File size: 3,712 Bytes
bc864e0 ca8552c bc864e0 ca8552c bc864e0 ca8552c bc864e0 ca8552c bc864e0 ca8552c bc864e0 ca8552c bc864e0 ca8552c bc864e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
---
license: apache-2.0
base_model: t5-base
tags:
- generated_from_trainer
datasets:
- billsum
metrics:
- rouge
model-index:
- name: my_awesome_billsum_model
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: billsum
type: billsum
config: default
split: ca_test
args: default
metrics:
- name: Rouge1
type: rouge
value: 0.2033
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# my_awesome_billsum_model
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the billsum dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6638
- Rouge1: 0.2033
- Rouge2: 0.1149
- Rougel: 0.1762
- Rougelsum: 0.1759
- Gen Len: 19.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| No log | 1.0 | 248 | 1.9584 | 0.1999 | 0.1073 | 0.1716 | 0.1717 | 19.0 |
| No log | 2.0 | 496 | 1.8621 | 0.195 | 0.1045 | 0.1685 | 0.1682 | 19.0 |
| 2.2512 | 3.0 | 744 | 1.8095 | 0.1973 | 0.1109 | 0.1728 | 0.1727 | 19.0 |
| 2.2512 | 4.0 | 992 | 1.7797 | 0.1989 | 0.1102 | 0.1724 | 0.1724 | 19.0 |
| 1.8144 | 5.0 | 1240 | 1.7505 | 0.1997 | 0.112 | 0.1735 | 0.1736 | 19.0 |
| 1.8144 | 6.0 | 1488 | 1.7308 | 0.2003 | 0.1134 | 0.1746 | 0.1744 | 19.0 |
| 1.6898 | 7.0 | 1736 | 1.7145 | 0.199 | 0.1114 | 0.1732 | 0.173 | 19.0 |
| 1.6898 | 8.0 | 1984 | 1.7083 | 0.1977 | 0.1106 | 0.1718 | 0.1716 | 19.0 |
| 1.5997 | 9.0 | 2232 | 1.6983 | 0.2014 | 0.1127 | 0.175 | 0.175 | 19.0 |
| 1.5997 | 10.0 | 2480 | 1.6923 | 0.2014 | 0.1153 | 0.1754 | 0.1753 | 19.0 |
| 1.5403 | 11.0 | 2728 | 1.6826 | 0.2009 | 0.1134 | 0.1752 | 0.1751 | 19.0 |
| 1.5403 | 12.0 | 2976 | 1.6768 | 0.2003 | 0.1125 | 0.1745 | 0.1744 | 19.0 |
| 1.491 | 13.0 | 3224 | 1.6722 | 0.2016 | 0.1146 | 0.1756 | 0.1755 | 19.0 |
| 1.491 | 14.0 | 3472 | 1.6750 | 0.2039 | 0.1164 | 0.1773 | 0.177 | 19.0 |
| 1.4496 | 15.0 | 3720 | 1.6679 | 0.2023 | 0.1147 | 0.1765 | 0.1763 | 19.0 |
| 1.4496 | 16.0 | 3968 | 1.6677 | 0.2032 | 0.1148 | 0.177 | 0.1768 | 19.0 |
| 1.4241 | 17.0 | 4216 | 1.6640 | 0.2021 | 0.1135 | 0.1752 | 0.175 | 19.0 |
| 1.4241 | 18.0 | 4464 | 1.6645 | 0.2027 | 0.1155 | 0.1766 | 0.1764 | 19.0 |
| 1.4025 | 19.0 | 4712 | 1.6632 | 0.2028 | 0.1149 | 0.1761 | 0.1757 | 19.0 |
| 1.4025 | 20.0 | 4960 | 1.6638 | 0.2033 | 0.1149 | 0.1762 | 0.1759 | 19.0 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1
- Datasets 2.14.1
- Tokenizers 0.13.3
|