Upload folder using huggingface_hub
Browse files- .ipynb_checkpoints/config-checkpoint.json +30 -0
- .ipynb_checkpoints/generation_config-checkpoint.json +6 -0
- .ipynb_checkpoints/zero_to_fp32-checkpoint.py +578 -0
- added_tokens.json +3 -0
- config.json +30 -0
- generation_config.json +6 -0
- model-00001-of-00003.safetensors +3 -0
- model-00002-of-00003.safetensors +3 -0
- model-00003-of-00003.safetensors +3 -0
- model.safetensors.index.json +298 -0
- my_configuration_mistral.py +183 -0
- my_modeling_mistral.py +1187 -0
- special_tokens_map.json +30 -0
- tokenizer.model +3 -0
- tokenizer_config.json +52 -0
- trainer_state.json +1379 -0
- training_args.bin +3 -0
- zero_to_fp32.py +578 -0
.ipynb_checkpoints/config-checkpoint.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "mistralai/Mistral-7B-v0.1",
|
3 |
+
"architectures": [
|
4 |
+
"MistralForCausalLM"
|
5 |
+
],
|
6 |
+
"bos_token_id": 1,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 4096,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 14336,
|
12 |
+
"max_position_embeddings": 32768,
|
13 |
+
"model_type": "mistral",
|
14 |
+
"num_attention_heads": 32,
|
15 |
+
"num_hidden_layers": 32,
|
16 |
+
"num_key_value_heads": 8,
|
17 |
+
"rms_norm_eps": 1e-05,
|
18 |
+
"rope_scaling": {
|
19 |
+
"factor": 8.0,
|
20 |
+
"original_max_position_embeddings": 4096,
|
21 |
+
"type": "yarn"
|
22 |
+
},
|
23 |
+
"rope_theta": 10000.0,
|
24 |
+
"sliding_window": 4096,
|
25 |
+
"tie_word_embeddings": false,
|
26 |
+
"torch_dtype": "float16",
|
27 |
+
"transformers_version": "4.35.0",
|
28 |
+
"use_cache": false,
|
29 |
+
"vocab_size": 32001
|
30 |
+
}
|
.ipynb_checkpoints/generation_config-checkpoint.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.35.0"
|
6 |
+
}
|
.ipynb_checkpoints/zero_to_fp32-checkpoint.py
ADDED
@@ -0,0 +1,578 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dicts.append(torch.load(f, map_location=device))
|
147 |
+
|
148 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
149 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
150 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
151 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
152 |
+
|
153 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
154 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
155 |
+
# use the max of the partition_count to get the dp world_size.
|
156 |
+
|
157 |
+
if type(world_size) is list:
|
158 |
+
world_size = max(world_size)
|
159 |
+
|
160 |
+
if world_size != total_files:
|
161 |
+
raise ValueError(
|
162 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
163 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
164 |
+
)
|
165 |
+
|
166 |
+
# the groups are named differently in each stage
|
167 |
+
if zero_stage <= 2:
|
168 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
169 |
+
elif zero_stage == 3:
|
170 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
171 |
+
else:
|
172 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
173 |
+
|
174 |
+
if zero_stage <= 2:
|
175 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
176 |
+
elif zero_stage == 3:
|
177 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
178 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
179 |
+
#
|
180 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
181 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
182 |
+
|
183 |
+
fp32_flat_groups = [
|
184 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
185 |
+
]
|
186 |
+
|
187 |
+
return zero_stage, world_size, fp32_flat_groups
|
188 |
+
|
189 |
+
|
190 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
191 |
+
"""
|
192 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
193 |
+
|
194 |
+
Args:
|
195 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
196 |
+
|
197 |
+
"""
|
198 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
199 |
+
|
200 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
201 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
202 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
203 |
+
|
204 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
205 |
+
|
206 |
+
zero_model_states = parse_model_states(model_files)
|
207 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
208 |
+
|
209 |
+
if zero_stage <= 2:
|
210 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
211 |
+
elif zero_stage == 3:
|
212 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
248 |
+
param_shapes = zero_model_states[0].param_shapes
|
249 |
+
|
250 |
+
# Reconstruction protocol:
|
251 |
+
#
|
252 |
+
# XXX: document this
|
253 |
+
|
254 |
+
if debug:
|
255 |
+
for i in range(world_size):
|
256 |
+
for j in range(len(fp32_flat_groups[0])):
|
257 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
258 |
+
|
259 |
+
# XXX: memory usage doubles here (zero2)
|
260 |
+
num_param_groups = len(fp32_flat_groups[0])
|
261 |
+
merged_single_partition_of_fp32_groups = []
|
262 |
+
for i in range(num_param_groups):
|
263 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
264 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
265 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
266 |
+
avail_numel = sum(
|
267 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
268 |
+
|
269 |
+
if debug:
|
270 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
271 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
272 |
+
# not asserting if there is a mismatch due to possible padding
|
273 |
+
print(f"Have {avail_numel} numels to process.")
|
274 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
275 |
+
|
276 |
+
# params
|
277 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
278 |
+
# out-of-core computing solution
|
279 |
+
total_numel = 0
|
280 |
+
total_params = 0
|
281 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
282 |
+
offset = 0
|
283 |
+
avail_numel = full_single_fp32_vector.numel()
|
284 |
+
for name, shape in shapes.items():
|
285 |
+
|
286 |
+
unpartitioned_numel = shape.numel()
|
287 |
+
total_numel += unpartitioned_numel
|
288 |
+
total_params += 1
|
289 |
+
|
290 |
+
if debug:
|
291 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
292 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
293 |
+
offset += unpartitioned_numel
|
294 |
+
|
295 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
296 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
297 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
298 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
299 |
+
align_to = 2 * world_size
|
300 |
+
|
301 |
+
def zero2_align(x):
|
302 |
+
return align_to * math.ceil(x / align_to)
|
303 |
+
|
304 |
+
if debug:
|
305 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
306 |
+
|
307 |
+
offset = zero2_align(offset)
|
308 |
+
avail_numel = zero2_align(avail_numel)
|
309 |
+
|
310 |
+
if debug:
|
311 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
312 |
+
|
313 |
+
# Sanity check
|
314 |
+
if offset != avail_numel:
|
315 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
316 |
+
|
317 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
318 |
+
|
319 |
+
|
320 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
321 |
+
state_dict = OrderedDict()
|
322 |
+
|
323 |
+
# buffers
|
324 |
+
buffers = zero_model_states[0].buffers
|
325 |
+
state_dict.update(buffers)
|
326 |
+
if debug:
|
327 |
+
print(f"added {len(buffers)} buffers")
|
328 |
+
|
329 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
330 |
+
|
331 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
332 |
+
|
333 |
+
# recover shared parameters
|
334 |
+
for pair in zero_model_states[0].shared_params:
|
335 |
+
if pair[1] in state_dict:
|
336 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
337 |
+
|
338 |
+
return state_dict
|
339 |
+
|
340 |
+
|
341 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
342 |
+
remainder = unpartitioned_numel % world_size
|
343 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
344 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
345 |
+
return partitioned_numel, padding_numel
|
346 |
+
|
347 |
+
|
348 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
349 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
350 |
+
return
|
351 |
+
|
352 |
+
if debug:
|
353 |
+
for i in range(world_size):
|
354 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
355 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
356 |
+
|
357 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
358 |
+
wanted_params = len(frozen_param_shapes)
|
359 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
360 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
361 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
362 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
363 |
+
|
364 |
+
total_params = 0
|
365 |
+
total_numel = 0
|
366 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
367 |
+
total_params += 1
|
368 |
+
unpartitioned_numel = shape.numel()
|
369 |
+
total_numel += unpartitioned_numel
|
370 |
+
|
371 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
372 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
373 |
+
|
374 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
375 |
+
|
376 |
+
if debug:
|
377 |
+
print(
|
378 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
379 |
+
)
|
380 |
+
|
381 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
382 |
+
|
383 |
+
|
384 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
385 |
+
param_shapes = zero_model_states[0].param_shapes
|
386 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
387 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
388 |
+
# param, re-consolidating each param, while dealing with padding if any
|
389 |
+
|
390 |
+
# merge list of dicts, preserving order
|
391 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
392 |
+
|
393 |
+
if debug:
|
394 |
+
for i in range(world_size):
|
395 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
396 |
+
|
397 |
+
wanted_params = len(param_shapes)
|
398 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
399 |
+
# not asserting if there is a mismatch due to possible padding
|
400 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
401 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
402 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
403 |
+
|
404 |
+
# params
|
405 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
406 |
+
# out-of-core computing solution
|
407 |
+
offset = 0
|
408 |
+
total_numel = 0
|
409 |
+
total_params = 0
|
410 |
+
for name, shape in param_shapes.items():
|
411 |
+
|
412 |
+
unpartitioned_numel = shape.numel()
|
413 |
+
total_numel += unpartitioned_numel
|
414 |
+
total_params += 1
|
415 |
+
|
416 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
417 |
+
|
418 |
+
if debug:
|
419 |
+
print(
|
420 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
421 |
+
)
|
422 |
+
|
423 |
+
# XXX: memory usage doubles here
|
424 |
+
state_dict[name] = torch.cat(
|
425 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
426 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
427 |
+
offset += partitioned_numel
|
428 |
+
|
429 |
+
offset *= world_size
|
430 |
+
|
431 |
+
# Sanity check
|
432 |
+
if offset != avail_numel:
|
433 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
434 |
+
|
435 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
436 |
+
|
437 |
+
|
438 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
439 |
+
state_dict = OrderedDict()
|
440 |
+
|
441 |
+
# buffers
|
442 |
+
buffers = zero_model_states[0].buffers
|
443 |
+
state_dict.update(buffers)
|
444 |
+
if debug:
|
445 |
+
print(f"added {len(buffers)} buffers")
|
446 |
+
|
447 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
448 |
+
|
449 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
450 |
+
|
451 |
+
# recover shared parameters
|
452 |
+
for pair in zero_model_states[0].shared_params:
|
453 |
+
if pair[1] in state_dict:
|
454 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
455 |
+
|
456 |
+
return state_dict
|
457 |
+
|
458 |
+
|
459 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
460 |
+
"""
|
461 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
462 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
463 |
+
via a model hub.
|
464 |
+
|
465 |
+
Args:
|
466 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
467 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
468 |
+
|
469 |
+
Returns:
|
470 |
+
- pytorch ``state_dict``
|
471 |
+
|
472 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
473 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
474 |
+
the checkpoint.
|
475 |
+
|
476 |
+
A typical usage might be ::
|
477 |
+
|
478 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
479 |
+
# do the training and checkpoint saving
|
480 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
481 |
+
model = model.cpu() # move to cpu
|
482 |
+
model.load_state_dict(state_dict)
|
483 |
+
# submit to model hub or save the model to share with others
|
484 |
+
|
485 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
486 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
487 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
488 |
+
|
489 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
490 |
+
|
491 |
+
"""
|
492 |
+
if tag is None:
|
493 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
494 |
+
if os.path.isfile(latest_path):
|
495 |
+
with open(latest_path, 'r') as fd:
|
496 |
+
tag = fd.read().strip()
|
497 |
+
else:
|
498 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
499 |
+
|
500 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
501 |
+
|
502 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
503 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
504 |
+
|
505 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
506 |
+
|
507 |
+
|
508 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
509 |
+
"""
|
510 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
511 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
512 |
+
|
513 |
+
Args:
|
514 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
515 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
516 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
517 |
+
"""
|
518 |
+
|
519 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
520 |
+
print(f"Saving fp32 state dict to {output_file}")
|
521 |
+
torch.save(state_dict, output_file)
|
522 |
+
|
523 |
+
|
524 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
525 |
+
"""
|
526 |
+
1. Put the provided model to cpu
|
527 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
528 |
+
3. Load it into the provided model
|
529 |
+
|
530 |
+
Args:
|
531 |
+
- ``model``: the model object to update
|
532 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
533 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
534 |
+
|
535 |
+
Returns:
|
536 |
+
- ``model`: modified model
|
537 |
+
|
538 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
539 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
540 |
+
conveniently placed for you in the checkpoint folder.
|
541 |
+
|
542 |
+
A typical usage might be ::
|
543 |
+
|
544 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
545 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
546 |
+
# submit to model hub or save the model to share with others
|
547 |
+
|
548 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
549 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
550 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
551 |
+
|
552 |
+
"""
|
553 |
+
logger.info(f"Extracting fp32 weights")
|
554 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
555 |
+
|
556 |
+
logger.info(f"Overwriting model with fp32 weights")
|
557 |
+
model = model.cpu()
|
558 |
+
model.load_state_dict(state_dict, strict=False)
|
559 |
+
|
560 |
+
return model
|
561 |
+
|
562 |
+
|
563 |
+
if __name__ == "__main__":
|
564 |
+
|
565 |
+
parser = argparse.ArgumentParser()
|
566 |
+
parser.add_argument("checkpoint_dir",
|
567 |
+
type=str,
|
568 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
569 |
+
parser.add_argument(
|
570 |
+
"output_file",
|
571 |
+
type=str,
|
572 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
573 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
574 |
+
args = parser.parse_args()
|
575 |
+
|
576 |
+
debug = args.debug
|
577 |
+
|
578 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
|
added_tokens.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"[PAD]": 32000
|
3 |
+
}
|
config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "mistralai/Mistral-7B-v0.1",
|
3 |
+
"architectures": [
|
4 |
+
"MistralForCausalLM"
|
5 |
+
],
|
6 |
+
"bos_token_id": 1,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 4096,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 14336,
|
12 |
+
"max_position_embeddings": 32768,
|
13 |
+
"model_type": "mistral",
|
14 |
+
"num_attention_heads": 32,
|
15 |
+
"num_hidden_layers": 32,
|
16 |
+
"num_key_value_heads": 8,
|
17 |
+
"rms_norm_eps": 1e-05,
|
18 |
+
"rope_scaling": {
|
19 |
+
"factor": 8.0,
|
20 |
+
"original_max_position_embeddings": 4096,
|
21 |
+
"type": "yarn"
|
22 |
+
},
|
23 |
+
"rope_theta": 10000.0,
|
24 |
+
"sliding_window": 4096,
|
25 |
+
"tie_word_embeddings": false,
|
26 |
+
"torch_dtype": "float16",
|
27 |
+
"transformers_version": "4.35.0",
|
28 |
+
"use_cache": false,
|
29 |
+
"vocab_size": 32001
|
30 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.35.0"
|
6 |
+
}
|
model-00001-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb4bf787a14c97d4a8dad27f231313f6b28af9f7f24ebe5a38e52627d3fa7371
|
3 |
+
size 4943170432
|
model-00002-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b3f4afbfbb4fbbc9a956513c32257cc883ca727dc6f0674fa4673e5db3e58095
|
3 |
+
size 4999819232
|
model-00003-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a500aa07f4547e4886c7ec307c4ca508b881d1be6e2617677f2762d79152bead
|
3 |
+
size 4540524448
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 14483480576
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00003-of-00003.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00003.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
26 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
35 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
44 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
53 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
62 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
71 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
80 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
89 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
98 |
+
"model.layers.18.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
107 |
+
"model.layers.19.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
125 |
+
"model.layers.20.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
134 |
+
"model.layers.21.input_layernorm.weight": "model-00002-of-00003.safetensors",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00002-of-00003.safetensors",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00002-of-00003.safetensors",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00002-of-00003.safetensors",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00002-of-00003.safetensors",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
143 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00002-of-00003.safetensors",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00002-of-00003.safetensors",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00002-of-00003.safetensors",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00002-of-00003.safetensors",
|
152 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
161 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
170 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
179 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
188 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
197 |
+
"model.layers.28.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
206 |
+
"model.layers.29.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
215 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
224 |
+
"model.layers.30.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
233 |
+
"model.layers.31.input_layernorm.weight": "model-00003-of-00003.safetensors",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00003-of-00003.safetensors",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00003-of-00003.safetensors",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00003-of-00003.safetensors",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00003-of-00003.safetensors",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00003-of-00003.safetensors",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00003-of-00003.safetensors",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00003-of-00003.safetensors",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00003-of-00003.safetensors",
|
242 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
243 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
244 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
245 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
246 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
247 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
248 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
249 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
250 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
251 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
252 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
253 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
254 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
255 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
256 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
257 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
258 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
259 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
260 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
261 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
262 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
263 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
264 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
265 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
266 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
267 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
268 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
269 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
270 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
271 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
272 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
273 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
274 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
275 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
276 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
277 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
278 |
+
"model.layers.8.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
279 |
+
"model.layers.8.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
280 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
281 |
+
"model.layers.8.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
282 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
283 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
284 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
285 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
286 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
287 |
+
"model.layers.9.input_layernorm.weight": "model-00001-of-00003.safetensors",
|
288 |
+
"model.layers.9.mlp.down_proj.weight": "model-00001-of-00003.safetensors",
|
289 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00001-of-00003.safetensors",
|
290 |
+
"model.layers.9.mlp.up_proj.weight": "model-00001-of-00003.safetensors",
|
291 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00001-of-00003.safetensors",
|
292 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00001-of-00003.safetensors",
|
293 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00001-of-00003.safetensors",
|
294 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00001-of-00003.safetensors",
|
295 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00001-of-00003.safetensors",
|
296 |
+
"model.norm.weight": "model-00003-of-00003.safetensors"
|
297 |
+
}
|
298 |
+
}
|
my_configuration_mistral.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Modification Copyright 2023 Dawei Zhu
|
3 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
4 |
+
#
|
5 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
6 |
+
# and OPT implementations in this library. It has been modified from its
|
7 |
+
# original forms to accommodate minor architectural differences compared
|
8 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
9 |
+
#
|
10 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
11 |
+
# you may not use this file except in compliance with the License.
|
12 |
+
# You may obtain a copy of the License at
|
13 |
+
#
|
14 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
15 |
+
#
|
16 |
+
# Unless required by applicable law or agreed to in writing, software
|
17 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
18 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
19 |
+
# See the License for the specific language governing permissions and
|
20 |
+
# limitations under the License.
|
21 |
+
""" Mistral model configuration"""
|
22 |
+
|
23 |
+
# from ...configuration_utils import PretrainedConfig
|
24 |
+
# from ...utils import logging
|
25 |
+
from transformers.configuration_utils import PretrainedConfig
|
26 |
+
from transformers.utils import logging
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
# MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
31 |
+
# "mistralai/Mistral-7B-v0.1": "https://huggingface.co/mistralai/Mistral-7B-v0.1/resolve/main/config.json",
|
32 |
+
# "mistralai/Mistral-7B-Instruct-v0.1": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1/resolve/main/config.json",
|
33 |
+
# }
|
34 |
+
# MISTRAL_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
35 |
+
|
36 |
+
class MistralConfig(PretrainedConfig):
|
37 |
+
r"""
|
38 |
+
This is the configuration class to store the configuration of a [`MistralModel`]. It is used to instantiate an Mistral
|
39 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
40 |
+
defaults will yield a similar configuration to that of the Mistral-7B.
