File size: 2,218 Bytes
bc864e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
076f853
bc864e0
 
 
 
 
 
 
 
 
076f853
 
 
 
 
 
bc864e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
076f853
bc864e0
 
 
 
 
076f853
 
 
 
 
bc864e0
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
datasets:
- billsum
metrics:
- rouge
model-index:
- name: my_awesome_billsum_model
  results:
  - task:
      name: Sequence-to-sequence Language Modeling
      type: text2text-generation
    dataset:
      name: billsum
      type: billsum
      config: default
      split: ca_test
      args: default
    metrics:
    - name: Rouge1
      type: rouge
      value: 0.1648
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# my_awesome_billsum_model

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset.
It achieves the following results on the evaluation set:
- Loss: 2.3855
- Rouge1: 0.1648
- Rouge2: 0.0823
- Rougel: 0.1406
- Rougelsum: 0.1402
- Gen Len: 16.4718

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log        | 1.0   | 124  | 2.7268          | 0.1497 | 0.0638 | 0.1259 | 0.126     | 19.0    |
| No log        | 2.0   | 248  | 2.5127          | 0.1502 | 0.0647 | 0.126  | 0.1261    | 18.9234 |
| No log        | 3.0   | 372  | 2.4331          | 0.151  | 0.0682 | 0.1274 | 0.1272    | 17.0081 |
| No log        | 4.0   | 496  | 2.3971          | 0.1628 | 0.0786 | 0.1388 | 0.1385    | 16.7782 |
| 2.9098        | 5.0   | 620  | 2.3855          | 0.1648 | 0.0823 | 0.1406 | 0.1402    | 16.4718 |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1
- Datasets 2.14.1
- Tokenizers 0.13.3