHQJvsZdhRZU11fZQoaAZoCWgPQwhMbhRZa6jtv5SGlFKUaBVLMmgWR0Cb8EqEOAiFdX2UKGgGaAloD0MIGCKnr+crBcCUhpRSlGgVSzJoFkdAm++/jwQUYnV9lChoBmgJaA9DCDyInSl0HgnAlIaUUpRoFUsyaBZHQJvvSXa8HwB1fZQoaAZoCWgPQwi13m+044b7v5SGlFKUaBVLMmgWR0Cb7tBkI5YHdX2UKGgGaAloD0MI3e7lPjlqAsCUhpRSlGgVSzJoFkdAm/Jv7BO58XV9lChoBmgJaA9DCOOlm8QgMATAlIaUUpRoFUsyaBZHQJvx5Kf4AS51fZQoaAZoCWgPQwjqQNZTq2/zv5SGlFKUaBVLMmgWR0Cb8W6vq1PWdX2UKGgGaAloD0MIdqc7Tzyn/r+UhpRSlGgVSzJoFkdAm/D2CqZMMHV9lChoBmgJaA9DCGBY/nxbMP+/lIaUUpRoFUsyaBZHQJv02HLzPKN1fZQoaAZoCWgPQwjkwKvlzqwGwJSGlFKUaBVLMmgWR0Cb9E1WsA/+dX2UKGgGaAloD0MIbojxmleVBcCUhpRSlGgVSzJoFkdAm/PXWOIZZXV9lChoBmgJaA9DCOLMr+YAURDAlIaUUpRoFUsyaBZHQJvzXp6hQFd1fZQoaAZoCWgPQwi0y7c+rDf8v5SGlFKUaBVLMmgWR0Cb9v7T2FnJdX2UKGgGaAloD0MIMISc9//x+7+UhpRSlGgVSzJoFkdAm/Zz3qRlpXV9lChoBmgJaA9DCGg+527XKwLAlIaUUpRoFUsyaBZHQJv1/d8Aq/d1fZQoaAZoCWgPQwjwh5//Hnz1v5SGlFKUaBVLMmgWR0Cb9YUVzp5edX2UKGgGaAloD0MISx5Pyw/c6b+UhpRSlGgVSzJoFkdAm/lFBdD6WXV9lChoBmgJaA9DCPutnSgJiey/lIaUUpRoFUsyaBZHQJv4uZ1FH8V1fZQoaAZoCWgPQwhTknU4uuoCwJSGlFKUaBVLMmgWR0Cb+EOC5EtvdX2UKGgGaAloD0MIcjRHVn5Z/b+UhpRSlGgVSzJoFkdAm/fKbBoEjnV9lChoBmgJaA9DCPkwe9l2Gv2/lIaUUpRoFUsyaBZHQJv7gh0Qsf91fZQoaAZoCWgPQwgtCrsoeiDyv5SGlFKUaBVLMmgWR0Cb+vbmEGqxdX2UKGgGaAloD0MIJNOh0/Nu9r+UhpRSlGgVSzJoFkdAm/qAxnFo+XV9lChoBmgJaA9DCKc/+5EicgzAlIaUUpRoFUsyaBZHQJv6CAQQL/l1fZQoaAZoCWgPQwhAUG7b92gAwJSGlFKUaBVLMmgWR0Cb/cSjxkNGdX2UKGgGaAloD0MIzok9tI9V9b+UhpRSlGgVSzJoFkdAm/05mdy1eHV9lChoBmgJaA9DCBmuDoC4KwTAlIaUUpRoFUsyaBZHQJv8wxsVLzx1fZQoaAZoCWgPQwiYpZ2ay43iv5SGlFKUaBVLMmgWR0Cb/Epyp71JdX2UKGgGaAloD0MIdQKaCBue6L+UhpRSlGgVSzJoFkdAm//8+3YthHV9lChoBmgJaA9DCNArnnqkgQDAlIaUUpRoFUsyaBZHQJv/cZTAFgV1fZQoaAZoCWgPQwhD/wQXK6oAwJSGlFKUaBVLMmgWR0Cb/vtr9EThdX2UKGgGaAloD0MIHH433bLjAMCUhpRSlGgVSzJoFkdAm/6CwSrYG3V9lChoBmgJaA9DCDIh5pKqrfG/lIaUUpRoFUsyaBZHQJwCG4tpVS51fZQoaAZoCWgPQwhLrmLxm4IBwJSGlFKUaBVLMmgWR0CcAZAzpHI7dX2UKGgGaAloD0MIEK0VbY4z/L+UhpRSlGgVSzJoFkdAnAEaUJOWSnV9lChoBmgJaA9DCDJVMCqpU/G/lIaUUpRoFUsyaBZHQJwAoWCVbA11fZQoaAZoCWgPQwjpRlhUxOkIwJSGlFKUaBVLMmgWR0CcBEwpON5udX2UKGgGaAloD0MIDycwndbt5r+UhpRSlGgVSzJoFkdAnAPA66reZXV9lChoBmgJaA9DCJm6K7tg8Pq/lIaUUpRoFUsyaBZHQJwDSsEJSix1fZQoaAZoCWgPQwjakH9mEN8BwJSGlFKUaBVLMmgWR0CcAtHmzSkTdX2UKGgGaAloD0MIC9Ri8DAt/r+UhpRSlGgVSzJoFkdAnAZk12q1gHV9lChoBmgJaA9DCLyVJTrLLPe/lIaUUpRoFUsyaBZHQJwF2UmlZYB1fZQoaAZoCWgPQwhTlba4xkcBwJSGlFKUaBVLMmgWR0CcBWMOwxFidX2UKGgGaAloD0MIAi1dwTai8L+UhpRSlGgVSzJoFkdAnATp5JK8MHV9lChoBmgJaA9DCBJKXwg5L/+/lIaUUpRoFUsyaBZHQJwIpCgK4QV1fZQoaAZoCWgPQwiQFJFhFW/qv5SGlFKUaBVLMmgWR0CcCBjoIOYqdX2UKGgGaAloD0MIixagbTUr/7+UhpRSlGgVSzJoFkdAnAeiyQgcLnV9lChoBmgJaA9DCM0f09o0tu6/lIaUUpRoFUsyaBZHQJwHKaBqbjN1fZQoaAZoCWgPQwgg0m9fB07qv5SGlFKUaBVLMmgWR0CcCwHYpUgkdX2UKGgGaAloD0MIWFNZFHZR9b+UhpRSlGgVSzJoFkdAnAp27nPmgnV9lChoBmgJaA9DCLN9yFuuvvK/lIaUUpRoFUsyaBZHQJwKAGPgeil1fZQoaAZoCWgPQwiqfToeMxD9v5SGlFKUaBVLMmgWR0CcCYihnJ1adX2UKGgGaAloD0MI4/4j06ET87+UhpRSlGgVSzJoFkdAnAzz5sTFl3V9lChoBmgJaA9DCFDfMqfL4v2/lIaUUpRoFUsyaBZHQJwMaD6Fds11fZQoaAZoCWgPQwhvvaYHBWX0v5SGlFKUaBVLMmgWR0CcC/G5+YtydX2UKGgGaAloD0MI7iO3Jt3W+L+UhpRSlGgVSzJoFkdAnAt4nWrfcnV9lChoBmgJaA9DCDpY/+cw3/C/lIaUUpRoFUsyaBZHQJwPDaqS5iF1fZQoaAZoCWgPQwizJEBNLTsAwJSGlFKUaBVLMmgWR0CcDoIomXw9dX2UKGgGaAloD0MIKZfGL7wSA8CUhpRSlGgVSzJoFkdAnA4LmITGpHV9lChoBmgJaA9DCLK4/8h0SAPAlIaUUpRoFUsyaBZHQJwNkjopx3p1fZQoaAZoCWgPQwhLcsCuJq8CwJSGlFKUaBVLMmgWR0CcEPrd30PIdX2UKGgGaAloD0MIMc9KWvFtBsCUhpRSlGgVSzJoFkdAnBBvXXiBG3V9lChoBmgJaA9DCM0jfzDwXPu/lIaUUpRoFUsyaBZHQJwP+P2f0291fZQoaAZoCWgPQwgWF0flJmr1v5SGlFKUaBVLMmgWR0CcD4CA+Y+jdX2UKGgGaAloD0MI8PeL2ZKV8b+UhpRSlGgVSzJoFkdAnBMnnZCfH3V9lChoBmgJaA9DCAUU6ukjMPK/lIaUUpRoFUsyaBZHQJwSnMfRu0l1fZQoaAZoCWgPQwjGbMmqCHfwv5SGlFKUaBVLMmgWR0CcEiZqVQhwdX2UKGgGaAloD0MInkXvVMD987+UhpRSlGgVSzJoFkdAnBGthZyMk3V9lChoBmgJaA9DCD2BsFOsGu+/lIaUUpRoFUsyaBZHQJwVIuqWC3B1fZQoaAZoCWgPQwgO2UC62LT1v5SGlFKUaBVLMmgWR0CcFJeq7yxzdX2UKGgGaAloD0MIfCb752mA9b+UhpRSlGgVSzJoFkdAnBQhRZU1h3V9lChoBmgJaA9DCP5EZcOaiv2/lIaUUpRoFUsyaBZHQJwTqCJ40Mx1fZQoaAZoCWgPQwghsHJokS35v5SGlFKUaBVLMmgWR0CcF6tLL6k7dX2UKGgGaAloD0MIjNr9KsB3/b+UhpRSlGgVSzJoFkdAnBcgy2x6fXV9lChoBmgJaA9DCHEDPj+MEALAlIaUUpRoFUsyaBZHQJwWrH80k4Z1fZQoaAZoCWgPQwhE+BdBY6blv5SGlFKUaBVLMmgWR0CcFjW0JF9bdX2UKGgGaAloD0MIRN/dyhJ9AsCUhpRSlGgVSzJoFkdAnBueWSlnAnV9lChoBmgJaA9DCG8qUmFsof2/lIaUUpRoFUsyaBZHQJwbFVinYQJ1fZQoaAZoCWgPQwhCXg8mxUfmv5SGlFKUaBVLMmgWR0CcGqDNhVlxdX2UKGgGaAloD0MI2CssuB/wBcCUhpRSlGgVSzJoFkdAnBosE/0NBnV9lChoBmgJaA9DCOfj2lAxzvq/lIaUUpRoFUsyaBZHQJwfSF8G9pR1fZQoaAZoCWgPQwhBKzBkdWvzv5SGlFKUaBVLMmgWR0CcHr5+pfhNdX2UKGgGaAloD0MI0CueeqRhAsCUhpRSlGgVSzJoFkdAnB5KfBeok3V9lChoBmgJaA9DCPUQje4g9vK/lIaUUpRoFUsyaBZHQJwd040dilV1fZQoaAZoCWgPQwih9IWQ8370v5SGlFKUaBVLMmgWR0CcIxg6ltTDdX2UKGgGaAloD0MIFD3wMVgx8b+UhpRSlGgVSzJoFkdAnCKQV45cT3V9lChoBmgJaA9DCKVquwm+6fO/lIaUUpRoFUsyaBZHQJwiG+qR2bJ1fZQoaAZoCWgPQwjAlezYCMTmv5SGlFKUaBVLMmgWR0CcIaVLzwtrdX2UKGgGaAloD0MIIAvRIXCk4L+UhpRSlGgVSzJoFkdAnCb5lFtsN3V9lChoBmgJaA9DCNzykZT0cPO/lIaUUpRoFUsyaBZHQJwmcAjps411fZQoaAZoCWgPQwgaTwRxHg78v5SGlFKUaBVLMmgWR0CcJfynUDuCdX2UKGgGaAloD0MIYI+JlGZz57+UhpRSlGgVSzJoFkdAnCWGbG3nZHV9lChoBmgJaA9DCJmByvj32fO/lIaUUpRoFUsyaBZHQJwrcaWHDaZ1fZQoaAZoCWgPQwgb1H5rJ0rsv5SGlFKUaBVLMmgWR0CcKuhisny/dX2UKGgGaAloD0MIY5gTtMlh8L+UhpRSlGgVSzJoFkdAnCp3RXwLE3V9lChoBmgJaA9DCMQlx53SAfi/lIaUUpRoFUsyaBZHQJwp/752yLR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 28400, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.31 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -1.1797630772925913, "std_reward": 0.37396768346701653, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-17T07:42:04.074693"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:921fdae936ba66354a981adc7b4e27b4bb4eb4c0231cb652d885c4776ed059f7
3
+ size 2387