|
41 |
+
|
42 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
43 |
+
documentation from [`PretrainedConfig`] for more information.
|
44 |
+
|
45 |
+
|
46 |
+
Args:
|
47 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
48 |
+
Vocabulary size of the Mistral model. Defines the number of different tokens that can be represented by the
|
49 |
+
`inputs_ids` passed when calling [`MistralModel`]
|
50 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
51 |
+
Dimension of the hidden representations.
|
52 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
53 |
+
Dimension of the MLP representations.
|
54 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
55 |
+
Number of hidden layers in the Transformer encoder.
|
56 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
57 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
58 |
+
num_key_value_heads (`int`, *optional*):
|
59 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
60 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
61 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
62 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
63 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
64 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
65 |
+
`num_attention_heads`.
|
66 |
+
pretraining_tp (`int`, *optional*, defaults to `1`):
|
67 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
68 |
+
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
|
69 |
+
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
70 |
+
issue](https://github.com/pytorch/pytorch/issues/76232).
|
71 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
72 |
+
The non-linear activation function (function or string) in the decoder.
|
73 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
74 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
75 |
+
just in case (e.g., 512 or 1024 or 2048).
|
76 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
77 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
78 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-12):
|
79 |
+
The epsilon used by the rms normalization layers.
|
80 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
81 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
82 |
+
relevant if `config.is_decoder=True`.
|
83 |
+
tie_word_embeddings(`bool`, *optional*, defaults to `False`):
|
84 |
+
Whether to tie weight embeddings
|
85 |
+
rope_scaling (`Dict`, *optional*):
|
86 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports three scaling
|
87 |
+
strategies: linear and dynamic. Their scaling factor must be an float greater than 1. The expected format
|
88 |
+
is `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
89 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
90 |
+
these scaling strategies behave:
|
91 |
+
https://www.reddit.com/r/LocalMistral/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
92 |
+
experimental feature, subject to breaking API changes in future versions.
|
93 |
+
|
94 |
+
Example:
|
95 |
+
|
96 |
+
```python
|
97 |
+
>>> from transformers import MistralModel, MistralConfig
|
98 |
+
|
99 |
+
>>> # Initializing a Mistral Mistral-7b style configuration
|
100 |
+
>>> configuration = MistralConfig()
|
101 |
+
|
102 |
+
>>> # Initializing a model from the Mistral-7b style configuration
|
103 |
+
>>> model = MistralModel(configuration)
|
104 |
+
|
105 |
+
>>> # Accessing the model configuration
|
106 |
+
>>> configuration = model.config
|
107 |
+
```"""
|
108 |
+
model_type = "mistral"
|
109 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
110 |
+
|
111 |
+
def __init__(
|
112 |
+
self,
|
113 |
+
vocab_size=32000,
|
114 |
+
hidden_size=4096,
|
115 |
+
intermediate_size=14336,
|
116 |
+
num_hidden_layers=32,
|
117 |
+
num_attention_heads=32,
|
118 |
+
num_key_value_heads=8,
|
119 |
+
hidden_act="silu",
|
120 |
+
max_position_embeddings=2048,
|
121 |
+
initializer_range=0.02,
|
122 |
+
rms_norm_eps=1e-6,
|
123 |
+
use_cache=True,
|
124 |
+
pad_token_id=None,
|
125 |
+
bos_token_id=1,
|
126 |
+
eos_token_id=2,
|
127 |
+
pretraining_tp=1,
|
128 |
+
tie_word_embeddings=False,
|
129 |
+
rope_scaling=None,
|
130 |
+
rope_theta=10000.0,
|
131 |
+
sliding_window=4096,
|
132 |
+
**kwargs,
|
133 |
+
):
|
134 |
+
self.vocab_size = vocab_size
|
135 |
+
self.max_position_embeddings = max_position_embeddings
|
136 |
+
self.hidden_size = hidden_size
|
137 |
+
self.intermediate_size = intermediate_size
|
138 |
+
self.num_hidden_layers = num_hidden_layers
|
139 |
+
self.num_attention_heads = num_attention_heads
|
140 |
+
self.sliding_window = sliding_window
|
141 |
+
|
142 |
+
|
143 |
+
# for backward compatibility
|
144 |
+
if num_key_value_heads is None:
|
145 |
+
num_key_value_heads = num_attention_heads
|
146 |
+
|
147 |
+
self.num_key_value_heads = num_key_value_heads
|
148 |
+
self.hidden_act = hidden_act
|
149 |
+
self.initializer_range = initializer_range
|
150 |
+
self.rms_norm_eps = rms_norm_eps
|
151 |
+
self.use_cache = use_cache
|
152 |
+
self.rope_scaling = rope_scaling
|
153 |
+
self._rope_scaling_validation()
|
154 |
+
self.rope_theta = rope_theta
|
155 |
+
|
156 |
+
super().__init__(
|
157 |
+
pad_token_id=pad_token_id,
|
158 |
+
bos_token_id=bos_token_id,
|
159 |
+
eos_token_id=eos_token_id,
|
160 |
+
tie_word_embeddings=tie_word_embeddings,
|
161 |
+
**kwargs,
|
162 |
+
)
|
163 |
+
|
164 |
+
def _rope_scaling_validation(self):
|
165 |
+
"""
|
166 |
+
Validate the `rope_scaling` configuration.
|
167 |
+
"""
|
168 |
+
if self.rope_scaling is None:
|
169 |
+
return
|
170 |
+
|
171 |
+
if not isinstance(self.rope_scaling, dict):
|
172 |
+
raise ValueError(
|
173 |
+
"`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, "
|
174 |
+
f"got {self.rope_scaling}"
|
175 |
+
)
|
176 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
177 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
178 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic", "vanilla_ntk", "yarn"]:
|
179 |
+
raise ValueError(
|
180 |
+
f"`rope_scaling`'s name field must be one of ['linear', 'dynamic', 'vanilla_ntk', 'yarn'], got {rope_scaling_type}"
|
181 |
+
)
|
182 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
183 |
+
raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")
|
my_modeling_mistral.py
ADDED
@@ -0,0 +1,1187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 MistralAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" PyTorch Mistral model."""
|
21 |
+
import math
|
22 |
+
from typing import List, Optional, Tuple, Union
|
23 |
+
from pathlib import Path
|
24 |
+
|
25 |
+
import numpy as np
|
26 |
+
import torch
|
27 |
+
import torch.nn.functional as F
|
28 |
+
import torch.utils.checkpoint
|
29 |
+
from torch import nn
|
30 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
31 |
+
|
32 |
+
from transformers.activations import ACT2FN
|
33 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast
|
34 |
+
from transformers.modeling_utils import PreTrainedModel
|
35 |
+
from transformers.utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
|
36 |
+
|
37 |
+
from transformers.models.mistral.configuration_mistral import MistralConfig
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
logger = logging.get_logger(__name__)
|
42 |
+
|
43 |
+
_CONFIG_FOR_DOC = "MistralConfig"
|
44 |
+
|
45 |
+
|
46 |
+
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
47 |
+
def _make_causal_mask(
|
48 |
+
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
49 |
+
):
|
50 |
+
"""
|
51 |
+
Make causal mask used for bi-directional self-attention.
|
52 |
+
"""
|
53 |
+
bsz, tgt_len = input_ids_shape
|
54 |
+
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
55 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
56 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
57 |
+
mask = mask.to(dtype)
|
58 |
+
|
59 |
+
if past_key_values_length > 0:
|
60 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
61 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
62 |
+
|
63 |
+
|
64 |
+
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
65 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
66 |
+
"""
|
67 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
68 |
+
"""
|
69 |
+
bsz, src_len = mask.size()
|
70 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
71 |
+
|
72 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
73 |
+
|
74 |
+
inverted_mask = 1.0 - expanded_mask
|
75 |
+
|
76 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
77 |
+
|
78 |
+
def _make_sliding_window_causal_mask(
|
79 |
+
input_ids_shape: torch.Size,
|
80 |
+
dtype: torch.dtype,
|
81 |
+
device: torch.device,
|
82 |
+
past_key_values_length: int = 0,
|
83 |
+
sliding_window: int = 4096,
|
84 |
+
):
|
85 |
+
"""
|
86 |
+
Make causal mask used for sliding window attention
|
87 |
+
"""
|
88 |
+
bsz, tgt_len = input_ids_shape
|
89 |
+
tensor = torch.full(
|
90 |
+
(tgt_len, tgt_len),
|
91 |
+
fill_value=1,
|
92 |
+
device=device,
|
93 |
+
)
|
94 |
+
mask = torch.tril(tensor, diagonal=0)
|
95 |
+
# make the mask banded to account for sliding window
|
96 |
+
mask = torch.triu(mask, diagonal=-sliding_window)
|
97 |
+
mask = torch.log(mask).to(dtype)
|
98 |
+
if past_key_values_length > 0:
|
99 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
100 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
101 |
+
|
102 |
+
|
103 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Mistral
|
104 |
+
class MistralRMSNorm(torch.nn.Module):
|
105 |
+
def __init__(self, hidden_size, eps=1e-6):
|
106 |
+
"""
|
107 |
+
MistralRMSNorm is equivalent to T5LayerNorm
|
108 |
+
"""
|
109 |
+
super().__init__()
|
110 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
111 |
+
self.variance_epsilon = eps
|
112 |
+
|
113 |
+
def forward(self, hidden_states):
|
114 |
+
input_dtype = hidden_states.dtype
|
115 |
+
hidden_states = hidden_states.to(torch.float32)
|
116 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
117 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
118 |
+
return self.weight * hidden_states.to(input_dtype)
|
119 |
+
|
120 |
+
|
121 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Mistral
|
122 |
+
class MistralRotaryEmbedding(torch.nn.Module):
|
123 |
+
def __init__(self, dim, max_position_embeddings=4096, base=10000, device=None):
|
124 |
+
super().__init__()
|
125 |
+
|
126 |
+
self.dim = dim
|
127 |
+
self.max_position_embeddings = max_position_embeddings
|
128 |
+
self.base = base
|
129 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
130 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
131 |
+
|
132 |
+
# Build here to make `torch.jit.trace` work.
|
133 |
+
self._set_cos_sin_cache(
|
134 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
135 |
+
)
|
136 |
+
|
137 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
138 |
+
self.max_seq_len_cached = seq_len
|
139 |
+
# t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
140 |
+
t = np.arange(self.max_seq_len_cached, dtype=np.float64)
|
141 |
+
t = torch.tensor(t, device=self.inv_freq.device, dtype=torch.float64)
|
142 |
+
|
143 |
+
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
144 |
+
freqs = torch.outer(t, self.inv_freq.to(device=t.device).to(t.dtype))
|
145 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
146 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
147 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
148 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
149 |
+
|
150 |
+
def forward(self, x, seq_len=None):
|
151 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
152 |
+
if seq_len > self.max_seq_len_cached:
|
153 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
154 |
+
|
155 |
+
return (
|
156 |
+
self.cos_cached[:, :, :, ...].to(dtype=x.dtype),
|
157 |
+
self.sin_cached[:, :, :, ...].to(dtype=x.dtype),
|
158 |
+
)
|
159 |
+
|
160 |
+
class MistralLinearScalingRotaryEmbedding(MistralRotaryEmbedding):
|
161 |
+
"""MistralRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
162 |
+
|
163 |
+
def __init__(self, dim, max_position_embeddings=4096, base=10000, device=None, scaling_factor=1.0):
|
164 |
+
self.scaling_factor = scaling_factor
|
165 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
166 |
+
|
167 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
168 |
+
self.max_seq_len_cached = seq_len
|
169 |
+
|
170 |
+
t = np.arange(self.max_seq_len_cached, dtype=np.float64)
|
171 |
+
t = t / self.scaling_factor
|
172 |
+
t = torch.tensor(t, device=self.inv_freq.device, dtype=torch.float64)
|
173 |
+
|
174 |
+
freqs = torch.outer(t, self.inv_freq.to(device=t.device).to(t.dtype))
|
175 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
176 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
177 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
178 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
179 |
+
|
180 |
+
class MistralVanillaNTKScalingRotaryEmbedding(MistralRotaryEmbedding):
|
181 |
+
|
182 |
+
def __init__(self, dim, max_position_embeddings=4096, base=10000, device=None, scaling_factor=1.0):
|
183 |
+
self.scaling_factor = scaling_factor
|
184 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
185 |
+
|
186 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
187 |
+
self.max_seq_len_cached = seq_len
|
188 |
+
|
189 |
+
base = self.base * self.scaling_factor ** (self.dim / (self.dim - 2))
|
190 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
191 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
192 |
+
|
193 |
+
t = np.arange(self.max_seq_len_cached, dtype=np.float64)
|
194 |
+
t = torch.tensor(t, device=self.inv_freq.device, dtype=torch.float64)
|
195 |
+
|
196 |
+
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
197 |
+
freqs = torch.outer(t, self.inv_freq.to(device=t.device).to(t.dtype))
|
198 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
199 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
200 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
201 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
202 |
+
|
203 |
+
class MistralDynamicNTKScalingRotaryEmbedding(MistralRotaryEmbedding):
|
204 |
+
"""MistralRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
205 |
+
|
206 |
+
def __init__(self, dim, max_position_embeddings=4096, base=10000, device=None, scaling_factor=1.0):
|
207 |
+
self.scaling_factor = scaling_factor
|
208 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
209 |
+
|
210 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
211 |
+
self.max_seq_len_cached = seq_len
|
212 |
+
|
213 |
+
if seq_len > self.max_position_embeddings:
|
214 |
+
base = self.base * (
|
215 |
+
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
216 |
+
) ** (self.dim / (self.dim - 2))
|
217 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
218 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
219 |
+
|
220 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
221 |
+
|
222 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
223 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
224 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
225 |
+
self.register_buffer("cos_cached", emb.cos()[None, None, :, :].to(dtype), persistent=False)
|
226 |
+
self.register_buffer("sin_cached", emb.sin()[None, None, :, :].to(dtype), persistent=False)
|
227 |
+
|
228 |
+
|
229 |
+
# Inverse dim formula to find dim based on number of rotations
|
230 |
+
def _yarn_find_correction_dim(num_rotations, dim, base=10000, max_position_embeddings=4096):
|
231 |
+
return (dim * math.log(max_position_embeddings/(num_rotations * 2 * math.pi)))/(2 * math.log(base))
|
232 |
+
|
233 |
+
# Find dim range bounds based on rotations
|
234 |
+
def _yarn_find_correction_range(low_rot, high_rot, dim, base=10000, max_position_embeddings=4096):
|
235 |
+
low = math.floor(_yarn_find_correction_dim(
|
236 |
+
low_rot, dim, base, max_position_embeddings))
|
237 |
+
high = math.ceil(_yarn_find_correction_dim(
|
238 |
+
high_rot, dim, base, max_position_embeddings))
|
239 |
+
return max(low, 0), min(high, dim-1) # Clamp values just in case
|
240 |
+
|
241 |
+
def _yarn_linear_ramp_mask(min, max, dim):
|
242 |
+
if min == max:
|
243 |
+
max += 0.001 # Prevent singularity
|
244 |
+
|
245 |
+
linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
|
246 |
+
ramp_func = torch.clamp(linear_func, 0, 1)
|
247 |
+
return ramp_func
|
248 |
+
|
249 |
+
def _yarn_get_mscale(scale=1):
|
250 |
+
if scale <= 1:
|
251 |
+
return 1.0
|
252 |
+
return 0.07 * math.log(scale) + 1.0
|
253 |
+
|
254 |
+
|
255 |
+
class MistralYaRNScaledRotaryEmbedding(torch.nn.Module):
|
256 |
+
def __init__(self, dim, max_position_embeddings=4096, base=10000, scale=1, original_max_position_embeddings=4096, extrapolation_factor=1, attn_factor=1, beta_fast=32, beta_slow=1, finetuned=False, device=None):
|
257 |
+
super().__init__()
|
258 |
+
|
259 |
+
self.dim = dim
|
260 |
+
self.max_position_embeddings = max_position_embeddings
|
261 |
+
self.base = base
|
262 |
+
self.scale = scale
|
263 |
+
self.original_max_position_embeddings = original_max_position_embeddings
|
264 |
+
self.extrapolation_factor = extrapolation_factor
|
265 |
+
self.attn_factor = attn_factor
|
266 |
+
self.beta_fast = beta_fast
|
267 |
+
self.beta_slow = beta_slow
|
268 |
+
|
269 |
+
# self.yarn(device)
|
270 |
+
self.revised_yarn(device)
|
271 |
+
|
272 |
+
# Build here to make `torch.jit.trace` work.
|
273 |
+
self.max_seq_len_cached = max_position_embeddings
|
274 |
+
|
275 |
+
t = np.arange(self.max_seq_len_cached, dtype=np.float64)
|
276 |
+
t = torch.tensor(t, device=self.inv_freq.device, dtype=torch.float64)
|
277 |
+
freqs = torch.outer(t, self.inv_freq.to(device=t.device).to(t.dtype))
|
278 |
+
# t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=self.inv_freq.dtype)
|
279 |
+
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
280 |
+
|
281 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
282 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
283 |
+
dtype = torch.get_default_dtype()
|
284 |
+
|
285 |
+
self.register_buffer("cos_cached", (emb.cos() * self.mscale)[None, None, :, :].to(dtype), persistent=False)
|
286 |
+
self.register_buffer("sin_cached", (emb.sin() * self.mscale)[None, None, :, :].to(dtype), persistent=False)
|
287 |
+
|
288 |
+
def forward(self, x, seq_len=None):
|
289 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
290 |
+
# This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
|
291 |
+
if seq_len > self.max_seq_len_cached:
|
292 |
+
print("*****notice******")
|
293 |
+
self.max_seq_len_cached = seq_len
|
294 |
+
|
295 |
+
t = torch.arange(self.max_seq_len_cached, device=x.device, dtype=self.inv_freq.dtype)
|
296 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
297 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
298 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
299 |
+
|
300 |
+
self.register_buffer("cos_cached", (emb.cos() * self.mscale)[None, None, :, :].to(x.dtype), persistent=False)
|
301 |
+
self.register_buffer("sin_cached", (emb.sin() * self.mscale)[None, None, :, :].to(x.dtype), persistent=False)
|
302 |
+
return (
|
303 |
+
self.cos_cached[:, :, :, ...].to(dtype=x.dtype),
|
304 |
+
self.sin_cached[:, :, :, ...].to(dtype=x.dtype),
|
305 |
+
)
|
306 |
+
|
307 |
+
def yarn(self, device):
|
308 |
+
pos_freqs = self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
|
309 |
+
inv_freq_extrapolation = 1.0 / pos_freqs
|
310 |
+
inv_freq_interpolation = 1.0 / (self.scale * pos_freqs)
|
311 |
+
|
312 |
+
low, high = _yarn_find_correction_range(self.beta_fast, self.beta_slow, self.dim, self.base, self.original_max_position_embeddings)
|
313 |
+
inv_freq_mask = (1 - _yarn_linear_ramp_mask(low, high, self.dim // 2).float().to(device)) * self.extrapolation_factor # Get n-d rotational scaling corrected for extrapolation
|
314 |
+
inv_freq = inv_freq_interpolation * (1 - inv_freq_mask) + inv_freq_extrapolation * inv_freq_mask
|
315 |
+
|
316 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
317 |
+
self.mscale = float(_yarn_get_mscale(self.scale) * self.attn_factor) # Get n-d magnitude scaling corrected for interpolation
|
318 |
+
|
319 |
+
def revised_yarn(self, device):
|
320 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
321 |
+
|
322 |
+
low, high = _yarn_find_correction_range(self.beta_fast, self.beta_slow, self.dim, self.base, self.original_max_position_embeddings)
|
323 |
+
inv_freq_mask = (1 - _yarn_linear_ramp_mask(low, high, self.dim // 2).float().to(device)) * self.extrapolation_factor
|
324 |
+
|
325 |
+
inv_freq = inv_freq / ((1-inv_freq_mask)*self.scale + inv_freq_mask)
|
326 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
327 |
+
self.mscale = float(_yarn_get_mscale(self.scale) * self.attn_factor)
|
328 |
+
|
329 |
+
|
330 |
+
|
331 |
+
|
332 |
+
def rotate_half(x):
|
333 |
+
"""Rotates half the hidden dims of the input."""
|
334 |
+
x1 = x[..., : x.shape[-1] // 2]
|
335 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
336 |
+
return torch.cat((-x2, x1), dim=-1)
|
337 |
+
|
338 |
+
|
339 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
340 |
+
# The first two dimensions of cos and sin are always 1, so we can `squeeze` them.
|
341 |
+
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
342 |
+
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
343 |
+
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
344 |
+
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
345 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
346 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
347 |
+
return q_embed, k_embed
|
348 |
+
|
349 |
+
|
350 |
+
class MistralMLP(nn.Module):
|
351 |
+
def __init__(self, config):
|
352 |
+
super().__init__()
|
353 |
+
self.config = config
|
354 |
+
self.hidden_size = config.hidden_size
|
355 |
+
self.intermediate_size = config.intermediate_size
|
356 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
357 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
358 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
359 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
360 |
+
|
361 |
+
def forward(self, x):
|
362 |
+
|
363 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
364 |
+
|
365 |
+
|
366 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
367 |
+
"""
|
368 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
369 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
370 |
+
"""
|
371 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
372 |
+
if n_rep == 1:
|
373 |
+
return hidden_states
|
374 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
375 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
376 |
+
|
377 |
+
|
378 |
+
class MistralAttention(nn.Module):
|
379 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
|
380 |
+
and "Generating Long Sequences with Sparse Transformers"."""
|
381 |
+
|
382 |
+
def __init__(self, config: MistralConfig):
|
383 |
+
super().__init__()
|
384 |
+
self.config = config
|
385 |
+
self.hidden_size = config.hidden_size
|
386 |
+
self.num_heads = config.num_attention_heads
|
387 |
+
self.head_dim = self.hidden_size // self.num_heads
|
388 |
+
self.num_key_value_heads = config.num_key_value_heads
|
389 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
390 |
+
self.max_position_embeddings = config.max_position_embeddings
|
391 |
+
|
392 |
+
if (self.head_dim * self.num_heads) != self.hidden_size:
|
393 |
+
raise ValueError(
|
394 |
+
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
395 |
+
f" and `num_heads`: {self.num_heads})."
|
396 |
+
)
|
397 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
398 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
399 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
400 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
|
401 |
+
self._init_rope()
|
402 |
+
|
403 |
+
def _init_rope(self):
|
404 |
+
if self.config.rope_scaling is None:
|
405 |
+
self.rotary_emb = MistralRotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
|
406 |
+
else:
|
407 |
+
scaling_type = self.config.rope_scaling["type"]
|
408 |
+
scaling_factor = self.config.rope_scaling["factor"]
|
409 |
+
if scaling_type == "linear":
|
410 |
+
self.rotary_emb = MistralLinearScalingRotaryEmbedding(
|
411 |
+
self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
|
412 |
+
)
|
413 |
+
elif scaling_type == "dynamic":
|
414 |
+
self.rotary_emb = MistralDynamicNTKScalingRotaryEmbedding(
|
415 |
+
self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
|
416 |
+
)
|
417 |
+
elif scaling_type == "vanilla_ntk":
|
418 |
+
self.rotary_emb = MistralVanillaNTKScalingRotaryEmbedding(
|
419 |
+
self.head_dim, max_position_embeddings=self.max_position_embeddings, scaling_factor=scaling_factor
|
420 |
+
)
|
421 |
+
elif scaling_type == "yarn":
|
422 |
+
original_max_position_embeddings = self.config.rope_scaling["original_max_position_embeddings"]
|
423 |
+
self.rotary_emb = MistralYaRNScaledRotaryEmbedding(
|
424 |
+
self.head_dim, max_position_embeddings=self.max_position_embeddings, scale=scaling_factor, original_max_position_embeddings=original_max_position_embeddings
|
425 |
+
)
|
426 |
+
else:
|
427 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
428 |
+
|
429 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
430 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
431 |
+
|
432 |
+
def forward(
|
433 |
+
self,
|
434 |
+
hidden_states: torch.Tensor,
|
435 |
+
attention_mask: Optional[torch.Tensor] = None,
|
436 |
+
position_ids: Optional[torch.LongTensor] = None,
|
437 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
438 |
+
output_attentions: bool = False,
|
439 |
+
use_cache: bool = False,
|
440 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
441 |
+
bsz, q_len, _ = hidden_states.size()
|
442 |
+
|
443 |
+
query_states = self.q_proj(hidden_states)
|
444 |
+
key_states = self.k_proj(hidden_states)
|
445 |
+
value_states = self.v_proj(hidden_states)
|
446 |
+
|
447 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
448 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
449 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
450 |
+
|
451 |
+
kv_seq_len = key_states.shape[-2]
|
452 |
+
if past_key_value is not None:
|
453 |
+
kv_seq_len += past_key_value[0].shape[-2]
|
454 |
+
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
455 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
456 |
+
have_past_key_value = past_key_value is not None
|
457 |
+
if past_key_value is not None:
|
458 |
+
# reuse k, v, self_attention
|
459 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
460 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
461 |
+
|
462 |
+
past_key_value = (key_states, value_states) if use_cache else None
|
463 |
+
|
464 |
+
# repeat k/v heads if n_kv_heads < n_heads
|
465 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
466 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
467 |
+
|
468 |
+
|
469 |
+
use_xformer = True
|
470 |
+
|
471 |
+
if not use_xformer or have_past_key_value:
|
472 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
473 |
+
|
474 |
+
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
475 |
+
raise ValueError(
|
476 |
+
f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
477 |
+
f" {attn_weights.size()}"
|
478 |
+
)
|
479 |
+
|
480 |
+
if attention_mask is not None:
|
481 |
+
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
482 |
+
raise ValueError(
|
483 |
+
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
484 |
+
)
|
485 |
+
attn_weights = attn_weights + attention_mask
|
486 |
+
|
487 |
+
# upcast attention to fp32
|
488 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
489 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
490 |
+
|
491 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
492 |
+
raise ValueError(
|
493 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
494 |
+
f" {attn_output.size()}"
|
495 |
+
)
|
496 |
+
|
497 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
498 |
+
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
499 |
+
else:
|
500 |
+
import xformers.ops as xops
|
501 |
+
attn_weights = None
|
502 |
+
#attn_bias = attention_mask.expand(-1, self.num_heads, -1, -1)
|
503 |
+
attn_bias=xops.LowerTriangularMask()
|
504 |
+
attn_output = xops.memory_efficient_attention(
|
505 |
+
query_states.transpose(1,2), key_states.transpose(1,2), value_states.transpose(1,2),
|
506 |
+
attn_bias=attn_bias,
|
507 |
+
).reshape(bsz, q_len, self.hidden_size)
|
508 |
+
|
509 |
+
|
510 |
+
attn_output = self.o_proj(attn_output)
|
511 |
+
|
512 |
+
if not output_attentions:
|
513 |
+
attn_weights = None
|
514 |
+
|
515 |
+
return attn_output, attn_weights, past_key_value
|
516 |
+
|
517 |
+
|
518 |
+
class MistralDecoderLayer(nn.Module):
|
519 |
+
def __init__(self, config: MistralConfig):
|
520 |
+
super().__init__()
|
521 |
+
self.hidden_size = config.hidden_size
|
522 |
+
self.self_attn = MistralAttention(config=config)
|
523 |
+
self.mlp = MistralMLP(config)
|
524 |
+
self.input_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
525 |
+
self.post_attention_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
526 |
+
|
527 |
+
def forward(
|
528 |
+
self,
|
529 |
+
hidden_states: torch.Tensor,
|
530 |
+
attention_mask: Optional[torch.Tensor] = None,
|
531 |
+
position_ids: Optional[torch.LongTensor] = None,
|
532 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
533 |
+
output_attentions: Optional[bool] = False,
|
534 |
+
use_cache: Optional[bool] = False,
|
535 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
536 |
+
"""
|
537 |
+
Args:
|
538 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
539 |
+
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
|
540 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
541 |
+
output_attentions (`bool`, *optional*):
|
542 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
543 |
+
returned tensors for more detail.
|
544 |
+
use_cache (`bool`, *optional*):
|
545 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
546 |
+
(see `past_key_values`).
|
547 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
548 |
+
"""
|
549 |
+
|
550 |
+
residual = hidden_states
|
551 |
+
|
552 |
+
hidden_states = self.input_layernorm(hidden_states)
|
553 |
+
|
554 |
+
# Self Attention
|
555 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
556 |
+
hidden_states=hidden_states,
|
557 |
+
attention_mask=attention_mask,
|
558 |
+
position_ids=position_ids,
|
559 |
+
past_key_value=past_key_value,
|
560 |
+
output_attentions=output_attentions,
|
561 |
+
use_cache=use_cache,
|
562 |
+
)
|
563 |
+
hidden_states = residual + hidden_states
|
564 |
+
|
565 |
+
# Fully Connected
|
566 |
+
residual = hidden_states
|
567 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
568 |
+
hidden_states = self.mlp(hidden_states)
|
569 |
+
hidden_states = residual + hidden_states
|
570 |
+
|
571 |
+
outputs = (hidden_states,)
|
572 |
+
|
573 |
+
if output_attentions:
|
574 |
+
outputs += (self_attn_weights,)
|
575 |
+
|
576 |
+
if use_cache:
|
577 |
+
outputs += (present_key_value,)
|
578 |
+
|
579 |
+
return outputs
|
580 |
+
|
581 |
+
|
582 |
+
MISTRAL_START_DOCSTRING = r"""
|
583 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
584 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
585 |
+
etc.)
|
586 |
+
|
587 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
588 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
589 |
+
and behavior.
|
590 |
+
|
591 |
+
Parameters:
|
592 |
+
config ([`MistralConfig`]):
|
593 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
594 |
+
load the weights associated with the model, only the configuration. Check out the
|
595 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
596 |
+
"""
|
597 |
+
|
598 |
+
|
599 |
+
@add_start_docstrings(
|
600 |
+
"The bare Mistral Model outputting raw hidden-states without any specific head on top.",
|
601 |
+
MISTRAL_START_DOCSTRING,
|
602 |
+
)
|
603 |
+
class MistralPreTrainedModel(PreTrainedModel):
|
604 |
+
config_class = MistralConfig
|
605 |
+
base_model_prefix = "model"
|
606 |
+
supports_gradient_checkpointing = True
|
607 |
+
_no_split_modules = ["MistralDecoderLayer"]
|
608 |
+
_skip_keys_device_placement = "past_key_values"
|
609 |
+
|
610 |
+
def _init_weights(self, module):
|
611 |
+
std = self.config.initializer_range
|
612 |
+
if isinstance(module, nn.Linear):
|
613 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
614 |
+
if module.bias is not None:
|
615 |
+
module.bias.data.zero_()
|
616 |
+
elif isinstance(module, nn.Embedding):
|
617 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
618 |
+
if module.padding_idx is not None:
|
619 |
+
module.weight.data[module.padding_idx].zero_()
|
620 |
+
|
621 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
622 |
+
if isinstance(module, MistralModel):
|
623 |
+
module.gradient_checkpointing = value
|
624 |
+
|
625 |
+
|
626 |
+
MISTRAL_INPUTS_DOCSTRING = r"""
|
627 |
+
Args:
|
628 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
629 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
630 |
+
it.
|
631 |
+
|
632 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
633 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
634 |
+
|
635 |
+
[What are input IDs?](../glossary#input-ids)
|
636 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
637 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
638 |
+
|
639 |
+
- 1 for tokens that are **not masked**,
|
640 |
+
- 0 for tokens that are **masked**.
|
641 |
+
|
642 |
+
[What are attention masks?](../glossary#attention-mask)
|
643 |
+
|
644 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
645 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
646 |
+
|
647 |
+
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
648 |
+
`past_key_values`).
|
649 |
+
|
650 |
+
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
|
651 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
652 |
+
information on the default strategy.
|
653 |
+
|
654 |
+
- 1 indicates the head is **not masked**,
|
655 |
+
- 0 indicates the head is **masked**.
|
656 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
657 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
658 |
+
config.n_positions - 1]`.
|
659 |
+
|
660 |
+
[What are position IDs?](../glossary#position-ids)
|
661 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
662 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
663 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
664 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
665 |
+
|
666 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
667 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
668 |
+
|
669 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
670 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
671 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
672 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
673 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
674 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
675 |
+
model's internal embedding lookup matrix.
|
676 |
+
use_cache (`bool`, *optional*):
|
677 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
678 |
+
`past_key_values`).
|
679 |
+
output_attentions (`bool`, *optional*):
|
680 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
681 |
+
tensors for more detail.
|
682 |
+
output_hidden_states (`bool`, *optional*):
|
683 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
684 |
+
more detail.
|
685 |
+
return_dict (`bool`, *optional*):
|
686 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
687 |
+
"""
|
688 |
+
|
689 |
+
|
690 |
+
@add_start_docstrings(
|
691 |
+
"The bare Mistral Model outputting raw hidden-states without any specific head on top.",
|
692 |
+
MISTRAL_START_DOCSTRING,
|
693 |
+
)
|
694 |
+
class MistralModel(MistralPreTrainedModel):
|
695 |
+
"""
|
696 |
+
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MistralDecoderLayer`]
|
697 |
+
|
698 |
+
Args:
|
699 |
+
config: MistralConfig
|
700 |
+
"""
|
701 |
+
|
702 |
+
def __init__(self, config: MistralConfig):
|
703 |
+
super().__init__(config)
|
704 |
+
self.padding_idx = config.pad_token_id
|
705 |
+
self.vocab_size = config.vocab_size
|
706 |
+
|
707 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
708 |
+
self.layers = nn.ModuleList([MistralDecoderLayer(config) for _ in range(config.num_hidden_layers)])
|
709 |
+
self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
710 |
+
|
711 |
+
self.gradient_checkpointing = False
|
712 |
+
# Initialize weights and apply final processing
|
713 |
+
self.post_init()
|
714 |
+
|
715 |
+
def get_input_embeddings(self):
|
716 |
+
return self.embed_tokens
|
717 |
+
|
718 |
+
def set_input_embeddings(self, value):
|
719 |
+
self.embed_tokens = value
|
720 |
+
|
721 |
+
# Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
|
722 |
+
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length, sliding_window):
|
723 |
+
# create causal mask
|
724 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
725 |
+
combined_attention_mask = None
|
726 |
+
if input_shape[-1] > 1:
|
727 |
+
|
728 |
+
if sliding_window is not None:
|
729 |
+
combined_attention_mask = _make_sliding_window_causal_mask(
|
730 |
+
input_shape,
|
731 |
+
inputs_embeds.dtype,
|
732 |
+
device=inputs_embeds.device,
|
733 |
+
past_key_values_length=past_key_values_length,
|
734 |
+
sliding_window=sliding_window,
|
735 |
+
)
|
736 |
+
else:
|
737 |
+
combined_attention_mask = _make_causal_mask(
|
738 |
+
input_shape,
|
739 |
+
inputs_embeds.dtype,
|
740 |
+
device=inputs_embeds.device,
|
741 |
+
past_key_values_length=past_key_values_length,
|
742 |
+
)
|
743 |
+
|
744 |
+
if attention_mask is not None:
|
745 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
746 |
+
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
747 |
+
inputs_embeds.device
|
748 |
+
)
|
749 |
+
combined_attention_mask = (
|
750 |
+
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
751 |
+
)
|
752 |
+
|
753 |
+
return combined_attention_mask
|
754 |
+
|
755 |
+
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
|
756 |
+
def forward(
|
757 |
+
self,
|
758 |
+
input_ids: torch.LongTensor = None,
|
759 |
+
attention_mask: Optional[torch.Tensor] = None,
|
760 |
+
position_ids: Optional[torch.LongTensor] = None,
|
761 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
762 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
763 |
+
use_cache: Optional[bool] = None,
|
764 |
+
output_attentions: Optional[bool] = None,
|
765 |
+
output_hidden_states: Optional[bool] = None,
|
766 |
+
return_dict: Optional[bool] = None,
|
767 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
768 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
769 |
+
output_hidden_states = (
|
770 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
771 |
+
)
|
772 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
773 |
+
|
774 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
775 |
+
|
776 |
+
# retrieve input_ids and inputs_embeds
|
777 |
+
if input_ids is not None and inputs_embeds is not None:
|
778 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
779 |
+
elif input_ids is not None:
|
780 |
+
batch_size, seq_length = input_ids.shape
|
781 |
+
elif inputs_embeds is not None:
|
782 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
783 |
+
else:
|
784 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
785 |
+
|
786 |
+
seq_length_with_past = seq_length
|
787 |
+
past_key_values_length = 0
|
788 |
+
|
789 |
+
if past_key_values is not None:
|
790 |
+
past_key_values_length = past_key_values[0][0].shape[2]
|
791 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
792 |
+
|
793 |
+
if position_ids is None:
|
794 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
795 |
+
position_ids = torch.arange(
|
796 |
+
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
797 |
+
)
|
798 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
799 |
+
else:
|
800 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
801 |
+
|
802 |
+
if inputs_embeds is None:
|
803 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
804 |
+
# embed positions
|
805 |
+
# if attention_mask is None:
|
806 |
+
# attention_mask = torch.ones(
|
807 |
+
# (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
|
808 |
+
# )
|
809 |
+
|
810 |
+
if attention_mask is not None:
|
811 |
+
attention_mask = self._prepare_decoder_attention_mask(
|
812 |
+
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length,
|
813 |
+
sliding_window=self.config.sliding_window if hasattr(self.config, "sliding_window") else None,
|
814 |
+
)
|
815 |
+
# elif 0 in attention_mask:
|
816 |
+
# padding_mask = attention_mask
|
817 |
+
# if (
|
818 |
+
# padding_mask is not None
|
819 |
+
# and hasattr(self.config, "_flash_attn_2_enabled")
|
820 |
+
# and self.config._flash_attn_2_enabled
|
821 |
+
# ):
|
822 |
+
# is_padding_right = padding_mask[:, -1].sum().item() != batch_size
|
823 |
+
# if is_padding_right:
|
824 |
+
# raise ValueError(
|
825 |
+
# "You are attempting to perform batched generation with padding_side='right'"
|
826 |
+
# " this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to "
|
827 |
+
# " call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
828 |
+
# )
|
829 |
+
|
830 |
+
# attention_mask = self._prepare_decoder_attention_mask(
|
831 |
+
# attention_mask,
|
832 |
+
# (batch_size, seq_length),
|
833 |
+
# inputs_embeds,
|
834 |
+
# past_key_values_length,
|
835 |
+
# sliding_window=self.config.sliding_window if hasattr(self.config, "sliding_window") else None,
|
836 |
+
# )
|
837 |
+
hidden_states = inputs_embeds
|
838 |
+
|
839 |
+
if self.gradient_checkpointing and self.training:
|
840 |
+
if use_cache:
|
841 |
+
logger.warning_once(
|
842 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
843 |
+
)
|
844 |
+
use_cache = False
|
845 |
+
|
846 |
+
# decoder layers
|
847 |
+
all_hidden_states = () if output_hidden_states else None
|
848 |
+
all_self_attns = () if output_attentions else None
|
849 |
+
next_decoder_cache = () if use_cache else None
|
850 |
+
|
851 |
+
for idx, decoder_layer in enumerate(self.layers):
|
852 |
+
if output_hidden_states:
|
853 |
+
all_hidden_states += (hidden_states,)
|
854 |
+
|
855 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
856 |
+
|
857 |
+
if self.gradient_checkpointing and self.training:
|
858 |
+
|
859 |
+
def create_custom_forward(module):
|
860 |
+
def custom_forward(*inputs):
|
861 |
+
# None for past_key_value
|
862 |
+
return module(*inputs, output_attentions, None)
|
863 |
+
|
864 |
+
return custom_forward
|
865 |
+
|
866 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
867 |
+
create_custom_forward(decoder_layer),
|
868 |
+
hidden_states,
|
869 |
+
attention_mask,
|
870 |
+
position_ids,
|
871 |
+
None,
|
872 |
+
)
|
873 |
+
else:
|
874 |
+
layer_outputs = decoder_layer(
|
875 |
+
hidden_states,
|
876 |
+
attention_mask=attention_mask,
|
877 |
+
position_ids=position_ids,
|
878 |
+
past_key_value=past_key_value,
|
879 |
+
output_attentions=output_attentions,
|
880 |
+
use_cache=use_cache,
|
881 |
+
)
|
882 |
+
|
883 |
+
hidden_states = layer_outputs[0]
|
884 |
+
|
885 |
+
if use_cache:
|
886 |
+
next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
|
887 |
+
|
888 |
+
if output_attentions:
|
889 |
+
all_self_attns += (layer_outputs[1],)
|
890 |
+
|
891 |
+
hidden_states = self.norm(hidden_states)
|
892 |
+
|
893 |
+
# add hidden states from the last decoder layer
|
894 |
+
if output_hidden_states:
|
895 |
+
all_hidden_states += (hidden_states,)
|
896 |
+
|
897 |
+
next_cache = next_decoder_cache if use_cache else None
|
898 |
+
if not return_dict:
|
899 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
900 |
+
return BaseModelOutputWithPast(
|
901 |
+
last_hidden_state=hidden_states,
|
902 |
+
past_key_values=next_cache,
|
903 |
+
hidden_states=all_hidden_states,
|
904 |
+
attentions=all_self_attns,
|
905 |
+
)
|
906 |
+
|
907 |
+
|
908 |
+
class MistralForCausalLM(MistralPreTrainedModel):
|
909 |
+
_tied_weights_keys = ["lm_head.weight"]
|
910 |
+
|
911 |
+
def __init__(self, config):
|
912 |
+
super().__init__(config)
|
913 |
+
self.model = MistralModel(config)
|
914 |
+
self.vocab_size = config.vocab_size
|
915 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
916 |
+
|
917 |
+
# Initialize weights and apply final processing
|
918 |
+
self.post_init()
|
919 |
+
|
920 |
+
def get_input_embeddings(self):
|
921 |
+
return self.model.embed_tokens
|
922 |
+
|
923 |
+
def set_input_embeddings(self, value):
|
924 |
+
self.model.embed_tokens = value
|
925 |
+
|
926 |
+
def get_output_embeddings(self):
|
927 |
+
return self.lm_head
|
928 |
+
|
929 |
+
def set_output_embeddings(self, new_embeddings):
|
930 |
+
self.lm_head = new_embeddings
|
931 |
+
|
932 |
+
def set_decoder(self, decoder):
|
933 |
+
self.model = decoder
|
934 |
+
|
935 |
+
def get_decoder(self):
|
936 |
+
return self.model
|
937 |
+
|
938 |
+
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
|
939 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
940 |
+
def forward(
|
941 |
+
self,
|
942 |
+
input_ids: torch.LongTensor = None,
|
943 |
+
attention_mask: Optional[torch.Tensor] = None,
|
944 |
+
position_ids: Optional[torch.LongTensor] = None,
|
945 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
946 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
947 |
+
labels: Optional[torch.LongTensor] = None,
|
948 |
+
use_cache: Optional[bool] = None,
|
949 |
+
output_attentions: Optional[bool] = None,
|
950 |
+
output_hidden_states: Optional[bool] = None,
|
951 |
+
return_dict: Optional[bool] = None,
|
952 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
953 |
+
r"""
|
954 |
+
Args:
|
955 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
956 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
957 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
958 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
959 |
+
|
960 |
+
Returns:
|
961 |
+
|
962 |
+
Example:
|
963 |
+
|
964 |
+
```python
|
965 |
+
>>> from transformers import AutoTokenizer, MistralForCausalLM
|
966 |
+
|
967 |
+
>>> model = MistralForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
968 |
+
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
969 |
+
|
970 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
971 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
972 |
+
|
973 |
+
>>> # Generate
|
974 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
975 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
976 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
977 |
+
```"""
|
978 |
+
|
979 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
980 |
+
output_hidden_states = (
|
981 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
982 |
+
)
|
983 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
984 |
+
|
985 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
986 |
+
outputs = self.model(
|
987 |
+
input_ids=input_ids,
|
988 |
+
attention_mask=attention_mask,
|
989 |
+
position_ids=position_ids,
|
990 |
+
past_key_values=past_key_values,
|
991 |
+
inputs_embeds=inputs_embeds,
|
992 |
+
use_cache=use_cache,
|
993 |
+
output_attentions=output_attentions,
|
994 |
+
output_hidden_states=output_hidden_states,
|
995 |
+
return_dict=return_dict,
|
996 |
+
)
|
997 |
+
|
998 |
+
hidden_states = outputs[0]
|
999 |
+
|
1000 |
+
logits = self.lm_head(hidden_states)
|
1001 |
+
logits = logits.float()
|
1002 |
+
|
1003 |
+
loss = None
|
1004 |
+
if labels is not None:
|
1005 |
+
# Shift so that tokens < n predict n
|
1006 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1007 |
+
shift_labels = labels[..., 1:].contiguous()
|
1008 |
+
# Flatten the tokens
|
1009 |
+
loss_fct = CrossEntropyLoss()
|
1010 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1011 |
+
shift_labels = shift_labels.view(-1)
|
1012 |
+
# Enable model parallelism
|
1013 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1014 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1015 |
+
|
1016 |
+
if not return_dict:
|
1017 |
+
output = (logits,) + outputs[1:]
|
1018 |
+
return (loss,) + output if loss is not None else output
|
1019 |
+
|
1020 |
+
return CausalLMOutputWithPast(
|
1021 |
+
loss=loss,
|
1022 |
+
logits=logits,
|
1023 |
+
past_key_values=outputs.past_key_values,
|
1024 |
+
hidden_states=outputs.hidden_states,
|
1025 |
+
attentions=outputs.attentions,
|
1026 |
+
)
|
1027 |
+
|
1028 |
+
def prepare_inputs_for_generation(
|
1029 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
1030 |
+
):
|
1031 |
+
if past_key_values:
|
1032 |
+
input_ids = input_ids[:, -1:]
|
1033 |
+
|
1034 |
+
position_ids = kwargs.get("position_ids", None)
|
1035 |
+
if attention_mask is not None and position_ids is None:
|
1036 |
+
# create position_ids on the fly for batch generation
|
1037 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1038 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1039 |
+
if past_key_values:
|
1040 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
1041 |
+
|
1042 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1043 |
+
if inputs_embeds is not None and past_key_values is None:
|
1044 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1045 |
+
else:
|
1046 |
+
model_inputs = {"input_ids": input_ids}
|
1047 |
+
|
1048 |
+
model_inputs.update(
|
1049 |
+
{
|
1050 |
+
"position_ids": position_ids,
|
1051 |
+
"past_key_values": past_key_values,
|
1052 |
+
"use_cache": kwargs.get("use_cache"),
|
1053 |
+
"attention_mask": attention_mask,
|
1054 |
+
}
|
1055 |
+
)
|
1056 |
+
return model_inputs
|
1057 |
+
|
1058 |
+
@staticmethod
|
1059 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1060 |
+
reordered_past = ()
|
1061 |
+
for layer_past in past_key_values:
|
1062 |
+
reordered_past += (
|
1063 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1064 |
+
)
|
1065 |
+
return reordered_past
|
1066 |
+
|
1067 |
+
|
1068 |
+
@add_start_docstrings(
|
1069 |
+
"""
|
1070 |
+
The Mistral Model transformer with a sequence classification head on top (linear layer).
|
1071 |
+
|
1072 |
+
[`MistralForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1073 |
+
(e.g. GPT-2) do.
|
1074 |
+
|
1075 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1076 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1077 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1078 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1079 |
+
each row of the batch).
|
1080 |
+
""",
|
1081 |
+
MISTRAL_START_DOCSTRING,
|
1082 |
+
)
|
1083 |
+
class MistralForSequenceClassification(MistralPreTrainedModel):
|
1084 |
+
def __init__(self, config):
|
1085 |
+
super().__init__(config)
|
1086 |
+
self.num_labels = config.num_labels
|
1087 |
+
self.model = MistralModel(config)
|
1088 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
1089 |
+
|
1090 |
+
# Initialize weights and apply final processing
|
1091 |
+
self.post_init()
|
1092 |
+
|
1093 |
+
def get_input_embeddings(self):
|
1094 |
+
return self.model.embed_tokens
|
1095 |
+
|
1096 |
+
def set_input_embeddings(self, value):
|
1097 |
+
self.model.embed_tokens = value
|
1098 |
+
|
1099 |
+
@add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING)
|
1100 |
+
def forward(
|
1101 |
+
self,
|
1102 |
+
input_ids: torch.LongTensor = None,
|
1103 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1104 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1105 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1106 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1107 |
+
labels: Optional[torch.LongTensor] = None,
|
1108 |
+
use_cache: Optional[bool] = None,
|
1109 |
+
output_attentions: Optional[bool] = None,
|
1110 |
+
output_hidden_states: Optional[bool] = None,
|
1111 |
+
return_dict: Optional[bool] = None,
|
1112 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1113 |
+
r"""
|
1114 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1115 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1116 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1117 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1118 |
+
"""
|
1119 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1120 |
+
|
1121 |
+
transformer_outputs = self.model(
|
1122 |
+
input_ids,
|
1123 |
+
attention_mask=attention_mask,
|
1124 |
+
position_ids=position_ids,
|
1125 |
+
past_key_values=past_key_values,
|
1126 |
+
inputs_embeds=inputs_embeds,
|
1127 |
+
use_cache=use_cache,
|
1128 |
+
output_attentions=output_attentions,
|
1129 |
+
output_hidden_states=output_hidden_states,
|
1130 |
+
return_dict=return_dict,
|
1131 |
+
)
|
1132 |
+
hidden_states = transformer_outputs[0]
|
1133 |
+
logits = self.score(hidden_states)
|
1134 |
+
|
1135 |
+
if input_ids is not None:
|
1136 |
+
batch_size = input_ids.shape[0]
|
1137 |
+
else:
|
1138 |
+
batch_size = inputs_embeds.shape[0]
|
1139 |
+
|
1140 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1141 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1142 |
+
if self.config.pad_token_id is None:
|
1143 |
+
sequence_lengths = -1
|
1144 |
+
else:
|
1145 |
+
if input_ids is not None:
|
1146 |
+
sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).long().argmax(-1) - 1).to(
|
1147 |
+
logits.device
|
1148 |
+
)
|
1149 |
+
else:
|
1150 |
+
sequence_lengths = -1
|
1151 |
+
|
1152 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1153 |
+
|
1154 |
+
loss = None
|
1155 |
+
if labels is not None:
|
1156 |
+
labels = labels.to(logits.device)
|
1157 |
+
if self.config.problem_type is None:
|
1158 |
+
if self.num_labels == 1:
|
1159 |
+
self.config.problem_type = "regression"
|
1160 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1161 |
+
self.config.problem_type = "single_label_classification"
|
1162 |
+
else:
|
1163 |
+
self.config.problem_type = "multi_label_classification"
|
1164 |
+
|
1165 |
+
if self.config.problem_type == "regression":
|
1166 |
+
loss_fct = MSELoss()
|
1167 |
+
if self.num_labels == 1:
|
1168 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1169 |
+
else:
|
1170 |
+
loss = loss_fct(pooled_logits, labels)
|
1171 |
+
elif self.config.problem_type == "single_label_classification":
|
1172 |
+
loss_fct = CrossEntropyLoss()
|
1173 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1174 |
+
elif self.config.problem_type == "multi_label_classification":
|
1175 |
+
loss_fct = BCEWithLogitsLoss()
|
1176 |
+
loss = loss_fct(pooled_logits, labels)
|
1177 |
+
if not return_dict:
|
1178 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1179 |
+
return ((loss,) + output) if loss is not None else output
|
1180 |
+
|
1181 |
+
return SequenceClassifierOutputWithPast(
|
1182 |
+
loss=loss,
|
1183 |
+
logits=pooled_logits,
|
1184 |
+
past_key_values=transformer_outputs.past_key_values,
|
1185 |
+
hidden_states=transformer_outputs.hidden_states,
|
1186 |
+
attentions=transformer_outputs.attentions,
|
1187 |
+
)
|
special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "</s>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
|
3 |
+
size 493443
|
tokenizer_config.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": true,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"0": {
|
6 |
+
"content": "<unk>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"1": {
|
14 |
+
"content": "<s>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"2": {
|
22 |
+
"content": "</s>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"32000": {
|
30 |
+
"content": "[PAD]",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
}
|
37 |
+
},
|
38 |
+
"additional_special_tokens": [],
|
39 |
+
"bos_token": "<s>",
|
40 |
+
"clean_up_tokenization_spaces": false,
|
41 |
+
"eos_token": "</s>",
|
42 |
+
"legacy": true,
|
43 |
+
"model_max_length": 1000000000000000019884624838656,
|
44 |
+
"pad_token": "[PAD]",
|
45 |
+
"padding_side": "left",
|
46 |
+
"sp_model_kwargs": {},
|
47 |
+
"spaces_between_special_tokens": false,
|
48 |
+
"tokenizer_class": "LlamaTokenizer",
|
49 |
+
"unk_token": "</s>",
|
50 |
+
"use_default_system_prompt": true,
|
51 |
+
"use_fast": true
|
52 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,1379 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 2.0878255367279053,
|
3 |
+
"best_model_checkpoint": "path_to_your_model_and_data/pose/results/2k-32k-yarn/checkpoint-1000",
|
4 |
+
"epoch": 0.6896551724137931,
|
5 |
+
"eval_steps": 50,
|
6 |
+
"global_step": 1000,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.0,
|
13 |
+
"learning_rate": 1.2041199826559246e-05,
|
14 |
+
"loss": 1.6869,
|
15 |
+
"step": 5
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.01,
|
19 |
+
"learning_rate": 1.9084850188786497e-05,
|
20 |
+
"loss": 1.6045,
|
21 |
+
"step": 10
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 0.01,
|
25 |
+
"learning_rate": 1.993939393939394e-05,
|
26 |
+
"loss": 1.5365,
|
27 |
+
"step": 15
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.01,
|
31 |
+
"learning_rate": 1.985858585858586e-05,
|
32 |
+
"loss": 1.6548,
|
33 |
+
"step": 20
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.02,
|
37 |
+
"learning_rate": 1.975757575757576e-05,
|
38 |
+
"loss": 1.7008,
|
39 |
+
"step": 25
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.02,
|
43 |
+
"learning_rate": 1.9656565656565658e-05,
|
44 |
+
"loss": 1.6702,
|
45 |
+
"step": 30
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.02,
|
49 |
+
"learning_rate": 1.9555555555555557e-05,
|
50 |
+
"loss": 1.6943,
|
51 |
+
"step": 35
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.03,
|
55 |
+
"learning_rate": 1.9454545454545457e-05,
|
56 |
+
"loss": 1.6775,
|
57 |
+
"step": 40
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.03,
|
61 |
+
"learning_rate": 1.9353535353535356e-05,
|
62 |
+
"loss": 1.7281,
|
63 |
+
"step": 45
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.03,
|
67 |
+
"learning_rate": 1.9252525252525252e-05,
|
68 |
+
"loss": 1.6746,
|
69 |
+
"step": 50
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.03,
|
73 |
+
"eval_loss": 2.0998010635375977,
|
74 |
+
"eval_runtime": 127.4969,
|
75 |
+
"eval_samples_per_second": 0.784,
|
76 |
+
"eval_steps_per_second": 0.102,
|
77 |
+
"step": 50
|
78 |
+
},
|
79 |
+
{
|
80 |
+
"epoch": 0.04,
|
81 |
+
"learning_rate": 1.9151515151515152e-05,
|
82 |
+
"loss": 1.7754,
|
83 |
+
"step": 55
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"epoch": 0.04,
|
87 |
+
"learning_rate": 1.905050505050505e-05,
|
88 |
+
"loss": 1.7094,
|
89 |
+
"step": 60
|
90 |
+
},
|
91 |
+
{
|
92 |
+
"epoch": 0.04,
|
93 |
+
"learning_rate": 1.894949494949495e-05,
|
94 |
+
"loss": 1.6483,
|
95 |
+
"step": 65
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"epoch": 0.05,
|
99 |
+
"learning_rate": 1.886868686868687e-05,
|
100 |
+
"loss": 1.7341,
|
101 |
+
"step": 70
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.05,
|
105 |
+
"learning_rate": 1.876767676767677e-05,
|
106 |
+
"loss": 1.6221,
|
107 |
+
"step": 75
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.06,
|
111 |
+
"learning_rate": 1.866666666666667e-05,
|
112 |
+
"loss": 1.5681,
|
113 |
+
"step": 80
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"epoch": 0.06,
|
117 |
+
"learning_rate": 1.8565656565656568e-05,
|
118 |
+
"loss": 1.6668,
|
119 |
+
"step": 85
|
120 |
+
},
|
121 |
+
{
|
122 |
+
"epoch": 0.06,
|
123 |
+
"learning_rate": 1.8464646464646464e-05,
|
124 |
+
"loss": 1.6743,
|
125 |
+
"step": 90
|
126 |
+
},
|
127 |
+
{
|
128 |
+
"epoch": 0.07,
|
129 |
+
"learning_rate": 1.8363636363636367e-05,
|
130 |
+
"loss": 1.7875,
|
131 |
+
"step": 95
|
132 |
+
},
|
133 |
+
{
|
134 |
+
"epoch": 0.07,
|
135 |
+
"learning_rate": 1.8262626262626263e-05,
|
136 |
+
"loss": 1.7397,
|
137 |
+
"step": 100
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"epoch": 0.07,
|
141 |
+
"eval_loss": 2.1947836875915527,
|
142 |
+
"eval_runtime": 127.4557,
|
143 |
+
"eval_samples_per_second": 0.785,
|
144 |
+
"eval_steps_per_second": 0.102,
|
145 |
+
"step": 100
|
146 |
+
},
|
147 |
+
{
|
148 |
+
"epoch": 0.07,
|
149 |
+
"learning_rate": 1.8161616161616163e-05,
|
150 |
+
"loss": 1.6912,
|
151 |
+
"step": 105
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"epoch": 0.08,
|
155 |
+
"learning_rate": 1.8060606060606062e-05,
|
156 |
+
"loss": 1.7995,
|
157 |
+
"step": 110
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"epoch": 0.08,
|
161 |
+
"learning_rate": 1.795959595959596e-05,
|
162 |
+
"loss": 1.6217,
|
163 |
+
"step": 115
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.08,
|
167 |
+
"learning_rate": 1.785858585858586e-05,
|
168 |
+
"loss": 1.7081,
|
169 |
+
"step": 120
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"epoch": 0.09,
|
173 |
+
"learning_rate": 1.775757575757576e-05,
|
174 |
+
"loss": 1.7041,
|
175 |
+
"step": 125
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"epoch": 0.09,
|
179 |
+
"learning_rate": 1.765656565656566e-05,
|
180 |
+
"loss": 1.6235,
|
181 |
+
"step": 130
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"epoch": 0.09,
|
185 |
+
"learning_rate": 1.7555555555555556e-05,
|
186 |
+
"loss": 1.6583,
|
187 |
+
"step": 135
|
188 |
+
},
|
189 |
+
{
|
190 |
+
"epoch": 0.1,
|
191 |
+
"learning_rate": 1.7454545454545456e-05,
|
192 |
+
"loss": 1.7467,
|
193 |
+
"step": 140
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"epoch": 0.1,
|
197 |
+
"learning_rate": 1.7353535353535355e-05,
|
198 |
+
"loss": 1.6531,
|
199 |
+
"step": 145
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 0.1,
|
203 |
+
"learning_rate": 1.7252525252525255e-05,
|
204 |
+
"loss": 1.7272,
|
205 |
+
"step": 150
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.1,
|
209 |
+
"eval_loss": 2.1845450401306152,
|
210 |
+
"eval_runtime": 127.0346,
|
211 |
+
"eval_samples_per_second": 0.787,
|
212 |
+
"eval_steps_per_second": 0.102,
|
213 |
+
"step": 150
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 0.11,
|
217 |
+
"learning_rate": 1.715151515151515e-05,
|
218 |
+
"loss": 1.6193,
|
219 |
+
"step": 155
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.11,
|
223 |
+
"learning_rate": 1.7050505050505054e-05,
|
224 |
+
"loss": 1.6174,
|
225 |
+
"step": 160
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 0.11,
|
229 |
+
"learning_rate": 1.694949494949495e-05,
|
230 |
+
"loss": 1.665,
|
231 |
+
"step": 165
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"epoch": 0.12,
|
235 |
+
"learning_rate": 1.684848484848485e-05,
|
236 |
+
"loss": 1.7045,
|
237 |
+
"step": 170
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"epoch": 0.12,
|
241 |
+
"learning_rate": 1.674747474747475e-05,
|
242 |
+
"loss": 1.7124,
|
243 |
+
"step": 175
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"epoch": 0.12,
|
247 |
+
"learning_rate": 1.6646464646464648e-05,
|
248 |
+
"loss": 1.8402,
|
249 |
+
"step": 180
|
250 |
+
},
|
251 |
+
{
|
252 |
+
"epoch": 0.13,
|
253 |
+
"learning_rate": 1.6545454545454548e-05,
|
254 |
+
"loss": 1.6673,
|
255 |
+
"step": 185
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 0.13,
|
259 |
+
"learning_rate": 1.6444444444444444e-05,
|
260 |
+
"loss": 1.7193,
|
261 |
+
"step": 190
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.13,
|
265 |
+
"learning_rate": 1.6343434343434346e-05,
|
266 |
+
"loss": 1.6832,
|
267 |
+
"step": 195
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 0.14,
|
271 |
+
"learning_rate": 1.6242424242424243e-05,
|
272 |
+
"loss": 1.6866,
|
273 |
+
"step": 200
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"epoch": 0.14,
|
277 |
+
"eval_loss": 2.1831867694854736,
|
278 |
+
"eval_runtime": 127.2543,
|
279 |
+
"eval_samples_per_second": 0.786,
|
280 |
+
"eval_steps_per_second": 0.102,
|
281 |
+
"step": 200
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"epoch": 0.14,
|
285 |
+
"learning_rate": 1.6141414141414142e-05,
|
286 |
+
"loss": 1.6387,
|
287 |
+
"step": 205
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"epoch": 0.14,
|
291 |
+
"learning_rate": 1.604040404040404e-05,
|
292 |
+
"loss": 1.7822,
|
293 |
+
"step": 210
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"epoch": 0.15,
|
297 |
+
"learning_rate": 1.593939393939394e-05,
|
298 |
+
"loss": 1.6705,
|
299 |
+
"step": 215
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"epoch": 0.15,
|
303 |
+
"learning_rate": 1.585858585858586e-05,
|
304 |
+
"loss": 1.6592,
|
305 |
+
"step": 220
|
306 |
+
},
|
307 |
+
{
|
308 |
+
"epoch": 0.16,
|
309 |
+
"learning_rate": 1.575757575757576e-05,
|
310 |
+
"loss": 1.6256,
|
311 |
+
"step": 225
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 0.16,
|
315 |
+
"learning_rate": 1.565656565656566e-05,
|
316 |
+
"loss": 1.6946,
|
317 |
+
"step": 230
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.16,
|
321 |
+
"learning_rate": 1.555555555555556e-05,
|
322 |
+
"loss": 1.6859,
|
323 |
+
"step": 235
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"epoch": 0.17,
|
327 |
+
"learning_rate": 1.5454545454545454e-05,
|
328 |
+
"loss": 1.674,
|
329 |
+
"step": 240
|
330 |
+
},
|
331 |
+
{
|
332 |
+
"epoch": 0.17,
|
333 |
+
"learning_rate": 1.5353535353535354e-05,
|
334 |
+
"loss": 1.7687,
|
335 |
+
"step": 245
|
336 |
+
},
|
337 |
+
{
|
338 |
+
"epoch": 0.17,
|
339 |
+
"learning_rate": 1.5252525252525255e-05,
|
340 |
+
"loss": 1.6456,
|
341 |
+
"step": 250
|
342 |
+
},
|
343 |
+
{
|
344 |
+
"epoch": 0.17,
|
345 |
+
"eval_loss": 2.1776535511016846,
|
346 |
+
"eval_runtime": 127.5296,
|
347 |
+
"eval_samples_per_second": 0.784,
|
348 |
+
"eval_steps_per_second": 0.102,
|
349 |
+
"step": 250
|
350 |
+
},
|
351 |
+
{
|
352 |
+
"epoch": 0.18,
|
353 |
+
"learning_rate": 1.5151515151515153e-05,
|
354 |
+
"loss": 1.6896,
|
355 |
+
"step": 255
|
356 |
+
},
|
357 |
+
{
|
358 |
+
"epoch": 0.18,
|
359 |
+
"learning_rate": 1.505050505050505e-05,
|
360 |
+
"loss": 1.7209,
|
361 |
+
"step": 260
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"epoch": 0.18,
|
365 |
+
"learning_rate": 1.4949494949494952e-05,
|
366 |
+
"loss": 1.66,
|
367 |
+
"step": 265
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 0.19,
|
371 |
+
"learning_rate": 1.484848484848485e-05,
|
372 |
+
"loss": 1.6708,
|
373 |
+
"step": 270
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.19,
|
377 |
+
"learning_rate": 1.4747474747474747e-05,
|
378 |
+
"loss": 1.6432,
|
379 |
+
"step": 275
|
380 |
+
},
|
381 |
+
{
|
382 |
+
"epoch": 0.19,
|
383 |
+
"learning_rate": 1.4646464646464649e-05,
|
384 |
+
"loss": 1.6676,
|
385 |
+
"step": 280
|
386 |
+
},
|
387 |
+
{
|
388 |
+
"epoch": 0.2,
|
389 |
+
"learning_rate": 1.4545454545454546e-05,
|
390 |
+
"loss": 1.6768,
|
391 |
+
"step": 285
|
392 |
+
},
|
393 |
+
{
|
394 |
+
"epoch": 0.2,
|
395 |
+
"learning_rate": 1.4444444444444446e-05,
|
396 |
+
"loss": 1.7592,
|
397 |
+
"step": 290
|
398 |
+
},
|
399 |
+
{
|
400 |
+
"epoch": 0.2,
|
401 |
+
"learning_rate": 1.4343434343434344e-05,
|
402 |
+
"loss": 1.6192,
|
403 |
+
"step": 295
|
404 |
+
},
|
405 |
+
{
|
406 |
+
"epoch": 0.21,
|
407 |
+
"learning_rate": 1.4242424242424245e-05,
|
408 |
+
"loss": 1.5604,
|
409 |
+
"step": 300
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 0.21,
|
413 |
+
"eval_loss": 2.1859655380249023,
|
414 |
+
"eval_runtime": 127.9048,
|
415 |
+
"eval_samples_per_second": 0.782,
|
416 |
+
"eval_steps_per_second": 0.102,
|
417 |
+
"step": 300
|
418 |
+
},
|
419 |
+
{
|
420 |
+
"epoch": 0.21,
|
421 |
+
"learning_rate": 1.4141414141414143e-05,
|
422 |
+
"loss": 1.6379,
|
423 |
+
"step": 305
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"epoch": 0.21,
|
427 |
+
"learning_rate": 1.404040404040404e-05,
|
428 |
+
"loss": 1.6012,
|
429 |
+
"step": 310
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.22,
|
433 |
+
"learning_rate": 1.3939393939393942e-05,
|
434 |
+
"loss": 1.7011,
|
435 |
+
"step": 315
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"epoch": 0.22,
|
439 |
+
"learning_rate": 1.383838383838384e-05,
|
440 |
+
"loss": 1.6168,
|
441 |
+
"step": 320
|
442 |
+
},
|
443 |
+
{
|
444 |
+
"epoch": 0.22,
|
445 |
+
"learning_rate": 1.3737373737373739e-05,
|
446 |
+
"loss": 1.6507,
|
447 |
+
"step": 325
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"epoch": 0.23,
|
451 |
+
"learning_rate": 1.3636363636363637e-05,
|
452 |
+
"loss": 1.7676,
|
453 |
+
"step": 330
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"epoch": 0.23,
|
457 |
+
"learning_rate": 1.3535353535353538e-05,
|
458 |
+
"loss": 1.6707,
|
459 |
+
"step": 335
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"epoch": 0.23,
|
463 |
+
"learning_rate": 1.3434343434343436e-05,
|
464 |
+
"loss": 1.6062,
|
465 |
+
"step": 340
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"epoch": 0.24,
|
469 |
+
"learning_rate": 1.3333333333333333e-05,
|
470 |
+
"loss": 1.7136,
|
471 |
+
"step": 345
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.24,
|
475 |
+
"learning_rate": 1.3232323232323234e-05,
|
476 |
+
"loss": 1.661,
|
477 |
+
"step": 350
|
478 |
+
},
|
479 |
+
{
|
480 |
+
"epoch": 0.24,
|
481 |
+
"eval_loss": 2.189072370529175,
|
482 |
+
"eval_runtime": 127.1833,
|
483 |
+
"eval_samples_per_second": 0.786,
|
484 |
+
"eval_steps_per_second": 0.102,
|
485 |
+
"step": 350
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.24,
|
489 |
+
"learning_rate": 1.3131313131313132e-05,
|
490 |
+
"loss": 1.6766,
|
491 |
+
"step": 355
|
492 |
+
},
|
493 |
+
{
|
494 |
+
"epoch": 0.25,
|
495 |
+
"learning_rate": 1.3030303030303032e-05,
|
496 |
+
"loss": 1.6497,
|
497 |
+
"step": 360
|
498 |
+
},
|
499 |
+
{
|
500 |
+
"epoch": 0.25,
|
501 |
+
"learning_rate": 1.2929292929292931e-05,
|
502 |
+
"loss": 1.6738,
|
503 |
+
"step": 365
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"epoch": 0.26,
|
507 |
+
"learning_rate": 1.2828282828282829e-05,
|
508 |
+
"loss": 1.6673,
|
509 |
+
"step": 370
|
510 |
+
},
|
511 |
+
{
|
512 |
+
"epoch": 0.26,
|
513 |
+
"learning_rate": 1.2727272727272728e-05,
|
514 |
+
"loss": 1.6767,
|
515 |
+
"step": 375
|
516 |
+
},
|
517 |
+
{
|
518 |
+
"epoch": 0.26,
|
519 |
+
"learning_rate": 1.2626262626262626e-05,
|
520 |
+
"loss": 1.7335,
|
521 |
+
"step": 380
|
522 |
+
},
|
523 |
+
{
|
524 |
+
"epoch": 0.27,
|
525 |
+
"learning_rate": 1.2525252525252527e-05,
|
526 |
+
"loss": 1.5885,
|
527 |
+
"step": 385
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 0.27,
|
531 |
+
"learning_rate": 1.2424242424242425e-05,
|
532 |
+
"loss": 1.5992,
|
533 |
+
"step": 390
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"epoch": 0.27,
|
537 |
+
"learning_rate": 1.2323232323232323e-05,
|
538 |
+
"loss": 1.6115,
|
539 |
+
"step": 395
|
540 |
+
},
|
541 |
+
{
|
542 |
+
"epoch": 0.28,
|
543 |
+
"learning_rate": 1.2222222222222224e-05,
|
544 |
+
"loss": 1.7397,
|
545 |
+
"step": 400
|
546 |
+
},
|
547 |
+
{
|
548 |
+
"epoch": 0.28,
|
549 |
+
"eval_loss": 2.1878244876861572,
|
550 |
+
"eval_runtime": 127.871,
|
551 |
+
"eval_samples_per_second": 0.782,
|
552 |
+
"eval_steps_per_second": 0.102,
|
553 |
+
"step": 400
|
554 |
+
},
|
555 |
+
{
|
556 |
+
"epoch": 0.28,
|
557 |
+
"learning_rate": 1.2121212121212122e-05,
|
558 |
+
"loss": 1.6486,
|
559 |
+
"step": 405
|
560 |
+
},
|
561 |
+
{
|
562 |
+
"epoch": 0.28,
|
563 |
+
"learning_rate": 1.2020202020202021e-05,
|
564 |
+
"loss": 1.6822,
|
565 |
+
"step": 410
|
566 |
+
},
|
567 |
+
{
|
568 |
+
"epoch": 0.29,
|
569 |
+
"learning_rate": 1.191919191919192e-05,
|
570 |
+
"loss": 1.6529,
|
571 |
+
"step": 415
|
572 |
+
},
|
573 |
+
{
|
574 |
+
"epoch": 0.29,
|
575 |
+
"learning_rate": 1.181818181818182e-05,
|
576 |
+
"loss": 1.6155,
|
577 |
+
"step": 420
|
578 |
+
},
|
579 |
+
{
|
580 |
+
"epoch": 0.29,
|
581 |
+
"learning_rate": 1.1717171717171718e-05,
|
582 |
+
"loss": 1.6216,
|
583 |
+
"step": 425
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 0.3,
|
587 |
+
"learning_rate": 1.1616161616161616e-05,
|
588 |
+
"loss": 1.5922,
|
589 |
+
"step": 430
|
590 |
+
},
|
591 |
+
{
|
592 |
+
"epoch": 0.3,
|
593 |
+
"learning_rate": 1.1515151515151517e-05,
|
594 |
+
"loss": 1.7198,
|
595 |
+
"step": 435
|
596 |
+
},
|
597 |
+
{
|
598 |
+
"epoch": 0.3,
|
599 |
+
"learning_rate": 1.1414141414141415e-05,
|
600 |
+
"loss": 1.5924,
|
601 |
+
"step": 440
|
602 |
+
},
|
603 |
+
{
|
604 |
+
"epoch": 0.31,
|
605 |
+
"learning_rate": 1.1313131313131314e-05,
|
606 |
+
"loss": 1.6722,
|
607 |
+
"step": 445
|
608 |
+
},
|
609 |
+
{
|
610 |
+
"epoch": 0.31,
|
611 |
+
"learning_rate": 1.1212121212121212e-05,
|
612 |
+
"loss": 1.5975,
|
613 |
+
"step": 450
|
614 |
+
},
|
615 |
+
{
|
616 |
+
"epoch": 0.31,
|
617 |
+
"eval_loss": 2.185619592666626,
|
618 |
+
"eval_runtime": 127.8889,
|
619 |
+
"eval_samples_per_second": 0.782,
|
620 |
+
"eval_steps_per_second": 0.102,
|
621 |
+
"step": 450
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"epoch": 0.31,
|
625 |
+
"learning_rate": 1.1111111111111113e-05,
|
626 |
+
"loss": 1.6218,
|
627 |
+
"step": 455
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"epoch": 0.32,
|
631 |
+
"learning_rate": 1.1010101010101011e-05,
|
632 |
+
"loss": 1.613,
|
633 |
+
"step": 460
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 0.32,
|
637 |
+
"learning_rate": 1.0909090909090909e-05,
|
638 |
+
"loss": 1.7023,
|
639 |
+
"step": 465
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.32,
|
643 |
+
"learning_rate": 1.080808080808081e-05,
|
644 |
+
"loss": 1.6097,
|
645 |
+
"step": 470
|
646 |
+
},
|
647 |
+
{
|
648 |
+
"epoch": 0.33,
|
649 |
+
"learning_rate": 1.0707070707070708e-05,
|
650 |
+
"loss": 1.5922,
|
651 |
+
"step": 475
|
652 |
+
},
|
653 |
+
{
|
654 |
+
"epoch": 0.33,
|
655 |
+
"learning_rate": 1.0606060606060606e-05,
|
656 |
+
"loss": 1.6736,
|
657 |
+
"step": 480
|
658 |
+
},
|
659 |
+
{
|
660 |
+
"epoch": 0.33,
|
661 |
+
"learning_rate": 1.0505050505050507e-05,
|
662 |
+
"loss": 1.6033,
|
663 |
+
"step": 485
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"epoch": 0.34,
|
667 |
+
"learning_rate": 1.0404040404040405e-05,
|
668 |
+
"loss": 1.6552,
|
669 |
+
"step": 490
|
670 |
+
},
|
671 |
+
{
|
672 |
+
"epoch": 0.34,
|
673 |
+
"learning_rate": 1.0303030303030304e-05,
|
674 |
+
"loss": 1.6533,
|
675 |
+
"step": 495
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"epoch": 0.34,
|
679 |
+
"learning_rate": 1.0202020202020202e-05,
|
680 |
+
"loss": 1.6899,
|
681 |
+
"step": 500
|
682 |
+
},
|
683 |
+
{
|
684 |
+
"epoch": 0.34,
|
685 |
+
"eval_loss": 2.1731319427490234,
|
686 |
+
"eval_runtime": 127.9869,
|
687 |
+
"eval_samples_per_second": 0.781,
|
688 |
+
"eval_steps_per_second": 0.102,
|
689 |
+
"step": 500
|
690 |
+
},
|
691 |
+
{
|
692 |
+
"epoch": 0.35,
|
693 |
+
"learning_rate": 1.0101010101010103e-05,
|
694 |
+
"loss": 1.6272,
|
695 |
+
"step": 505
|
696 |
+
},
|
697 |
+
{
|
698 |
+
"epoch": 0.35,
|
699 |
+
"learning_rate": 1e-05,
|
700 |
+
"loss": 1.6105,
|
701 |
+
"step": 510
|
702 |
+
},
|
703 |
+
{
|
704 |
+
"epoch": 0.36,
|
705 |
+
"learning_rate": 9.8989898989899e-06,
|
706 |
+
"loss": 1.522,
|
707 |
+
"step": 515
|
708 |
+
},
|
709 |
+
{
|
710 |
+
"epoch": 0.36,
|
711 |
+
"learning_rate": 9.797979797979798e-06,
|
712 |
+
"loss": 1.6022,
|
713 |
+
"step": 520
|
714 |
+
},
|
715 |
+
{
|
716 |
+
"epoch": 0.36,
|
717 |
+
"learning_rate": 9.696969696969698e-06,
|
718 |
+
"loss": 1.6157,
|
719 |
+
"step": 525
|
720 |
+
},
|
721 |
+
{
|
722 |
+
"epoch": 0.37,
|
723 |
+
"learning_rate": 9.595959595959597e-06,
|
724 |
+
"loss": 1.7323,
|
725 |
+
"step": 530
|
726 |
+
},
|
727 |
+
{
|
728 |
+
"epoch": 0.37,
|
729 |
+
"learning_rate": 9.494949494949497e-06,
|
730 |
+
"loss": 1.5535,
|
731 |
+
"step": 535
|
732 |
+
},
|
733 |
+
{
|
734 |
+
"epoch": 0.37,
|
735 |
+
"learning_rate": 9.393939393939396e-06,
|
736 |
+
"loss": 1.6378,
|
737 |
+
"step": 540
|
738 |
+
},
|
739 |
+
{
|
740 |
+
"epoch": 0.38,
|
741 |
+
"learning_rate": 9.292929292929294e-06,
|
742 |
+
"loss": 1.5394,
|
743 |
+
"step": 545
|
744 |
+
},
|
745 |
+
{
|
746 |
+
"epoch": 0.38,
|
747 |
+
"learning_rate": 9.191919191919193e-06,
|
748 |
+
"loss": 1.6862,
|
749 |
+
"step": 550
|
750 |
+
},
|
751 |
+
{
|
752 |
+
"epoch": 0.38,
|
753 |
+
"eval_loss": 2.1638994216918945,
|
754 |
+
"eval_runtime": 127.6725,
|
755 |
+
"eval_samples_per_second": 0.783,
|
756 |
+
"eval_steps_per_second": 0.102,
|
757 |
+
"step": 550
|
758 |
+
},
|
759 |
+
{
|
760 |
+
"epoch": 0.38,
|
761 |
+
"learning_rate": 9.090909090909091e-06,
|
762 |
+
"loss": 1.5748,
|
763 |
+
"step": 555
|
764 |
+
},
|
765 |
+
{
|
766 |
+
"epoch": 0.39,
|
767 |
+
"learning_rate": 8.98989898989899e-06,
|
768 |
+
"loss": 1.6246,
|
769 |
+
"step": 560
|
770 |
+
},
|
771 |
+
{
|
772 |
+
"epoch": 0.39,
|
773 |
+
"learning_rate": 8.888888888888888e-06,
|
774 |
+
"loss": 1.6118,
|
775 |
+
"step": 565
|
776 |
+
},
|
777 |
+
{
|
778 |
+
"epoch": 0.39,
|
779 |
+
"learning_rate": 8.787878787878788e-06,
|
780 |
+
"loss": 1.5606,
|
781 |
+
"step": 570
|
782 |
+
},
|
783 |
+
{
|
784 |
+
"epoch": 0.4,
|
785 |
+
"learning_rate": 8.686868686868687e-06,
|
786 |
+
"loss": 1.5704,
|
787 |
+
"step": 575
|
788 |
+
},
|
789 |
+
{
|
790 |
+
"epoch": 0.4,
|
791 |
+
"learning_rate": 8.585858585858587e-06,
|
792 |
+
"loss": 1.6683,
|
793 |
+
"step": 580
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"epoch": 0.4,
|
797 |
+
"learning_rate": 8.484848484848486e-06,
|
798 |
+
"loss": 1.6215,
|
799 |
+
"step": 585
|
800 |
+
},
|
801 |
+
{
|
802 |
+
"epoch": 0.41,
|
803 |
+
"learning_rate": 8.383838383838384e-06,
|
804 |
+
"loss": 1.6727,
|
805 |
+
"step": 590
|
806 |
+
},
|
807 |
+
{
|
808 |
+
"epoch": 0.41,
|
809 |
+
"learning_rate": 8.282828282828283e-06,
|
810 |
+
"loss": 1.5615,
|
811 |
+
"step": 595
|
812 |
+
},
|
813 |
+
{
|
814 |
+
"epoch": 0.41,
|
815 |
+
"learning_rate": 8.181818181818183e-06,
|
816 |
+
"loss": 1.6431,
|
817 |
+
"step": 600
|
818 |
+
},
|
819 |
+
{
|
820 |
+
"epoch": 0.41,
|
821 |
+
"eval_loss": 2.1520442962646484,
|
822 |
+
"eval_runtime": 127.6384,
|
823 |
+
"eval_samples_per_second": 0.783,
|
824 |
+
"eval_steps_per_second": 0.102,
|
825 |
+
"step": 600
|
826 |
+
},
|
827 |
+
{
|
828 |
+
"epoch": 0.42,
|
829 |
+
"learning_rate": 8.08080808080808e-06,
|
830 |
+
"loss": 1.5967,
|
831 |
+
"step": 605
|
832 |
+
},
|
833 |
+
{
|
834 |
+
"epoch": 0.42,
|
835 |
+
"learning_rate": 7.97979797979798e-06,
|
836 |
+
"loss": 1.6016,
|
837 |
+
"step": 610
|
838 |
+
},
|
839 |
+
{
|
840 |
+
"epoch": 0.42,
|
841 |
+
"learning_rate": 7.87878787878788e-06,
|
842 |
+
"loss": 1.5905,
|
843 |
+
"step": 615
|
844 |
+
},
|
845 |
+
{
|
846 |
+
"epoch": 0.43,
|
847 |
+
"learning_rate": 7.77777777777778e-06,
|
848 |
+
"loss": 1.6387,
|
849 |
+
"step": 620
|
850 |
+
},
|
851 |
+
{
|
852 |
+
"epoch": 0.43,
|
853 |
+
"learning_rate": 7.676767676767677e-06,
|
854 |
+
"loss": 1.6255,
|
855 |
+
"step": 625
|
856 |
+
},
|
857 |
+
{
|
858 |
+
"epoch": 0.43,
|
859 |
+
"learning_rate": 7.5757575757575764e-06,
|
860 |
+
"loss": 1.642,
|
861 |
+
"step": 630
|
862 |
+
},
|
863 |
+
{
|
864 |
+
"epoch": 0.44,
|
865 |
+
"learning_rate": 7.474747474747476e-06,
|
866 |
+
"loss": 1.6004,
|
867 |
+
"step": 635
|
868 |
+
},
|
869 |
+
{
|
870 |
+
"epoch": 0.44,
|
871 |
+
"learning_rate": 7.373737373737374e-06,
|
872 |
+
"loss": 1.5635,
|
873 |
+
"step": 640
|
874 |
+
},
|
875 |
+
{
|
876 |
+
"epoch": 0.44,
|
877 |
+
"learning_rate": 7.272727272727273e-06,
|
878 |
+
"loss": 1.6266,
|
879 |
+
"step": 645
|
880 |
+
},
|
881 |
+
{
|
882 |
+
"epoch": 0.45,
|
883 |
+
"learning_rate": 7.171717171717172e-06,
|
884 |
+
"loss": 1.5906,
|
885 |
+
"step": 650
|
886 |
+
},
|
887 |
+
{
|
888 |
+
"epoch": 0.45,
|
889 |
+
"eval_loss": 2.1461074352264404,
|
890 |
+
"eval_runtime": 126.7907,
|
891 |
+
"eval_samples_per_second": 0.789,
|
892 |
+
"eval_steps_per_second": 0.103,
|
893 |
+
"step": 650
|
894 |
+
},
|
895 |
+
{
|
896 |
+
"epoch": 0.45,
|
897 |
+
"learning_rate": 7.070707070707071e-06,
|
898 |
+
"loss": 1.5335,
|
899 |
+
"step": 655
|
900 |
+
},
|
901 |
+
{
|
902 |
+
"epoch": 0.46,
|
903 |
+
"learning_rate": 6.969696969696971e-06,
|
904 |
+
"loss": 1.5319,
|
905 |
+
"step": 660
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"epoch": 0.46,
|
909 |
+
"learning_rate": 6.868686868686869e-06,
|
910 |
+
"loss": 1.5643,
|
911 |
+
"step": 665
|
912 |
+
},
|
913 |
+
{
|
914 |
+
"epoch": 0.46,
|
915 |
+
"learning_rate": 6.767676767676769e-06,
|
916 |
+
"loss": 1.635,
|
917 |
+
"step": 670
|
918 |
+
},
|
919 |
+
{
|
920 |
+
"epoch": 0.47,
|
921 |
+
"learning_rate": 6.666666666666667e-06,
|
922 |
+
"loss": 1.5881,
|
923 |
+
"step": 675
|
924 |
+
},
|
925 |
+
{
|
926 |
+
"epoch": 0.47,
|
927 |
+
"learning_rate": 6.565656565656566e-06,
|
928 |
+
"loss": 1.5855,
|
929 |
+
"step": 680
|
930 |
+
},
|
931 |
+
{
|
932 |
+
"epoch": 0.47,
|
933 |
+
"learning_rate": 6.464646464646466e-06,
|
934 |
+
"loss": 1.5281,
|
935 |
+
"step": 685
|
936 |
+
},
|
937 |
+
{
|
938 |
+
"epoch": 0.48,
|
939 |
+
"learning_rate": 6.363636363636364e-06,
|
940 |
+
"loss": 1.5686,
|
941 |
+
"step": 690
|
942 |
+
},
|
943 |
+
{
|
944 |
+
"epoch": 0.48,
|
945 |
+
"learning_rate": 6.262626262626264e-06,
|
946 |
+
"loss": 1.5815,
|
947 |
+
"step": 695
|
948 |
+
},
|
949 |
+
{
|
950 |
+
"epoch": 0.48,
|
951 |
+
"learning_rate": 6.1616161616161615e-06,
|
952 |
+
"loss": 1.6277,
|
953 |
+
"step": 700
|
954 |
+
},
|
955 |
+
{
|
956 |
+
"epoch": 0.48,
|
957 |
+
"eval_loss": 2.1339261531829834,
|
958 |
+
"eval_runtime": 127.7156,
|
959 |
+
"eval_samples_per_second": 0.783,
|
960 |
+
"eval_steps_per_second": 0.102,
|
961 |
+
"step": 700
|
962 |
+
},
|
963 |
+
{
|
964 |
+
"epoch": 0.49,
|
965 |
+
"learning_rate": 6.060606060606061e-06,
|
966 |
+
"loss": 1.6068,
|
967 |
+
"step": 705
|
968 |
+
},
|
969 |
+
{
|
970 |
+
"epoch": 0.49,
|
971 |
+
"learning_rate": 5.95959595959596e-06,
|
972 |
+
"loss": 1.6653,
|
973 |
+
"step": 710
|
974 |
+
},
|
975 |
+
{
|
976 |
+
"epoch": 0.49,
|
977 |
+
"learning_rate": 5.858585858585859e-06,
|
978 |
+
"loss": 1.5389,
|
979 |
+
"step": 715
|
980 |
+
},
|
981 |
+
{
|
982 |
+
"epoch": 0.5,
|
983 |
+
"learning_rate": 5.7575757575757586e-06,
|
984 |
+
"loss": 1.5535,
|
985 |
+
"step": 720
|
986 |
+
},
|
987 |
+
{
|
988 |
+
"epoch": 0.5,
|
989 |
+
"learning_rate": 5.656565656565657e-06,
|
990 |
+
"loss": 1.621,
|
991 |
+
"step": 725
|
992 |
+
},
|
993 |
+
{
|
994 |
+
"epoch": 0.5,
|
995 |
+
"learning_rate": 5.555555555555557e-06,
|
996 |
+
"loss": 1.56,
|
997 |
+
"step": 730
|
998 |
+
},
|
999 |
+
{
|
1000 |
+
"epoch": 0.51,
|
1001 |
+
"learning_rate": 5.4545454545454545e-06,
|
1002 |
+
"loss": 1.5491,
|
1003 |
+
"step": 735
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 0.51,
|
1007 |
+
"learning_rate": 5.353535353535354e-06,
|
1008 |
+
"loss": 1.5151,
|
1009 |
+
"step": 740
|
1010 |
+
},
|
1011 |
+
{
|
1012 |
+
"epoch": 0.51,
|
1013 |
+
"learning_rate": 5.252525252525253e-06,
|
1014 |
+
"loss": 1.5135,
|
1015 |
+
"step": 745
|
1016 |
+
},
|
1017 |
+
{
|
1018 |
+
"epoch": 0.52,
|
1019 |
+
"learning_rate": 5.151515151515152e-06,
|
1020 |
+
"loss": 1.4665,
|
1021 |
+
"step": 750
|
1022 |
+
},
|
1023 |
+
{
|
1024 |
+
"epoch": 0.52,
|
1025 |
+
"eval_loss": 2.127960681915283,
|
1026 |
+
"eval_runtime": 126.9672,
|
1027 |
+
"eval_samples_per_second": 0.788,
|
1028 |
+
"eval_steps_per_second": 0.102,
|
1029 |
+
"step": 750
|
1030 |
+
},
|
1031 |
+
{
|
1032 |
+
"epoch": 0.52,
|
1033 |
+
"learning_rate": 5.0505050505050515e-06,
|
1034 |
+
"loss": 1.5305,
|
1035 |
+
"step": 755
|
1036 |
+
},
|
1037 |
+
{
|
1038 |
+
"epoch": 0.52,
|
1039 |
+
"learning_rate": 4.94949494949495e-06,
|
1040 |
+
"loss": 1.531,
|
1041 |
+
"step": 760
|
1042 |
+
},
|
1043 |
+
{
|
1044 |
+
"epoch": 0.53,
|
1045 |
+
"learning_rate": 4.848484848484849e-06,
|
1046 |
+
"loss": 1.6151,
|
1047 |
+
"step": 765
|
1048 |
+
},
|
1049 |
+
{
|
1050 |
+
"epoch": 0.53,
|
1051 |
+
"learning_rate": 4.747474747474748e-06,
|
1052 |
+
"loss": 1.5451,
|
1053 |
+
"step": 770
|
1054 |
+
},
|
1055 |
+
{
|
1056 |
+
"epoch": 0.53,
|
1057 |
+
"learning_rate": 4.646464646464647e-06,
|
1058 |
+
"loss": 1.5876,
|
1059 |
+
"step": 775
|
1060 |
+
},
|
1061 |
+
{
|
1062 |
+
"epoch": 0.54,
|
1063 |
+
"learning_rate": 4.5454545454545455e-06,
|
1064 |
+
"loss": 1.4907,
|
1065 |
+
"step": 780
|
1066 |
+
},
|
1067 |
+
{
|
1068 |
+
"epoch": 0.54,
|
1069 |
+
"learning_rate": 4.444444444444444e-06,
|
1070 |
+
"loss": 1.5307,
|
1071 |
+
"step": 785
|
1072 |
+
},
|
1073 |
+
{
|
1074 |
+
"epoch": 0.54,
|
1075 |
+
"learning_rate": 4.343434343434344e-06,
|
1076 |
+
"loss": 1.4979,
|
1077 |
+
"step": 790
|
1078 |
+
},
|
1079 |
+
{
|
1080 |
+
"epoch": 0.55,
|
1081 |
+
"learning_rate": 4.242424242424243e-06,
|
1082 |
+
"loss": 1.5098,
|
1083 |
+
"step": 795
|
1084 |
+
},
|
1085 |
+
{
|
1086 |
+
"epoch": 0.55,
|
1087 |
+
"learning_rate": 4.141414141414142e-06,
|
1088 |
+
"loss": 1.6528,
|
1089 |
+
"step": 800
|
1090 |
+
},
|
1091 |
+
{
|
1092 |
+
"epoch": 0.55,
|
1093 |
+
"eval_loss": 2.1138248443603516,
|
1094 |
+
"eval_runtime": 127.0916,
|
1095 |
+
"eval_samples_per_second": 0.787,
|
1096 |
+
"eval_steps_per_second": 0.102,
|
1097 |
+
"step": 800
|
1098 |
+
},
|
1099 |
+
{
|
1100 |
+
"epoch": 0.56,
|
1101 |
+
"learning_rate": 4.04040404040404e-06,
|
1102 |
+
"loss": 1.5037,
|
1103 |
+
"step": 805
|
1104 |
+
},
|
1105 |
+
{
|
1106 |
+
"epoch": 0.56,
|
1107 |
+
"learning_rate": 3.93939393939394e-06,
|
1108 |
+
"loss": 1.5584,
|
1109 |
+
"step": 810
|
1110 |
+
},
|
1111 |
+
{
|
1112 |
+
"epoch": 0.56,
|
1113 |
+
"learning_rate": 3.8383838383838385e-06,
|
1114 |
+
"loss": 1.5794,
|
1115 |
+
"step": 815
|
1116 |
+
},
|
1117 |
+
{
|
1118 |
+
"epoch": 0.57,
|
1119 |
+
"learning_rate": 3.737373737373738e-06,
|
1120 |
+
"loss": 1.4932,
|
1121 |
+
"step": 820
|
1122 |
+
},
|
1123 |
+
{
|
1124 |
+
"epoch": 0.57,
|
1125 |
+
"learning_rate": 3.6363636363636366e-06,
|
1126 |
+
"loss": 1.5709,
|
1127 |
+
"step": 825
|
1128 |
+
},
|
1129 |
+
{
|
1130 |
+
"epoch": 0.57,
|
1131 |
+
"learning_rate": 3.5353535353535356e-06,
|
1132 |
+
"loss": 1.5937,
|
1133 |
+
"step": 830
|
1134 |
+
},
|
1135 |
+
{
|
1136 |
+
"epoch": 0.58,
|
1137 |
+
"learning_rate": 3.4343434343434347e-06,
|
1138 |
+
"loss": 1.5733,
|
1139 |
+
"step": 835
|
1140 |
+
},
|
1141 |
+
{
|
1142 |
+
"epoch": 0.58,
|
1143 |
+
"learning_rate": 3.3333333333333333e-06,
|
1144 |
+
"loss": 1.5532,
|
1145 |
+
"step": 840
|
1146 |
+
},
|
1147 |
+
{
|
1148 |
+
"epoch": 0.58,
|
1149 |
+
"learning_rate": 3.232323232323233e-06,
|
1150 |
+
"loss": 1.531,
|
1151 |
+
"step": 845
|
1152 |
+
},
|
1153 |
+
{
|
1154 |
+
"epoch": 0.59,
|
1155 |
+
"learning_rate": 3.131313131313132e-06,
|
1156 |
+
"loss": 1.4618,
|
1157 |
+
"step": 850
|
1158 |
+
},
|
1159 |
+
{
|
1160 |
+
"epoch": 0.59,
|
1161 |
+
"eval_loss": 2.104820489883423,
|
1162 |
+
"eval_runtime": 126.9789,
|
1163 |
+
"eval_samples_per_second": 0.788,
|
1164 |
+
"eval_steps_per_second": 0.102,
|
1165 |
+
"step": 850
|
1166 |
+
},
|
1167 |
+
{
|
1168 |
+
"epoch": 0.59,
|
1169 |
+
"learning_rate": 3.0303030303030305e-06,
|
1170 |
+
"loss": 1.5802,
|
1171 |
+
"step": 855
|
1172 |
+
},
|
1173 |
+
{
|
1174 |
+
"epoch": 0.59,
|
1175 |
+
"learning_rate": 2.9292929292929295e-06,
|
1176 |
+
"loss": 1.4664,
|
1177 |
+
"step": 860
|
1178 |
+
},
|
1179 |
+
{
|
1180 |
+
"epoch": 0.6,
|
1181 |
+
"learning_rate": 2.8282828282828286e-06,
|
1182 |
+
"loss": 1.6319,
|
1183 |
+
"step": 865
|
1184 |
+
},
|
1185 |
+
{
|
1186 |
+
"epoch": 0.6,
|
1187 |
+
"learning_rate": 2.7272727272727272e-06,
|
1188 |
+
"loss": 1.5629,
|
1189 |
+
"step": 870
|
1190 |
+
},
|
1191 |
+
{
|
1192 |
+
"epoch": 0.6,
|
1193 |
+
"learning_rate": 2.6262626262626267e-06,
|
1194 |
+
"loss": 1.5942,
|
1195 |
+
"step": 875
|
1196 |
+
},
|
1197 |
+
{
|
1198 |
+
"epoch": 0.61,
|
1199 |
+
"learning_rate": 2.5252525252525258e-06,
|
1200 |
+
"loss": 1.5522,
|
1201 |
+
"step": 880
|
1202 |
+
},
|
1203 |
+
{
|
1204 |
+
"epoch": 0.61,
|
1205 |
+
"learning_rate": 2.4242424242424244e-06,
|
1206 |
+
"loss": 1.5326,
|
1207 |
+
"step": 885
|
1208 |
+
},
|
1209 |
+
{
|
1210 |
+
"epoch": 0.61,
|
1211 |
+
"learning_rate": 2.3232323232323234e-06,
|
1212 |
+
"loss": 1.5492,
|
1213 |
+
"step": 890
|
1214 |
+
},
|
1215 |
+
{
|
1216 |
+
"epoch": 0.62,
|
1217 |
+
"learning_rate": 2.222222222222222e-06,
|
1218 |
+
"loss": 1.483,
|
1219 |
+
"step": 895
|
1220 |
+
},
|
1221 |
+
{
|
1222 |
+
"epoch": 0.62,
|
1223 |
+
"learning_rate": 2.1212121212121216e-06,
|
1224 |
+
"loss": 1.4871,
|
1225 |
+
"step": 900
|
1226 |
+
},
|
1227 |
+
{
|
1228 |
+
"epoch": 0.62,
|
1229 |
+
"eval_loss": 2.096195936203003,
|
1230 |
+
"eval_runtime": 127.2807,
|
1231 |
+
"eval_samples_per_second": 0.786,
|
1232 |
+
"eval_steps_per_second": 0.102,
|
1233 |
+
"step": 900
|
1234 |
+
},
|
1235 |
+
{
|
1236 |
+
"epoch": 0.62,
|
1237 |
+
"learning_rate": 2.02020202020202e-06,
|
1238 |
+
"loss": 1.4819,
|
1239 |
+
"step": 905
|
1240 |
+
},
|
1241 |
+
{
|
1242 |
+
"epoch": 0.63,
|
1243 |
+
"learning_rate": 1.9191919191919192e-06,
|
1244 |
+
"loss": 1.5326,
|
1245 |
+
"step": 910
|
1246 |
+
},
|
1247 |
+
{
|
1248 |
+
"epoch": 0.63,
|
1249 |
+
"learning_rate": 1.8181818181818183e-06,
|
1250 |
+
"loss": 1.5267,
|
1251 |
+
"step": 915
|
1252 |
+
},
|
1253 |
+
{
|
1254 |
+
"epoch": 0.63,
|
1255 |
+
"learning_rate": 1.7171717171717173e-06,
|
1256 |
+
"loss": 1.422,
|
1257 |
+
"step": 920
|
1258 |
+
},
|
1259 |
+
{
|
1260 |
+
"epoch": 0.64,
|
1261 |
+
"learning_rate": 1.6161616161616164e-06,
|
1262 |
+
"loss": 1.5205,
|
1263 |
+
"step": 925
|
1264 |
+
},
|
1265 |
+
{
|
1266 |
+
"epoch": 0.64,
|
1267 |
+
"learning_rate": 1.5151515151515152e-06,
|
1268 |
+
"loss": 1.5186,
|
1269 |
+
"step": 930
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"epoch": 0.64,
|
1273 |
+
"learning_rate": 1.4141414141414143e-06,
|
1274 |
+
"loss": 1.5456,
|
1275 |
+
"step": 935
|
1276 |
+
},
|
1277 |
+
{
|
1278 |
+
"epoch": 0.65,
|
1279 |
+
"learning_rate": 1.3131313131313134e-06,
|
1280 |
+
"loss": 1.5378,
|
1281 |
+
"step": 940
|
1282 |
+
},
|
1283 |
+
{
|
1284 |
+
"epoch": 0.65,
|
1285 |
+
"learning_rate": 1.2121212121212122e-06,
|
1286 |
+
"loss": 1.4828,
|
1287 |
+
"step": 945
|
1288 |
+
},
|
1289 |
+
{
|
1290 |
+
"epoch": 0.66,
|
1291 |
+
"learning_rate": 1.111111111111111e-06,
|
1292 |
+
"loss": 1.6019,
|
1293 |
+
"step": 950
|
1294 |
+
},
|
1295 |
+
{
|
1296 |
+
"epoch": 0.66,
|
1297 |
+
"eval_loss": 2.090965509414673,
|
1298 |
+
"eval_runtime": 126.05,
|
1299 |
+
"eval_samples_per_second": 0.793,
|
1300 |
+
"eval_steps_per_second": 0.103,
|
1301 |
+
"step": 950
|
1302 |
+
},
|
1303 |
+
{
|
1304 |
+
"epoch": 0.66,
|
1305 |
+
"learning_rate": 1.01010101010101e-06,
|
1306 |
+
"loss": 1.4365,
|
1307 |
+
"step": 955
|
1308 |
+
},
|
1309 |
+
{
|
1310 |
+
"epoch": 0.66,
|
1311 |
+
"learning_rate": 9.090909090909091e-07,
|
1312 |
+
"loss": 1.4373,
|
1313 |
+
"step": 960
|
1314 |
+
},
|
1315 |
+
{
|
1316 |
+
"epoch": 0.67,
|
1317 |
+
"learning_rate": 8.080808080808082e-07,
|
1318 |
+
"loss": 1.5253,
|
1319 |
+
"step": 965
|
1320 |
+
},
|
1321 |
+
{
|
1322 |
+
"epoch": 0.67,
|
1323 |
+
"learning_rate": 7.070707070707071e-07,
|
1324 |
+
"loss": 1.6014,
|
1325 |
+
"step": 970
|
1326 |
+
},
|
1327 |
+
{
|
1328 |
+
"epoch": 0.67,
|
1329 |
+
"learning_rate": 6.060606060606061e-07,
|
1330 |
+
"loss": 1.549,
|
1331 |
+
"step": 975
|
1332 |
+
},
|
1333 |
+
{
|
1334 |
+
"epoch": 0.68,
|
1335 |
+
"learning_rate": 5.05050505050505e-07,
|
1336 |
+
"loss": 1.5057,
|
1337 |
+
"step": 980
|
1338 |
+
},
|
1339 |
+
{
|
1340 |
+
"epoch": 0.68,
|
1341 |
+
"learning_rate": 4.040404040404041e-07,
|
1342 |
+
"loss": 1.4688,
|
1343 |
+
"step": 985
|
1344 |
+
},
|
1345 |
+
{
|
1346 |
+
"epoch": 0.68,
|
1347 |
+
"learning_rate": 3.0303030303030305e-07,
|
1348 |
+
"loss": 1.4982,
|
1349 |
+
"step": 990
|
1350 |
+
},
|
1351 |
+
{
|
1352 |
+
"epoch": 0.69,
|
1353 |
+
"learning_rate": 2.0202020202020205e-07,
|
1354 |
+
"loss": 1.5032,
|
1355 |
+
"step": 995
|
1356 |
+
},
|
1357 |
+
{
|
1358 |
+
"epoch": 0.69,
|
1359 |
+
"learning_rate": 1.0101010101010103e-07,
|
1360 |
+
"loss": 1.5359,
|
1361 |
+
"step": 1000
|
1362 |
+
},
|
1363 |
+
{
|
1364 |
+
"epoch": 0.69,
|
1365 |
+
"eval_loss": 2.0878255367279053,
|
1366 |
+
"eval_runtime": 126.9736,
|
1367 |
+
"eval_samples_per_second": 0.788,
|
1368 |
+
"eval_steps_per_second": 0.102,
|
1369 |
+
"step": 1000
|
1370 |
+
}
|
1371 |
+
],
|
1372 |
+
"logging_steps": 5,
|
1373 |
+
"max_steps": 1000,
|
1374 |
+
"num_train_epochs": 1,
|
1375 |
+
"save_steps": 100,
|
1376 |
+
"total_flos": 50751528222720.0,
|
1377 |
+
"trial_name": null,
|
1378 |
+
"trial_params": null
|
1379 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:800fd3f2be062971c880ead3b73ddbd3d3d5ee56bef4666211ccf35bf9c3c4bb
|
3 |
+
size 6651
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,578 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dicts.append(torch.load(f, map_location=device))
|
147 |
+
|
148 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
149 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
150 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
151 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
152 |
+
|
153 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
154 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
155 |
+
# use the max of the partition_count to get the dp world_size.
|
156 |
+
|
157 |
+
if type(world_size) is list:
|
158 |
+
world_size = max(world_size)
|
159 |
+
|
160 |
+
if world_size != total_files:
|
161 |
+
raise ValueError(
|
162 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
163 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
164 |
+
)
|
165 |
+
|
166 |
+
# the groups are named differently in each stage
|
167 |
+
if zero_stage <= 2:
|
168 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
169 |
+
elif zero_stage == 3:
|
170 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
171 |
+
else:
|
172 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
173 |
+
|
174 |
+
if zero_stage <= 2:
|
175 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
176 |
+
elif zero_stage == 3:
|
177 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
178 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
179 |
+
#
|
180 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
181 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
182 |
+
|
183 |
+
fp32_flat_groups = [
|
184 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
185 |
+
]
|
186 |
+
|
187 |
+
return zero_stage, world_size, fp32_flat_groups
|
188 |
+
|
189 |
+
|
190 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
191 |
+
"""
|
192 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
193 |
+
|
194 |
+
Args:
|
195 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
196 |
+
|
197 |
+
"""
|
198 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
199 |
+
|
200 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
201 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
202 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
203 |
+
|
204 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
205 |
+
|
206 |
+
zero_model_states = parse_model_states(model_files)
|
207 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
208 |
+
|
209 |
+
if zero_stage <= 2:
|
210 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
211 |
+
elif zero_stage == 3:
|
212 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
213 |
+
|
214 |
+
|
215 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
216 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
217 |
+
return
|
218 |
+
|
219 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
220 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
221 |
+
|
222 |
+
if debug:
|
223 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
224 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
225 |
+
|
226 |
+
wanted_params = len(frozen_param_shapes)
|
227 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
229 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
230 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
231 |
+
|
232 |
+
total_params = 0
|
233 |
+
total_numel = 0
|
234 |
+
for name, shape in frozen_param_shapes.items():
|
235 |
+
total_params += 1
|
236 |
+
unpartitioned_numel = shape.numel()
|
237 |
+
total_numel += unpartitioned_numel
|
238 |
+
|
239 |
+
state_dict[name] = frozen_param_fragments[name]
|
240 |
+
|
241 |
+
if debug:
|
242 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
243 |
+
|
244 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
245 |
+
|
246 |
+
|
247 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
248 |
+
param_shapes = zero_model_states[0].param_shapes
|
249 |
+
|
250 |
+
# Reconstruction protocol:
|
251 |
+
#
|
252 |
+
# XXX: document this
|
253 |
+
|
254 |
+
if debug:
|
255 |
+
for i in range(world_size):
|
256 |
+
for j in range(len(fp32_flat_groups[0])):
|
257 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
258 |
+
|
259 |
+
# XXX: memory usage doubles here (zero2)
|
260 |
+
num_param_groups = len(fp32_flat_groups[0])
|
261 |
+
merged_single_partition_of_fp32_groups = []
|
262 |
+
for i in range(num_param_groups):
|
263 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
264 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
265 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
266 |
+
avail_numel = sum(
|
267 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
268 |
+
|
269 |
+
if debug:
|
270 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
271 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
272 |
+
# not asserting if there is a mismatch due to possible padding
|
273 |
+
print(f"Have {avail_numel} numels to process.")
|
274 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
275 |
+
|
276 |
+
# params
|
277 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
278 |
+
# out-of-core computing solution
|
279 |
+
total_numel = 0
|
280 |
+
total_params = 0
|
281 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
282 |
+
offset = 0
|
283 |
+
avail_numel = full_single_fp32_vector.numel()
|
284 |
+
for name, shape in shapes.items():
|
285 |
+
|
286 |
+
unpartitioned_numel = shape.numel()
|
287 |
+
total_numel += unpartitioned_numel
|
288 |
+
total_params += 1
|
289 |
+
|
290 |
+
if debug:
|
291 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
292 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
293 |
+
offset += unpartitioned_numel
|
294 |
+
|
295 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
296 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
297 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
298 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
299 |
+
align_to = 2 * world_size
|
300 |
+
|
301 |
+
def zero2_align(x):
|
302 |
+
return align_to * math.ceil(x / align_to)
|
303 |
+
|
304 |
+
if debug:
|
305 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
306 |
+
|
307 |
+
offset = zero2_align(offset)
|
308 |
+
avail_numel = zero2_align(avail_numel)
|
309 |
+
|
310 |
+
if debug:
|
311 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
312 |
+
|
313 |
+
# Sanity check
|
314 |
+
if offset != avail_numel:
|
315 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
316 |
+
|
317 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
318 |
+
|
319 |
+
|
320 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
321 |
+
state_dict = OrderedDict()
|
322 |
+
|
323 |
+
# buffers
|
324 |
+
buffers = zero_model_states[0].buffers
|
325 |
+
state_dict.update(buffers)
|
326 |
+
if debug:
|
327 |
+
print(f"added {len(buffers)} buffers")
|
328 |
+
|
329 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
330 |
+
|
331 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
332 |
+
|
333 |
+
# recover shared parameters
|
334 |
+
for pair in zero_model_states[0].shared_params:
|
335 |
+
if pair[1] in state_dict:
|
336 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
337 |
+
|
338 |
+
return state_dict
|
339 |
+
|
340 |
+
|
341 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
342 |
+
remainder = unpartitioned_numel % world_size
|
343 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
344 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
345 |
+
return partitioned_numel, padding_numel
|
346 |
+
|
347 |
+
|
348 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
349 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
350 |
+
return
|
351 |
+
|
352 |
+
if debug:
|
353 |
+
for i in range(world_size):
|
354 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
355 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
356 |
+
|
357 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
358 |
+
wanted_params = len(frozen_param_shapes)
|
359 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
360 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
361 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
362 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
363 |
+
|
364 |
+
total_params = 0
|
365 |
+
total_numel = 0
|
366 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
367 |
+
total_params += 1
|
368 |
+
unpartitioned_numel = shape.numel()
|
369 |
+
total_numel += unpartitioned_numel
|
370 |
+
|
371 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
372 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
373 |
+
|
374 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
375 |
+
|
376 |
+
if debug:
|
377 |
+
print(
|
378 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
379 |
+
)
|
380 |
+
|
381 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
382 |
+
|
383 |
+
|
384 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
385 |
+
param_shapes = zero_model_states[0].param_shapes
|
386 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
387 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
388 |
+
# param, re-consolidating each param, while dealing with padding if any
|
389 |
+
|
390 |
+
# merge list of dicts, preserving order
|
391 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
392 |
+
|
393 |
+
if debug:
|
394 |
+
for i in range(world_size):
|
395 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
396 |
+
|
397 |
+
wanted_params = len(param_shapes)
|
398 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
399 |
+
# not asserting if there is a mismatch due to possible padding
|
400 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
401 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
402 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
403 |
+
|
404 |
+
# params
|
405 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
406 |
+
# out-of-core computing solution
|
407 |
+
offset = 0
|
408 |
+
total_numel = 0
|
409 |
+
total_params = 0
|
410 |
+
for name, shape in param_shapes.items():
|
411 |
+
|
412 |
+
unpartitioned_numel = shape.numel()
|
413 |
+
total_numel += unpartitioned_numel
|
414 |
+
total_params += 1
|
415 |
+
|
416 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
417 |
+
|
418 |
+
if debug:
|
419 |
+
print(
|
420 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
421 |
+
)
|
422 |
+
|
423 |
+
# XXX: memory usage doubles here
|
424 |
+
state_dict[name] = torch.cat(
|
425 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
426 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
427 |
+
offset += partitioned_numel
|
428 |
+
|
429 |
+
offset *= world_size
|
430 |
+
|
431 |
+
# Sanity check
|
432 |
+
if offset != avail_numel:
|
433 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
434 |
+
|
435 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
436 |
+
|
437 |
+
|
438 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
439 |
+
state_dict = OrderedDict()
|
440 |
+
|
441 |
+
# buffers
|
442 |
+
buffers = zero_model_states[0].buffers
|
443 |
+
state_dict.update(buffers)
|
444 |
+
if debug:
|
445 |
+
print(f"added {len(buffers)} buffers")
|
446 |
+
|
447 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
448 |
+
|
449 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
450 |
+
|
451 |
+
# recover shared parameters
|
452 |
+
for pair in zero_model_states[0].shared_params:
|
453 |
+
if pair[1] in state_dict:
|
454 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
455 |
+
|
456 |
+
return state_dict
|
457 |
+
|
458 |
+
|
459 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
460 |
+
"""
|
461 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
462 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
463 |
+
via a model hub.
|
464 |
+
|
465 |
+
Args:
|
466 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
467 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
468 |
+
|
469 |
+
Returns:
|
470 |
+
- pytorch ``state_dict``
|
471 |
+
|
472 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
473 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
474 |
+
the checkpoint.
|
475 |
+
|
476 |
+
A typical usage might be ::
|
477 |
+
|
478 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
479 |
+
# do the training and checkpoint saving
|
480 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
481 |
+
model = model.cpu() # move to cpu
|
482 |
+
model.load_state_dict(state_dict)
|
483 |
+
# submit to model hub or save the model to share with others
|
484 |
+
|
485 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
486 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
487 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
488 |
+
|
489 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
490 |
+
|
491 |
+
"""
|
492 |
+
if tag is None:
|
493 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
494 |
+
if os.path.isfile(latest_path):
|
495 |
+
with open(latest_path, 'r') as fd:
|
496 |
+
tag = fd.read().strip()
|
497 |
+
else:
|
498 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
499 |
+
|
500 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
501 |
+
|
502 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
503 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
504 |
+
|
505 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
506 |
+
|
507 |
+
|
508 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
509 |
+
"""
|
510 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
511 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
512 |
+
|
513 |
+
Args:
|
514 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
515 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
516 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
517 |
+
"""
|
518 |
+
|
519 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
520 |
+
print(f"Saving fp32 state dict to {output_file}")
|
521 |
+
torch.save(state_dict, output_file)
|
522 |
+
|
523 |
+
|
524 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
525 |
+
"""
|
526 |
+
1. Put the provided model to cpu
|
527 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
528 |
+
3. Load it into the provided model
|
529 |
+
|
530 |
+
Args:
|
531 |
+
- ``model``: the model object to update
|
532 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
533 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
534 |
+
|
535 |
+
Returns:
|
536 |
+
- ``model`: modified model
|
537 |
+
|
538 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
539 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
540 |
+
conveniently placed for you in the checkpoint folder.
|
541 |
+
|
542 |
+
A typical usage might be ::
|
543 |
+
|
544 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
545 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
546 |
+
# submit to model hub or save the model to share with others
|
547 |
+
|
548 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
549 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
550 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
551 |
+
|
552 |
+
"""
|
553 |
+
logger.info(f"Extracting fp32 weights")
|
554 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
555 |
+
|
556 |
+
logger.info(f"Overwriting model with fp32 weights")
|
557 |
+
model = model.cpu()
|
558 |
+
model.load_state_dict(state_dict, strict=False)
|
559 |
+
|
560 |
+
return model
|
561 |
+
|
562 |
+
|
563 |
+
if __name__ == "__main__":
|
564 |
+
|
565 |
+
parser = argparse.ArgumentParser()
|
566 |
+
parser.add_argument("checkpoint_dir",
|
567 |
+
type=str,
|
568 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
569 |
+
parser.add_argument(
|
570 |
+
"output_file",
|
571 |
+
type=str,
|
572 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
573 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
574 |
+
args = parser.parse_args()
|
575 |
+
|
576 |
+
debug = args.debug
|
577 |
+
|
578 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
|